JPS6287847A - Method for measuring phosphoric acid - Google Patents

Method for measuring phosphoric acid

Info

Publication number
JPS6287847A
JPS6287847A JP22786785A JP22786785A JPS6287847A JP S6287847 A JPS6287847 A JP S6287847A JP 22786785 A JP22786785 A JP 22786785A JP 22786785 A JP22786785 A JP 22786785A JP S6287847 A JPS6287847 A JP S6287847A
Authority
JP
Japan
Prior art keywords
acidic
acid solution
phosphorus
electrolysis
specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22786785A
Other languages
Japanese (ja)
Inventor
Taizo Shinohara
篠原 泰三
Tadashi Kato
忠 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP22786785A priority Critical patent/JPS6287847A/en
Publication of JPS6287847A publication Critical patent/JPS6287847A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To make it possible to stably, economically and automatically measure the concn. of phosphorus in a specimen, by always recirculating an acidic molybdenic acid solution through a flow passage containing an electrolytic cell to which constant potential was applied. CONSTITUTION:An acidic molybdenic acid solution is passes a three-way valve 3 from an acidic molybdenic acid solution tank 1 to be sent to an electrolytic cell 6 through a specimen injection valve 4 and a mixing pipe 5 and further passes through a three-way valve 7 to be discharged to a waste solution sump 8. By this operation, the flow passage of the valves 3, 4 is changed over to a recirculation mode and the acidic molybdenic acid solution is recirculated through a flow passage 9. Constant potential is applied to the cell 6 by a potentiostat 10 to stabilize a background current. Next, a definite amount of the specimen preliminarily converted to an orthophosphoric acid form is supplied from the valve 4 at the time of measurement and the oxidative decomposition of phosphorus is performed by an oxidizing agent. This specimen containing orthophosphoric acid and the molybdenic acid solution form phosphoric molibdate in a mixing tube 5 to undergo constant potential electrolysis in the cell 6. The concn. of phosphorus is measured from the quantity of electricity required in electrolysis at this time.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、リン酸の測定方法に関し、さらに詳しくは、
排水のような試料水中に含まれるリンをリンモリブデン
酸塩に変換した後にその定電位電解電量測定法に基づい
てリン酸濃度を自動測定するためのリン酸の測定方法に
関する。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a method for measuring phosphoric acid, and more specifically,
The present invention relates to a method for automatically measuring phosphoric acid concentration based on potentiostatic electrolysis coulometric measurement after converting phosphorus contained in sample water such as wastewater into phosphomolybdate.

〔従来技術とその問題点〕[Prior art and its problems]

湖沼の富栄養化を防ぐため、「窒素及び燐に係る排水基
準」が設定され、排水に含まれるリン濃度を規制してい
(方針が定められた。この排水中のリン濃度を測定する
先行技術としては、JISKO102に記載されている
ように、排水中に含まれているリンをオルトリン酸に酸
化した後、試料水にモリブデン酸アンモニウムの酸性水
溶液を添加し、生成したリンモリブデン酸塩を塩化スズ
(II)やアスコルビン酸で還元し、生成したモリブデ
ン酸ブルーの吸光度を測定して、リン濃度を定量する方
法が一般的である。しかし、この方法では、還元剤とし
て用いる塩化スズ(n)やアスコルビン酸が不安定であ
るため、管理が充分に行き届く実験室ではともかく、排
水規制用のモニターとして排水処理現場で用いる自動測
定装置の測定法としては適さなかった。
In order to prevent eutrophication of lakes and marshes, "Nitrogen and Phosphorus Effluent Standards" were established to regulate the phosphorus concentration contained in wastewater (a policy was established. As described in JISKO102, after oxidizing phosphorus contained in wastewater to orthophosphoric acid, an acidic aqueous solution of ammonium molybdate is added to the sample water, and the generated phosphomolybdate is converted to tin chloride. A common method is to reduce the phosphorus concentration with (II) or ascorbic acid and measure the absorbance of the generated molybdate blue.However, in this method, tin chloride (n) used as a reducing agent and Because ascorbic acid is unstable, it is not suitable for use in well-controlled laboratories, or as a measurement method for automatic measuring devices used at wastewater treatment sites as monitors for wastewater regulations.

