JPS6287933A - Temperature sweeping type semiconductor spectroscope - Google Patents

Temperature sweeping type semiconductor spectroscope

Info

Publication number
JPS6287933A
JPS6287933A JP22800185A JP22800185A JPS6287933A JP S6287933 A JPS6287933 A JP S6287933A JP 22800185 A JP22800185 A JP 22800185A JP 22800185 A JP22800185 A JP 22800185A JP S6287933 A JPS6287933 A JP S6287933A
Authority
JP
Japan
Prior art keywords
optical waveguide
optical
semiconductor
temperature
changed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22800185A
Other languages
Japanese (ja)
Inventor
Yasushi Matsui
松井 康
Masato Ishino
正人 石野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22800185A priority Critical patent/JPS6287933A/en
Publication of JPS6287933A publication Critical patent/JPS6287933A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To adjust face accuracy and an optical axis by using a high reflection factor face using a semiconductor crystal cut surface as a base for a resonance mirror, using an optical waveguide having a light confining function as an optical path, and using the temperature dependency of the refractive index of a semiconductor to change the optical length. CONSTITUTION:A semiconductor material in a GaAs or InP group is used as a material constituting the optical waveguide. Light l1 made incident upon the optical waveguide layer 2 generates Fabry-Perot interference between reflection films 4 on both the ends of the optical waveguide layer 2. When the temperature of the smiconductor constituting the optical waveguide is changed, the refractive index is also changed, so that the optical length is also changed. Consequently, the resonance condition is changed and only the light l2 with a specific wavelength can be transmitted. Thus, a compact and highly efficient spectroscope requiring no optical axis adjustment can be obtained by continuously repeating said temperature change.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光導波路媒質の屈折率を変化させることにより
分光を行なう共振器構造を有する温度掃引型半導体分光
器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a temperature sweep type semiconductor spectrometer having a resonator structure that performs spectroscopy by changing the refractive index of an optical waveguide medium.

従来の技術 近年光通信技術の高度化に伴ない分光技術に対するニー
ズが高まっている。従来、分光法としてはグレーティン
グが一般的であるが、より高い分解能を有するものとし
てファブリ・ペロ干渉計が使われている。
BACKGROUND OF THE INVENTION In recent years, as optical communication technology has become more sophisticated, the need for spectroscopic technology has increased. Conventionally, gratings have been commonly used for spectroscopy, but Fabry-Perot interferometers have been used as having higher resolution.

発明が解決しようとする問題点 しかしながら従来のものはその構成が大型であり、また
共振器面が石英板等で構成されており、共振器面の面精
度、光軸の調整が難しいなどの点で問題があった。さら
に光路長変化のためにピエゾ素子を用い機械的にミラー
を移動させなくてはならない等複雑な構成となっていた
Problems to be Solved by the Invention However, the conventional structure is large, and the resonator surface is made of a quartz plate, etc., making it difficult to adjust the surface accuracy of the resonator surface and the optical axis. There was a problem. Furthermore, in order to change the optical path length, a piezo element must be used to mechanically move the mirror, resulting in a complicated configuration.

問題点を解決するための手段 本発明はファブリ・ペロ共振器として、共振ミラーに半
導体結晶弁開面をベースとした高反射率面を使用し7、
また光路として光閉じ込め機能をもつ光導波路を用い、
さらに光路長を変えるだめに半導体の屈折率の温度依存
性を利用することにより、従来の問題点を解決しうるも
のである。
Means for Solving the Problems The present invention uses a high reflectivity surface based on a semiconductor crystal valve opening surface as a resonant mirror as a Fabry-Perot resonator7.
In addition, an optical waveguide with an optical confinement function is used as the optical path,
Further, by utilizing the temperature dependence of the refractive index of a semiconductor to change the optical path length, the conventional problems can be solved.

