JPS6287807A - Method for visually determining entire shape of three-dimensional matter - Google Patents

Method for visually determining entire shape of three-dimensional matter

Info

Publication number
JPS6287807A
JPS6287807A JP22754385A JP22754385A JPS6287807A JP S6287807 A JPS6287807 A JP S6287807A JP 22754385 A JP22754385 A JP 22754385A JP 22754385 A JP22754385 A JP 22754385A JP S6287807 A JPS6287807 A JP S6287807A
Authority
JP
Japan
Prior art keywords
dimensional
matter
image
shape
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22754385A
Other languages
Japanese (ja)
Inventor
Yasusato Honda
庸悟 本多
Shunichi Kaneko
俊一 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP22754385A priority Critical patent/JPS6287807A/en
Publication of JPS6287807A publication Critical patent/JPS6287807A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Manipulator (AREA)

Abstract

PURPOSE:To visually perceive the entire shape of a matter, by a method wherein a characteristic point is provided to a three-dimensional matter and the position of the characteristic point is calculated from one set of a stereoscopic image pair obtained by picking up the image of said characteristic point from two directions and this process is repeated the necessary number of times. CONSTITUTION:Three-dimensional matter 1 is arranged on a turntable 2 and an image plane 3 is arranged at a position picking up the image of said matter 1. The image of the characteristic point 4 capable of clearly specifying the position of the matter 1 provided to the surface of said matter is picked up to be projected to the characteristic point 5 on the image plane 3. Subsequently, when the turntable 12 is rotated by an angle psi, the point 4 moves to a point 4' and the image pickup position of the point 4' comes to the point 5' on the plane 3. When one set of a stereoscopic image pair is obtained by this method, the position of the point 4 can be determined by predetermined stereoscopic calculation. Next, in order to look other characteristic point not looked at this time, the turntable 2 is rotated. Until all of characteristics are subjected to stereoscopic image picking-up and calculated, the above- mentioned operation is repeated. Therefore, unless the matter 1 has a special shape, the shape of the matter can be determined before three sets of stereoscopic images are picked up.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、三次元形状をもつ物体の加工、組立て、検
査、搬送などの過程において、物体の形状をその物体に
触れることなく測定し、あるいは識別することが出来、
上記過程の自動化、効率化に寄与することが出来る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for measuring the shape of an object without touching the object in the process of processing, assembling, inspecting, transporting, etc. an object having a three-dimensional shape. or can be identified,
It can contribute to automation and efficiency of the above process.

[従来の技術] 従来からも三次元物体の全体形状を再現するための方法
として、レーザスポットを走査ミラーにより水平方向に
振らせて物体に投射すると共に、物体を回転テーブル上
で1回転させてその水平断面の輪郭形状を撮像し、これ
を物体の上端から下端までくり返して全体の水平断面輪
郭を得てそれを基に物体像を再現する方法1)、円筒レ
ンズでレーザの縦方向のスリット光を作りこれを回転テ
ーブル上の物体に投射して回転を停止した状態で縦方向
の輪郭形状を撮像し、これを水平面内に少しずつ回転さ
せつつくり返して物体が1回転するまで行ない、多くの
縦方向の輪郭を得てこれを基に物体像を再現する方法2
)、また本発明人による方法として、平面鏡を物体のや
や後方に置いて物体のうしろ側を見えるようにし、物体
の直接像と鏡像とを同時に1枚の画面に撮像し、それを
解析することにより物体の特徴点の位置を算出する方法
3)がある。前二者の方法においては、装置としてレー
ザ光源やその走査またはスリット光にするためのもの、
及び物体を1回転する回転テーブルあるいは撮像系を上
下に移動させる装置などが必要であり、しかも横または
縦方向の輪郭形状を数多く(数十以上と思われる)撮像
することが必要である。平面鏡を用いる方法は撮像枚数
は1枚だけという大きな特色を持つが平面鏡を必要とし
、複雑な形状の物体の場合には1枚の平面鏡では見えな
いために決定出来ない特徴点が生ずることがありうる。
[Prior Art] Conventionally, as a method for reproducing the entire shape of a three-dimensional object, a laser spot is swung horizontally by a scanning mirror and projected onto the object, and the object is rotated once on a rotating table. A method of capturing an image of the contour shape of the horizontal cross section, repeating this from the top to the bottom of the object to obtain the entire horizontal cross section contour, and reproducing the object image based on it.1) A cylindrical lens is used to slit the laser in the vertical direction. Create a light and project it onto the object on the rotary table. While the rotation is stopped, the vertical contour is imaged. This is rotated little by little in the horizontal plane until the object has rotated once. Method 2 of obtaining the vertical contour of and reproducing the object image based on this
), and the inventor's method is to place a plane mirror slightly behind the object so that the back side of the object can be seen, and simultaneously capture the direct image and mirror image of the object on one screen and analyze it. There is a method 3) that calculates the position of the feature point of an object. In the first two methods, the equipment is a laser light source, a device for scanning it or making it into a slit light,
A rotary table that rotates the object once or a device that moves the imaging system up and down is required, and it is also necessary to image a large number (perhaps dozens or more) of contour shapes in the horizontal or vertical direction. The method using a plane mirror has the great feature of only capturing one image, but it requires a plane mirror, and in the case of objects with complex shapes, there may be feature points that cannot be determined because they cannot be seen with a single plane mirror. sell.