また、別の先行技術としては、第3図に示すように、酸
性モリブデン酸液を一定流量で流し、その途中で排水中
のリンをオルトリン酸に酸化しておいた試料水を添加し
、生成するリンモリブデン酸塩を電解セルにて定電位電
解し、その電解に要する電気量からリン濃度を測定する
方法がある。
In addition, as shown in Figure 3, another prior art technique involves flowing an acidic molybdic acid solution at a constant flow rate, and adding sample water that has oxidized phosphorus in the waste water to orthophosphoric acid midway through the flow. There is a method of subjecting phosphomolybdate to constant potential electrolysis in an electrolytic cell and measuring the phosphorus concentration from the amount of electricity required for the electrolysis.

この方法は、酸性モリブデン酸液をタンク1から定量ポ
ンプ2によって一定量で流すとともに試料水を注入バル
ブ4より注入し、混合管5において混合した後、電解セ
ル6において定電位電解する。
In this method, a fixed amount of acidic molybdic acid solution is flowed from a tank 1 by a metering pump 2, and sample water is injected from an injection valve 4, mixed in a mixing tube 5, and then subjected to constant potential electrolysis in an electrolytic cell 6.

この電解に要する電気量をポテンショスタット9及びク
ーロンメーター10で測定する。電解された試料水は廃
液溜8に流す。
The amount of electricity required for this electrolysis is measured using a potentiostat 9 and a coulomb meter 10. The electrolyzed sample water flows into the waste liquid reservoir 8.

このような方法は、前述したJIS法と比較して測定感
度は低いが、排水基準に基づいて排水中のリン濃度を監
視するには充分な感度があり、またその特徴としては電
気化学反応に基づいて絶対定量ができるため測定系の構
造が簡素化できることや、さらに不安定な還元剤を使用
しないことなど、排水処理現場に設置する自動測定装置
に応用するには適した方法といえる。しかし、この方法
は次のような欠点を有していた。まず、電気量の測定に
あたっては、リンモリブデン酸を還元する際に流れる電
流と酸性モリブデン酸液のみを流して電位をかけたとき
に流れるバックグラウンド電流との差を積分するため、
バンクグラウンド電流を常に一定にしておく必要がある
。このため、測定時以外にも常に電解セルに酸性モリブ
デン酸液を流し続ける必要があり、この液量は1分間当
り1〜5mlであって、1日当たりに換算すると1.4
〜7.21という多量の薬品を必要とした。さらに、温
度が低下した場合には電極での反応速度が遅くなるため
、リンモリブデン酸が完全に電解されずに通過し、第4
図の従来法の曲線により示されるように電解効率が低下
し、リンの絶対定量が行えなくなるなど、現場設置の自
動測定装置に応用するには大きな問題があった。
Although this method has lower measurement sensitivity than the JIS method mentioned above, it is sensitive enough to monitor the phosphorus concentration in wastewater based on wastewater standards, and its characteristics are that it is sensitive to electrochemical reactions. This method is suitable for application to automatic measuring equipment installed at wastewater treatment sites, as the structure of the measuring system can be simplified because absolute quantification can be performed based on the same method, and unstable reducing agents are not used. However, this method had the following drawbacks. First, in measuring the amount of electricity, we integrate the difference between the current flowing when reducing phosphomolybdic acid and the background current flowing when only the acidic molybdic acid solution is passed and a potential is applied.
It is necessary to keep the bank ground current constant. For this reason, it is necessary to keep the acidic molybdic acid solution flowing into the electrolytic cell at all times other than during measurement, and the amount of this solution is 1 to 5 ml per minute, which is equivalent to 1.4 ml per day.
~7.21 large amounts of chemicals were required. Furthermore, when the temperature decreases, the reaction rate at the electrode slows down, so phosphomolybdic acid passes through without being completely electrolyzed, and the quaternary
As shown by the curve of the conventional method in the figure, there were major problems in applying it to automatic measurement equipment installed on-site, such as a decrease in electrolysis efficiency and the inability to perform absolute quantification of phosphorus.