作用 共振器のミラーとして結晶弁開面を用いることにより通
常の研磨によるものよりはるかに優れだ面精度をもつも
のが容易に得られ、高反射率を得るために行なう高反射
膜コートが高フィネス化に有効に働くと考えられる。ま
た両ミラーの平行度も結晶臂開面を用いることにより、
調整が不用となる。さらに共振器内の光路として光の閉
じ込め効果のある光導波路を用いることにより光軸がず
れることなく非常に使いやすい分光器が実現される。さ
らに温度掃引法を利用することにより従来のピエゾ掃引
型に比べ非常にシンプルで安定な装置となる。
By using the open face of a crystal valve as the mirror of the working resonator, it is easy to obtain a surface with much better surface precision than that achieved by ordinary polishing, and the high-reflection film coating applied to obtain high reflectance achieves high finesse. It is thought that this will work effectively for In addition, the parallelism of both mirrors can be adjusted by using the crystal arm opening plane.
No adjustment is required. Furthermore, by using an optical waveguide that has a light confinement effect as the optical path within the resonator, a spectrometer that is extremely easy to use without shifting the optical axis can be realized. Furthermore, by using the temperature sweep method, the device becomes much simpler and more stable than the conventional piezo sweep type.

実施例 第1図は本発明の一実施例を示す半導体分光器の構造図
である。1はクラッドとなる半導体基板、2は半導体光
導波路層、3は半導体クラッド層、4は反射膜、5は温
度制御装置である。ここで光導波路は3次元的に閉じ込
められていることが望ましい。また、光導波路を構成す
る材料としては、GaAsあるいはInP系の半導体材
料で構成されるのが一般的であるが、特にこれらの材料
に限定されるものではない。
Embodiment FIG. 1 is a structural diagram of a semiconductor spectrometer showing an embodiment of the present invention. 1 is a semiconductor substrate serving as a cladding, 2 is a semiconductor optical waveguide layer, 3 is a semiconductor cladding layer, 4 is a reflective film, and 5 is a temperature control device. Here, it is desirable that the optical waveguide be three-dimensionally confined. Furthermore, the material constituting the optical waveguide is generally made of GaAs or InP-based semiconductor materials, but is not particularly limited to these materials.

以上のように構成された半導体分光器についてその動作
を説明する。光導波路層2に入射した光β1は光導波層
両端の反射膜40間でファブリ・ペロ干渉を起こす。こ
こで光導波路を構成する半導体の温度が変化すると屈折
率も変化するため結果的に光路長が変化する。これによ
り共振条件が変化し、特定の波長の光12のみ透過させ
ることができ、さらにこの温度変化を連続的に行なうこ
とにより分光器が実現できる。ここでファブリ・ペロ型
分光器としての性能すなわち、自由スペクトル領域(F
SR)、最小分解帯域幅(MRB)および分光に必要な
温度変化量ΔTの光導波路長り依存性を、導波路端面反
射率Rをパラメータにとったものを第2図に示す。ここ
で光導波路の実効屈折率は3.3としだ。これより非常
に高い分解能をもった小型の分光器が実現できる。
The operation of the semiconductor spectrometer configured as described above will be explained. The light β1 incident on the optical waveguide layer 2 causes Fabry-Perot interference between the reflective films 40 at both ends of the optical waveguide layer. Here, when the temperature of the semiconductor forming the optical waveguide changes, the refractive index also changes, resulting in a change in the optical path length. This changes the resonance conditions, allowing only the light 12 of a specific wavelength to pass through, and furthermore, by continuously changing the temperature, a spectrometer can be realized. Here, the performance as a Fabry-Perot spectrometer, that is, the free spectral region (F
FIG. 2 shows the optical waveguide length dependence of SR), minimum resolution bandwidth (MRB), and temperature change amount ΔT necessary for spectroscopy, with waveguide end face reflectance R taken as a parameter. Here, the effective refractive index of the optical waveguide is 3.3. A compact spectrometer with much higher resolution can be realized.

発明の効果 本発明の温度掃引型半導体分光器は、ファブリ・ペロ共
振器を半導体光導波路とその弁開面を利用して構成する
ことにより、光軸調整不要の小型で高性能な分光器が実
現でき、また半導体材料で構成されていることから、光
・電子集積回路等への適用も可能と考えられる。
Effects of the Invention The temperature sweep type semiconductor spectrometer of the present invention uses a Fabry-Perot resonator using a semiconductor optical waveguide and its valve opening, thereby creating a compact and high-performance spectrometer that does not require optical axis adjustment. Since it can be realized and is made of a semiconductor material, it is considered possible to apply it to optical/electronic integrated circuits, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の温度掃引型半導体分光器の
断面図、第2図は本実施例の分光器の分光スペクトル領
域、分解能、分光に必要な温度変化量の光導波路長依存
性(導波路端面反射率をパラメータ)を示す特性図であ
る。 1・・・・・・半導体基板、2・・・・・・光導波路層
、3・・・・・・半導体クラッド層、4・・・・・・反
射膜、6・・・・・・温度制御装置。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
Figure 1 is a cross-sectional view of a temperature sweep type semiconductor spectrometer according to an embodiment of the present invention, and Figure 2 is a diagram showing the optical waveguide length dependence of the spectral range, resolution, and amount of temperature change required for spectroscopy of the spectrometer of this embodiment. FIG. 3 is a characteristic diagram showing the characteristics (waveguide end face reflectance is a parameter). DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Optical waveguide layer, 3... Semiconductor cladding layer, 4... Reflective film, 6... Temperature Control device. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure

Claims (1)

【特許請求の範囲】[Claims] 温度変化に対し屈折率が変化する半導体光導波路と前記
導波路に対し垂直で、かつ互いに平行に配置された2つ
の高反射率反射面で構成されるファブリ・ペロ共振器と
、前記光導波路部の屈折率を変化させる温度制御部とを
有してなる温度掃引型半導体分光器。
A Fabry-Perot resonator comprising a semiconductor optical waveguide whose refractive index changes with temperature changes, two high-reflectance reflective surfaces arranged perpendicular to the waveguide and parallel to each other, and the optical waveguide section. A temperature sweep type semiconductor spectrometer comprising: a temperature control section for changing the refractive index of the semiconductor spectrometer.
JP22800185A 1985-10-14 1985-10-14 Temperature sweeping type semiconductor spectroscope Pending JPS6287933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22800185A JPS6287933A (en) 1985-10-14 1985-10-14 Temperature sweeping type semiconductor spectroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22800185A JPS6287933A (en) 1985-10-14 1985-10-14 Temperature sweeping type semiconductor spectroscope

Publications (1)

Publication Number Publication Date
JPS6287933A true JPS6287933A (en) 1987-04-22

Family

ID=16869621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22800185A Pending JPS6287933A (en) 1985-10-14 1985-10-14 Temperature sweeping type semiconductor spectroscope

Country Status (1)

Country Link
JP (1) JPS6287933A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694548A (en) * 2011-03-23 2012-09-26 精工爱普生株式会社 Optical module for atomic oscillator and atomic oscillator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694548A (en) * 2011-03-23 2012-09-26 精工爱普生株式会社 Optical module for atomic oscillator and atomic oscillator
JP2012199492A (en) * 2011-03-23 2012-10-18 Seiko Epson Corp Optical module and atomic oscillator

Similar Documents

Publication Publication Date Title
US6041071A (en) Electro-optically tunable external cavity mirror for a narrow linewidth semiconductor laser
EP0235801B1 (en) Fiber fabry-perot etalon
US6853654B2 (en) Tunable external cavity laser
US6205159B1 (en) Discrete wavelength liquid crystal tuned external cavity diode laser
EP0552394B1 (en) Method and apparatus for adjusting the wavelength in an optical device and laser using the method
JP2824336B2 (en) Optical fiber filter and manufacturing method thereof
US20160118763A1 (en) External cavity tunable laser with dual beam outputs
JPH02278132A (en) Optical filter
JPH0219805A (en) Light wavelength split multiplexing apparatus
JPH02262024A (en) Tunable optical filter
JPH0738488B2 (en) Dielectric optical waveguide device, optical fiber amplifier, optical signal wavelength selection method, and dielectric optical waveguide device manufacturing method
US6865007B2 (en) Complex frequency response filter and method for manufacturing the same
US6816315B1 (en) Optical path length tuner
EP0562173A1 (en) Semiconductor optical device
WO2002082599A1 (en) Tunable external cavity laser
JPH0833518B2 (en) Fabry-Perot type optical filter
Pezeshki et al. Optical phase modulator utilizing electroabsorption in a Fabry–Perot cavity
US20050276303A1 (en) External Cavity Laser
JP2000261086A (en) Wavelength variable light source
JPS6287933A (en) Temperature sweeping type semiconductor spectroscope
US20020093995A1 (en) Electro-optically tunable external cavity mirror for a narrow linewidth semiconductor laser
JPH051989B2 (en)
JP2900703B2 (en) Narrow band laser device
JP2000214392A (en) Optical wave length filter
JPS58150929A (en) Wavelength selecting element