[発明が解決しようとする問題点] 前述のように、物体の加工、組立て、検査、搬送などの
現場で用いることが出来るように、なるべく特別な装置
、操作、作用を用いず、物体に接触せず、しかも少ない
撮像回数でよいように考慮されている。
[Problems to be solved by the invention] As mentioned above, in order to be able to use it in the field of processing, assembling, inspecting, and transporting objects, it is possible to contact objects without using special equipment, operations, or actions as much as possible. In addition, it is considered that the number of times of imaging can be reduced.

[問題点を解決するための手段] 人間が三次元物体の全体的形状をなるべく能率よく確か
めようとするときには、ある方向から見たのち、次には
じめ見えなかった部分ないし特徴点がなるべくよく見え
る方向に移動して再度見るという動作をするであろう。
[Means for solving the problem] When humans try to ascertain the overall shape of a three-dimensional object as efficiently as possible, after viewing it from a certain direction, the next time the parts or feature points that were not visible at the beginning can be seen as clearly as possible. The person will move in the direction and look again.

そしてなるべく少ない移動回数で全体を知ろうとするで
あろう。本発明はこのような考え方に基いている。
And they will try to get to know the whole thing in as few moves as possible. The present invention is based on this idea.

[作用] 本方法が行う作用は、まず撮像という対象物体に対して
非接触の視覚的作用が行われる。これによって本来三次
元である物体の各特徴点は、カメラの画像平面という二
次元平面内の位置(二次元座標値)に変換される。少し
異なる方向から撮像された2枚1組のステレオ画像によ
り、三角法の原理に基いて数学的には連立方程式を解く
ことにより、画像内にある特徴点の三次元位置を定める
ことが出来る。このとき、当然物体の裏側は見えないの
で全体形状を知るためには、物体とカメラの相対的位置
を以前の画像と最小限の関連を保ちながら、なるべく新
たに見える特徴点が多くなるような位置に変える。この
ように本方法では、物体とカメラの相対的位置を何度か
変えること、それぞれの位置で普通のやり方で撮像する
という動作だけが必要である。
[Operation] As for the operation performed by this method, first, a non-contact visual operation called imaging is performed on the target object. As a result, each feature point of the object, which is originally three-dimensional, is converted to a position (two-dimensional coordinate value) within a two-dimensional plane called the camera's image plane. Using a set of two stereo images taken from slightly different directions, it is possible to determine the three-dimensional position of a feature point within the image by solving simultaneous equations mathematically based on the principles of trigonometry. At this time, of course the back side of the object cannot be seen, so in order to know the overall shape, the relative position of the object and camera must be kept as minimally related to the previous image as possible, so that as many new feature points as possible can be seen. change position. Thus, the method only requires changing the relative position of the object and camera several times and imaging in the usual manner at each position.