〔発明の目的〕[Purpose of the invention]

本発明は、このような問題点を鑑みてなされたものであ
って、排水のような試料中のリン濃度を安定して且つ経
済的に自動測定することを可能ならしめるリン酸の測定
方法を提供することを目的とする。
The present invention was made in view of these problems, and provides a method for measuring phosphoric acid that makes it possible to automatically measure the phosphorus concentration in samples such as wastewater in a stable and economical manner. The purpose is to provide.

〔発明の要点〕[Key points of the invention]

本発明者は、前述した従来法の問題点を解決すべく研究
した結果、リンモリブデン酸塩の定電位電解電量測定法
に基づくリン酸の測定方法において、電解セルを含む流
路内を酸性モリブデン酸液が常に流れるように構成する
ことにより、従来法では多量に消費していた酸性モリブ
デン酸液を節減するとともに、温度の変化に関係なくリ
ン酸の絶対定量が可能になることを見出した。
As a result of research to solve the problems of the conventional method described above, the present inventor discovered that, in a method for measuring phosphoric acid based on constant potential electrolysis coulometric measurement of phosphomolybdate, the inside of the flow path including the electrolytic cell is It was discovered that by configuring the method so that the acid solution always flows, it is possible to save the amount of acidic molybdic acid solution that was consumed in conventional methods, and also to be able to absolutely quantify phosphoric acid regardless of changes in temperature.

要約すれば、本発明は、一定電位をかけた電解セルを含
む流路内で酸性モリブデン酸液を常に循環させ、測定時
にはこの流路内にオルトリン酸を含む一定量の試料を注
入し、生成したリンモリブデン酸塩を酸塩を電解セルで
還元して、その際の還元電気量からリン酸の定量を行う
ことを特徴とするリン酸の測定方法に係る。
In summary, the present invention constantly circulates an acidic molybdic acid solution in a flow channel containing an electrolytic cell to which a constant potential is applied, and during measurement, a fixed amount of sample containing orthophosphoric acid is injected into this flow channel. The present invention relates to a method for measuring phosphoric acid, which is characterized in that the phosphomolybdate salt is reduced in an electrolytic cell, and phosphoric acid is determined from the amount of electricity reduced at that time.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面を参照しながら具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to the drawings.

まず、第1図に、本発明に従うリン酸の測定方法の実施
に用いられる装置系の一興体例の構成図を示す。酸性モ
リブデン酸液(モリブデン酸ナトリウム、硫酸、エタノ
ールからなる混合試薬で、PH1以下)は、酸性モリブ
デン酸液タンク1より定量ポンプ2の働きによって三方
バルブA3を通り、試料注入バルブ4、混合管5を経て
電解セル6に送られ、さらに三方バルブB7を通って廃
液溜8に排出される。この操作により、前回の測定の試
料が流路から完全に排出された後、三方バルブA、Bの
流路が循環モードに切り換えられ、酸性モリブデン酸液
が電解セル6を含む流路9を流11〜5 m II /
 m inで循環する。そして、電解セル6ではポテン
ショスタット10により0.25V付近の一定電位がか
けられ、バックグラウンド電流を安定させる。
First, FIG. 1 shows a block diagram of an example of an apparatus system used to carry out the method for measuring phosphoric acid according to the present invention. Acidic molybdate solution (a mixed reagent consisting of sodium molybdate, sulfuric acid, and ethanol, pH 1 or less) is passed from the acidic molybdate solution tank 1 through a three-way valve A3 by the action of a metering pump 2, to a sample injection valve 4, and a mixing tube 5. The liquid is sent to the electrolysis cell 6 through the three-way valve B7, and then discharged to the waste liquid reservoir 8. Through this operation, after the sample from the previous measurement is completely discharged from the flow path, the flow paths of the three-way valves A and B are switched to circulation mode, and the acidic molybdate solution flows through the flow path 9 containing the electrolytic cell 6. 11~5 m II/
Cycles at min. Then, in the electrolysis cell 6, a constant potential around 0.25V is applied by the potentiostat 10 to stabilize the background current.

ここで、この電解セル6の構造を第2図に示す。Here, the structure of this electrolytic cell 6 is shown in FIG.