[実施例] 本方法では物体と撮像系とは相対的に位置を変えること
が出来ればよく、それらのどちらが動こうともその相対
的関係さえ知られていればよいので、ここでは物体が回
転テーブル上にのっていて必要に応じて回転テーブルの
中心周りに回転しうるものとし、撮像系の位置や姿勢は
固定されるものとする。
[Example] In this method, it is only necessary to be able to change the relative positions of the object and the imaging system, and it is only necessary to know the relative relationship regardless of which of them moves. It is assumed that the imaging system is placed on top of the rotating table and can be rotated around the center of the rotating table as necessary, and the position and orientation of the imaging system are fixed.

いま、物体1、回転テーブル2及び撮像系の画像平面3
が第1図のように配置されている。OtXtYtZtは
回転テーブル座標系(Zt軸が回転軸)、OcXcYc
Zcはカメラ座標系(Ocがレンズ中心)、OiPQは
画像座標系、fは焦点距離、またφは俯角である。いま
第一の撮像を行って物体の一つの特徴点4(位置Xt)
が画像平面上の特徴点5(位置P)に投影されたものと
する。
Now, the object 1, the rotary table 2, and the image plane 3 of the imaging system
are arranged as shown in Figure 1. OtXtYtZt is the rotation table coordinate system (Zt axis is the rotation axis), OcXcYc
Zc is the camera coordinate system (Oc is the center of the lens), OiPQ is the image coordinate system, f is the focal length, and φ is the depression angle. Now perform the first imaging and select one feature point 4 (position Xt) of the object.
is projected onto the feature point 5 (position P) on the image plane.

次いで最初のステレオ画像対のうちの第二の画像を得る
ために、第2図に示すように回転テーブルをψだけ回転
させるとき、特徴点4(Xt)は4′(Xt′)に移動
したとする。ここでψは2枚の画像間の対応関係ないし
特徴の類似性を保つためにはあまり大きな角度にするこ
とは出来ないし、小さすぎるとステレオ計算を行って特
徴点の位置を求める際の精度が劣化する。実験では(物
体の形状にも依存するが)13の頂点(特徴点)をもつ
多面体に対して30°前後が適当であった。このとき特
徴点4′に対応する画像平面上の特徴点5′(P′)は
図示のようになる。以上のようにし1組のステレオ画像
対が得られると、一つの特徴点4は以下のようなステレ
オ計算により求められる。
Then, when rotating the rotary table by ψ as shown in Figure 2 to obtain the second image of the first pair of stereo images, feature point 4 (Xt) was moved to 4'(Xt'). shall be. Here, ψ cannot be set to a very large angle in order to maintain the correspondence between the two images or the similarity of features, and if it is too small, the accuracy when determining the position of feature points by performing stereo calculations will be reduced. to degrade. In experiments, around 30 degrees was appropriate for a polyhedron with 13 vertices (feature points) (though it also depends on the shape of the object). At this time, the feature point 5'(P') on the image plane corresponding to the feature point 4' becomes as shown in the figure. When a pair of stereo images is obtained as described above, one feature point 4 is obtained by the following stereo calculation.

いま、■t■[O,O,1/f、O] また、幾何学的変換マトリクスとして、Ttcを回転テ
ーブル座標系からカメラ座標系への、TRをZt軸周り
に■だけ回転させるときのマトリクスとし、また、 I2×4■[I2×2■O2×2]、O2×4■[O2
×2■O2×2]、そして、 A1−A2■[A:b] とするとき、 AXt=−b という連立方程式となる。これを解くと特徴点4の位置
Xtは Xt=−(AtA)−1Atb として求まるのである。
Now, ■t■ [O, O, 1/f, O] Also, as a geometric transformation matrix, when Ttc is rotated from the rotary table coordinate system to the camera coordinate system and TR is rotated by ■ around the Zt axis, As a matrix, I2×4■[I2×2■O2×2], O2×4■[O2
×2■O2×2], and A1-A2■[A:b], then the simultaneous equations AXt=-b are obtained. By solving this, the position Xt of the feature point 4 can be found as Xt=-(AtA)-1Atb.

次に、このとき見えなかった他の特徴点を見るために、
物体とカメラの相対位置を変える。ここでの実施例の場
合、それは回転テーブルをどのくらいの角度回すかとい
うことに相当する。
Next, in order to see other feature points that were not visible at this time,
Change the relative position of the object and camera. In the case of this embodiment, this corresponds to how much angle the rotary table should be turned.

第3図はこのことを考えるために諸量の関係を平面的に
画いたものである。1組目のステレオ画像撮像時に見え
ていた特徴点4は、2組目のステレオ画像撮像時には隠
されてもよいので、その臨界の状態は第3図において特
徴点4が4′へ、また平面6が6′へ来たときに起こる
。幾何学的関係からその時の回転角はπ−2apである
。ここでapは第3図に示されるような、特徴点4を見
こむ角度であり、これは知ることが出来るので回転角π
−2apも知ることが出来る。これは臨界の角度なので
実際の回転角はこれを越えない値に選ぶ。
Figure 3 is a two-dimensional drawing of the relationship between various quantities in order to consider this matter. The feature point 4 that was visible when the first set of stereo images was taken may be hidden when the second set of stereo images was taken, so the critical state is that the feature point 4 moves to 4' in FIG. This happens when 6 comes to 6'. From a geometrical relationship, the rotation angle at that time is π-2ap. Here, ap is the angle at which the feature point 4 is viewed as shown in Figure 3, and since this can be known, the rotation angle π
-2ap can also be known. Since this is a critical angle, the actual rotation angle is chosen to be a value that does not exceed this.

以上のようにして、物体の全ての特徴点がステレオ撮像
され、計算されるまでこれをくり返すが、よほど特殊な
形状(複雑な凹部をもつなど)でない限り、3組のステ
レオ撮像までで目的を達することが多い。
In the above manner, all the feature points of the object are stereo-imaged and this process is repeated until they are calculated. However, unless the object has a very special shape (such as having a complicated concave part), up to three sets of stereo-images can be used for the purpose. is often reached.

[発明の効果] この発明は以上述べたように、特殊な走査や投射光を物
体に与えることもなく、非接触で物体の全体形状を決定
する手段を与える。
[Effects of the Invention] As described above, the present invention provides a means for determining the overall shape of an object in a non-contact manner without applying any special scanning or projection light to the object.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明にかかる実施例の主要な要素の関係、
配置を示すための図、第2図は同じくステレオ計算の際
の諸量の関係を示すための図、また第3図はステレオ撮
像間の臨界回転角を決定することを説明するための図で
ある。 1・・・物体 2・・・回転テーブル 3・・・画像平面 4・・・特徴点 5・・・画像平面上の特徴点 6・・・平面 [参考資料]
FIG. 1 shows the relationship between the main elements of the embodiment according to the invention,
Figure 2 is a diagram to show the arrangement, Figure 2 is a diagram to show the relationship of various quantities during stereo calculation, and Figure 3 is a diagram to explain determining the critical rotation angle between stereo images. be. 1...Object 2...Rotary table 3...Image plane 4...Feature points 5...Feature points on the image plane 6...Plane [Reference materials]

Claims (2)