隔膜円筒12内には炭素繊維13が作用電極として詰め
られ、また隔膜円筒12の外部には螺旋状の白金線が1
4が対象として、そして銀−塩化銀電極15が参照電極
として配置される。隔膜円筒12とガラス外筒16との
間は電解液で満たされる。そして酸性モリブデン酸液は
この隔膜円筒12内を通過しながら定電位電解を受ける
A carbon fiber 13 is packed inside the diaphragm cylinder 12 as a working electrode, and a spiral platinum wire is placed outside the diaphragm cylinder 12.
4 is placed as a target and a silver-silver chloride electrode 15 is placed as a reference electrode. The space between the diaphragm cylinder 12 and the glass outer cylinder 16 is filled with electrolyte. The acidic molybdic acid solution is subjected to constant potential electrolysis while passing through the diaphragm cylinder 12.

次に、測定時には、処理水中のリンを予め酸化分解して
オルトリン酸の形に変換しておいた試料が試料注入バル
ブ4より50〜150μlの一定量供給される。リンの
酸化分解は、例えばベルオキソ2硫酸カリウムのような
酸化剤によって行われる。
Next, at the time of measurement, a fixed amount of 50 to 150 .mu.l of a sample, in which phosphorus in the treated water has been previously oxidized and decomposed to form orthophosphoric acid, is supplied from the sample injection valve 4. The oxidative decomposition of phosphorus is carried out with an oxidizing agent such as potassium peroxodisulfate.

このオルトリン酸を含む試料とモリブデン酸液は混合管
5でリンモリブデン酸塩を形成し、流路内を循環しなが
ら電解セル6で定電位電解を受ける。
The sample containing orthophosphoric acid and the molybdate solution form phosphomolybdate in the mixing tube 5, and undergo constant potential electrolysis in the electrolytic cell 6 while circulating in the flow path.

このときの電解に要した電気量からリンの濃度を測定す
ることができる。
The concentration of phosphorus can be measured from the amount of electricity required for electrolysis at this time.

このリン濃度は次の式によって求められる。This phosphorus concentration is determined by the following formula.

リン濃度(mo1/β)= Q         Q F’n’V    1.93X 10’−Vここで、 Q〔クーロン〕・・・電解に要した電気量F = 96
500 CC/mail ) ・=ファラデ一定数n=
−7・・・電解に関与する電子数 V= (1)、、、試料の量 したがって、リンモリブデン酸が全て電解されるならば
、換言すれば電解効率が100%であるならば、リンの
濃度は電解に要した電気量と試料の量とから求められ、
標準物質による検量線を必要としない。このため、自動
測定装置としては構造を大幅に面素化することができる
Phosphorus concentration (mo1/β) = Q Q F'n'V 1.93X 10'-V Here, Q [Coulomb]...Amount of electricity required for electrolysis F = 96
500 CC/mail) ・=Faraday constant number n=
-7... Number of electrons involved in electrolysis V = (1), , amount of sample Therefore, if all of the phosphomolybdic acid is electrolyzed, in other words, if the electrolysis efficiency is 100%, then the amount of phosphorus The concentration is determined from the amount of electricity required for electrolysis and the amount of sample,
Does not require a calibration curve using standard materials. Therefore, as an automatic measuring device, the structure can be significantly reduced in area.

ここで、本発明に従う方法(循環法)とモリブデン酸液
を循環させない方法(従来法)における電解効率に及ぼ
す温度の影響を実験した。実験条件は、両方法とも酸性
モリブデン酸液の流量を2.2m 1 / m i n
とし、リン濃度で5 xlO−’Mの標準リン酸液をL
oom 1注入し、その還元電気■を温度を変えて測定
した。電解効率は、理論値に対する測定値の割合より算
出した。得られた結果を第4図に示す。第4図から明ら
かなように、従来法の場合には温度が15℃以下になる
と電解効率が少しづつ低下し、また10℃以下になると
大きく低下するが、本発明の場合には5℃でもほぼ10
0%の電解効率が得られる。これは、本発明の場合に電
解されずに電解セルを通過したリンモリブデン酸が循環
して再度電解されるためである。
Here, an experiment was conducted to examine the influence of temperature on electrolysis efficiency in the method according to the present invention (circulation method) and the method in which the molybdic acid solution is not circulated (conventional method). The experimental conditions were a flow rate of acidic molybdic acid solution of 2.2 m 1 / min in both methods.
and a standard phosphoric acid solution with a phosphorus concentration of 5 x lO-'M
oom 1 was injected, and its reduction electricity (■) was measured by changing the temperature. The electrolysis efficiency was calculated from the ratio of the measured value to the theoretical value. The results obtained are shown in FIG. As is clear from Figure 4, in the case of the conventional method, the electrolytic efficiency decreases little by little when the temperature goes below 15°C, and decreases significantly when the temperature goes below 10°C, but in the case of the present invention, even at 5°C. almost 10
An electrolysis efficiency of 0% is obtained. This is because, in the case of the present invention, phosphomolybdic acid that has passed through the electrolytic cell without being electrolyzed is circulated and electrolyzed again.

また、本発明では、試料を1回測定するのに必要な酸性
モリブデン酸液の量は10〜20mj+であり、しかし
て30分間に一度測定すると仮定すれば1日当たりの消
費量は480〜960m l!であり、したがって従来
法と比べて大幅に節減することができる。
In addition, in the present invention, the amount of acidic molybdic acid solution required to measure a sample once is 10 to 20 mj+, and if it is assumed that measurement is performed once every 30 minutes, the consumption amount per day is 480 to 960 ml. ! Therefore, it is possible to save significantly compared to the conventional method.

〔発明の効果〕 本発明では、酸性モリブデン酸液を電解セルを含む流路
内で常に循環して使用したことにより、リンモリブデン
酸塩の定電位測定法による欠点であった酸性モリブデン
酸液の多消費を解消するとともに、試料添加後に生成し
たリンモリブデン酸を循環して電解することにより低温
下での電解効率の低下を防いだ。これにより測定に及ぼ
す温度ノ影響が除かれ、リンの絶対定量が可能となった
ことから、本発明の方法を応用することにより自動測定
装置の構造を簡素化することができた。
[Effects of the Invention] In the present invention, the acidic molybdic acid solution is constantly circulated in the flow path including the electrolytic cell, thereby solving the drawbacks of the potentiostatic measurement method for phosphomolybdate. In addition to solving the problem of high consumption, by circulating and electrolyzing the phosphomolybdic acid produced after adding the sample, a decrease in electrolytic efficiency at low temperatures was prevented. As a result, the influence of temperature on the measurement was removed, and absolute quantification of phosphorus became possible. Therefore, by applying the method of the present invention, the structure of the automatic measuring device could be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のリン酸測定方法の実施に用いられる
装置系の一具体例を概略的に示す構成図である。第2図
は、本発明の方法で用いられる電解セルの一具体例を示
す断面図である。第3図は、従来の定電位電解によるリ
ン酸測定方法の実施に用いられた装置系の構成図である
。第4図は、本発明の方法と従来法における電解効率に
及ぼす温度の影響を示すグラフである。 1・・酸性モリブデン酸液タンク、 2・・定量ポンプ、 3・・三方バルブA、4・・試料
注入バルブ、 5・・混合管、6・・電解セル、 7・
・三方バルブB、8・・廃液溜、 9・・流路、 IO・・ポテンショスタット 11・・クーロンメーター
FIG. 1 is a block diagram schematically showing a specific example of an apparatus system used to carry out the phosphoric acid measurement method of the present invention. FIG. 2 is a sectional view showing a specific example of an electrolytic cell used in the method of the present invention. FIG. 3 is a block diagram of an apparatus system used to carry out a conventional method for measuring phosphoric acid by constant potential electrolysis. FIG. 4 is a graph showing the influence of temperature on electrolysis efficiency in the method of the present invention and the conventional method. 1. Acidic molybdate acid liquid tank, 2. Metering pump, 3. Three-way valve A, 4. Sample injection valve, 5. Mixing tube, 6. Electrolytic cell, 7.
・Three-way valve B, 8... Waste liquid reservoir, 9... Flow path, IO... Potentiostat 11... Coulomb meter