【特許請求の範囲】[Claims] (1)多面体のような三次元的、すなわち立体的な形状
をもち、その形状がたとえば多面体の頂点や、表面に付
加的にマークされた何らかの印のように、明確にその位
置を特定できるような特徴的な点(以下、特徴点という
)の座標値によって表わされるような物体の全体の形状
を、定量的に測定し決定するための方法であって、物体
に対して相対的に位置を変えることのできる撮像系(テ
レビカメラなど)を用い、互いに必要最小限の角度(約
30°程度)だけ異なる方向から撮像した2枚1組のス
テレオ画像対からその対の双方において撮像されている
特徴点の位置を画像平面上での2次元座標値をもとに計
算し、ついでそのときの撮像の際には不可視だった特徴
点を新たに含むような方向から再びステレオ画像対を撮
像して新たな特徴点の位置を計算し、これを必要最小限
の回数くり返すことによりその物体の全体の特徴点の座
標値を全て計算し、その物体の形状を表現することがで
きるようにするための、三次元物体の全体形状の視覚的
決定法。
(1) Having a three-dimensional, or three-dimensional, shape such as a polyhedron, whose position can be clearly identified, such as the vertex of the polyhedron or some additional marking on the surface. A method for quantitatively measuring and determining the overall shape of an object, as expressed by the coordinate values of characteristic points (hereinafter referred to as feature points), and for determining the position relative to the object. Both images are taken from a pair of stereo images taken from directions that differ by the minimum required angle (approximately 30 degrees) using a variable imaging system (such as a television camera). The positions of the feature points are calculated based on the two-dimensional coordinate values on the image plane, and then a pair of stereo images is captured again from a direction that newly includes the feature points that were invisible at the time of imaging. By repeating this process the minimum number of times necessary, all the coordinate values of the entire feature points of the object can be calculated and the shape of the object can be expressed. A method for visually determining the overall shape of a three-dimensional object.
(2)前記三次元物体の全体形状の視覚的決定法におい
て、なるべく少ない数のステレオ画像対の撮像ですませ
るために、物体上のある主要な一つの面に着目してその
面が丁度1本の線となって見えるような(すなわち面が
線に縮退した状態となるような)方向の角度から次のス
テレオ画像対の撮像の方向を決定するための方法。
(2) In the visual determination method of the overall shape of a three-dimensional object, in order to capture as few stereo image pairs as possible, focus on one main surface on the object and make sure that the surface has exactly one shape. A method for determining the imaging direction of the next pair of stereo images from the angle of the direction that appears as a line (i.e., the surface is degenerated into a line).
JP22754385A 1985-10-13 1985-10-13 Method for visually determining entire shape of three-dimensional matter Pending JPS6287807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22754385A JPS6287807A (en) 1985-10-13 1985-10-13 Method for visually determining entire shape of three-dimensional matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22754385A JPS6287807A (en) 1985-10-13 1985-10-13 Method for visually determining entire shape of three-dimensional matter

Publications (1)

Publication Number Publication Date
JPS6287807A true JPS6287807A (en) 1987-04-22

Family

ID=16862547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22754385A Pending JPS6287807A (en) 1985-10-13 1985-10-13 Method for visually determining entire shape of three-dimensional matter

Country Status (1)

Country Link
JP (1) JPS6287807A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727528A (en) * 1993-07-08 1995-01-27 Yokogawa Buritsuji:Kk Measuring method for member of structure and measuring device
JP2016205963A (en) * 2015-04-21 2016-12-08 横浜ゴム株式会社 Tire analysis device and tire analysis method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727528A (en) * 1993-07-08 1995-01-27 Yokogawa Buritsuji:Kk Measuring method for member of structure and measuring device
JP2016205963A (en) * 2015-04-21 2016-12-08 横浜ゴム株式会社 Tire analysis device and tire analysis method

Similar Documents

Publication Publication Date Title
JP2874710B2 (en) 3D position measuring device
US20200177866A1 (en) Calibration apparatus, chart for calibration, chart pattern generation apparatus, and calibration method
JP4825971B2 (en) Distance calculation device, distance calculation method, structure analysis device, and structure analysis method.
EP0157299B1 (en) Image processing apparatus
Zhang et al. Development of an omni-directional 3D camera for robot navigation
Chen et al. Calibration of a hybrid camera network
Petty et al. 3D measurement using rotating line-scan sensors
JP3696336B2 (en) How to calibrate the camera
Radhakrishna et al. Development of a robot-mounted 3D scanner and multi-view registration techniques for industrial applications
JPH1079029A (en) Stereoscopic information detecting method and device therefor
US5475584A (en) Method and apparatus for orientating a camera
JPS6287807A (en) Method for visually determining entire shape of three-dimensional matter
JP3352535B2 (en) 3D object data acquisition device
Pachidis et al. Pseudo-stereo vision system: a detailed study
JP2010146357A (en) Method and apparatus for three-dimensional image processing
JPH09329440A (en) Coordinating method for measuring points on plural images
Chen et al. Virtual binocular vision systems to solid model reconstruction
Ozkan et al. Surface profile-guided scan method for autonomous 3D reconstruction of unknown objects using an industrial robot
JP2882910B2 (en) 3D image recognition method
JP3253328B2 (en) Distance video input processing method
EP4372310A1 (en) 3d calibration method and apparatus for multi-view phase shift profilometry
JP2787149B2 (en) 3D shape recognition device
Zhang et al. Dense 3D reconstruction with an active binocular panoramic vision system
Dai et al. High-Accuracy Calibration for a Multiview Microscopic 3-D Measurement System
JPH07113535B2 (en) Surface inclination measuring device