Claims (1)

【特許請求の範囲】[Claims] 1)一定電位をかけた電解セルを含む流路内で酸性モリ
ブデン酸液を常に循環させ、測定時にはこの流路内にオ
ルトリン酸を含む一定量の試料を注入し、生成したリン
モリブデン酸塩を電解セルで還元して、その際の還元電
気量からリン酸の定量を行うことを特徴とするリン酸の
測定方法。
1) Acidic molybdate solution is constantly circulated in a channel containing an electrolytic cell to which a constant potential is applied, and a fixed amount of sample containing orthophosphoric acid is injected into this channel during measurement, and the generated phosphomolybdate is A method for measuring phosphoric acid, which comprises reducing the phosphoric acid in an electrolytic cell and quantifying the amount of phosphoric acid from the amount of electricity produced at that time.
JP22786785A 1985-10-15 1985-10-15 Method for measuring phosphoric acid Pending JPS6287847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22786785A JPS6287847A (en) 1985-10-15 1985-10-15 Method for measuring phosphoric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22786785A JPS6287847A (en) 1985-10-15 1985-10-15 Method for measuring phosphoric acid

Publications (1)

Publication Number Publication Date
JPS6287847A true JPS6287847A (en) 1987-04-22

Family

ID=16867594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22786785A Pending JPS6287847A (en) 1985-10-15 1985-10-15 Method for measuring phosphoric acid

Country Status (1)

Country Link
JP (1) JPS6287847A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196873A (en) * 2007-02-09 2008-08-28 Hokuto Denko Kk Phosphorus measuring method and apparatus thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196873A (en) * 2007-02-09 2008-08-28 Hokuto Denko Kk Phosphorus measuring method and apparatus thereof

Similar Documents

Publication Publication Date Title
DE1932581B2 (en) Process for the continuous determination of the glucose content of biological fluids
CN101788522B (en) Chemical oxygen demand (COD) on-line monitoring device and method based on boron-doped diamond membrane electrode
CN103592334B (en) Monitoring method based on batch-type biological toxicity tests early warning system
Blaedel et al. Submicromolar concentration measurements with tubular electrodes
CN104330455B (en) Utilize the method and apparatus of microorganism electrolysis cell technology on-line monitoring nitrate
JPH01195358A (en) Electroanalysis
Patterson et al. Electrophoretically mediated microanalysis of calcium
JP5586972B2 (en) Nitrite nitrogen measuring method and apparatus
Sander et al. Possibilities for the automated determination of trace concentrations of uranium in water samples by adsorptive stripping voltammetry
Shiu et al. Potentiometric pH sensor with anthraquinonesulfonate adsorbed on glassy carbon electrodes
JPS6287847A (en) Method for measuring phosphoric acid
US3315270A (en) Dissolved oxidant analysis
GB2174207A (en) Continuous determination of nitrite and/or nitrate in an aqueous medium
Shinbo et al. Coupling between a redox reaction and ion transport in an artificial membrane system
RU2139530C1 (en) Proximity analyzer of chemical and biochemical consumption of oxygen dissolved in water
Holland et al. Controlled-potential coulometric determination of plutonium
Varallyai et al. A study of inhibitor adsorption by radiotracer method
Suga et al. ΔG0-dependence of the chemical transfer coefficient and the potential dependence of the electrochemical transfer coefficient
Prater et al. A Critical Evaluation of Practical Rotated Disk Electrodes.
Hodgson et al. Microelectrode procedures for the analysis of silicate and phosphate—towards practical procedures
Aoyagi et al. Rapid and quantitative electrolytic preparation and speciation of neptunium ions of various oxidation states using multi-step column electrodes
Miller et al. Submicromicrogram Determination of Cyanide by a Polarographic Method.
KR20030003849A (en) Copper electrode-based electrochemical sensor for measurement of COD and the method of measuring of COD and the automatic analyzer thereof
DD259459A1 (en) AUTOMATIC, COULOMETRIC RECEPTACTION PROCEDURE FOR THE DETERMINATION OF INORGANIC PEROXIDES
JPS6171355A (en) Analyzing method of phosphoric acid