JPS6287526A - Antitumor agent - Google Patents

Antitumor agent

Info

Publication number
JPS6287526A
JPS6287526A JP60226387A JP22638785A JPS6287526A JP S6287526 A JPS6287526 A JP S6287526A JP 60226387 A JP60226387 A JP 60226387A JP 22638785 A JP22638785 A JP 22638785A JP S6287526 A JPS6287526 A JP S6287526A
Authority
JP
Japan
Prior art keywords
semiconductor
antitumor agent
excited
present
antitumor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60226387A
Other languages
Japanese (ja)
Other versions
JPH0560449B2 (en
Inventor
Akira Fujishima
昭 藤嶋
Takashi Yamashita
孝 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60226387A priority Critical patent/JPS6287526A/en
Publication of JPS6287526A publication Critical patent/JPS6287526A/en
Publication of JPH0560449B2 publication Critical patent/JPH0560449B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:An antitumor agent, containing an excited semiconductor as an active constituent, capable of acting on tumors to damage tumorous cells and preventing the multiplication and further achieving efficient antitumor effect. CONSTITUTION:An antitumor agent containing a semiconductor excited by X rays, ultraviolet rays, etc., as an active constituent. An inorganic semiconductor, particularly. TiO2, ZnS or SrTiO3 is preferably used as the semiconductor from the viewpoint of stability and influence on the body, etc. In administration, the agent is preferably used with a substance, e.g. hematoporphyrin or monoclonal antibody, etc. The excited semiconductor is capable of preventing the multiplication of the target tumorous cells and achieving efficient antitumor effect.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、抗腫瘍剤に関する。[Detailed description of the invention] (Industrial application field) TECHNICAL FIELD The present invention relates to antitumor agents.

(従来の技術) 現在、悪性腫瘍に対する治療法としては、手術、薬剤投
与、物理的エネルギーによる方法等がよく知られている
。そして、物理的エネルギーによる方法には、レーザー
、放射線、温熱等を用いる治療法があり、単独でちるい
は他の治療法と併用されている。
(Prior Art) At present, methods such as surgery, drug administration, and methods using physical energy are well known as methods for treating malignant tumors. Methods using physical energy include treatments using lasers, radiation, heat, etc., which are used alone or in combination with other treatments.

(発明が解決しようとする問題点) さらに本発明者らは、半導体がその反応力により抗腫瘍
作用を発揮することができないかとの着想にいたり1種
々検討を行った結果1本発明に到達した。
(Problems to be Solved by the Invention) Furthermore, the present inventors came up with the idea that semiconductors might be able to exert antitumor effects through their reactive power, and as a result of conducting various studies, they arrived at the present invention. .

(問題点を解決するための手段) すなわち、本発明の要旨は、励起された半々4体を有効
成分とする抗腫瘍剤にある。
(Means for Solving the Problems) That is, the gist of the present invention resides in an antitumor agent containing an excited half-four body as an active ingredient.

以下1本発明の詳細な説明する。The present invention will be explained in detail below.

まず1本発明における半導体としては、無機半導体、有
機半導体のいずれでもよく、たとえば前者としてはTl
O2、ZnO、WO3,5n02、■n203、M2O
3、Fe2O3,5rTi03、BaTiO3,KTa
O3等の酸化物のほか、ZnS、 cas、 CdSe
、GaP、 GaAs、 Si、Ge等、後者としては
ピレン、アントラセン、フタロシアニン、ポルフィリン
、ポリアセチレン、ポリピロール等が挙げられる。そし
て、安定性、からだへの影響等を考慮した場合、無機半
導体が一般的であり、TiO2、Zn8%5rTi、0
3が好適に用いられる。これらの粒径、結晶型等は目的
に応じ適宜選定することができ、液体として用いること
もできる。たとえば、TiO2を用いる場合には、平均
粒径が3μ以下程度のアナターゼ型が一般的である。
First, the semiconductor in the present invention may be either an inorganic semiconductor or an organic semiconductor. For example, the former is Tl.
O2, ZnO, WO3, 5n02, n203, M2O
3, Fe2O3, 5rTi03, BaTiO3, KTa
In addition to oxides such as O3, ZnS, cas, CdSe
, GaP, GaAs, Si, Ge, etc., and the latter include pyrene, anthracene, phthalocyanine, porphyrin, polyacetylene, polypyrrole, etc. Considering stability, impact on the body, etc., inorganic semiconductors are common, such as TiO2, Zn8%5rTi, 0
3 is preferably used. Their particle size, crystal type, etc. can be appropriately selected depending on the purpose, and they can also be used as a liquid. For example, when TiO2 is used, it is generally anatase type with an average particle size of about 3 microns or less.

上記半導体を励起するには、電磁波、たとえば紫外線、
可視光線等の光またはそれよりも波長の短いX線、γ線
等が用いられる。
To excite the semiconductor, electromagnetic waves such as ultraviolet light,
Light such as visible light or X-rays, gamma rays, etc. with shorter wavelengths are used.

電磁波の種類、照射量の選定は半導体の種類、投与方法
、腫瘍の種類等を考慮して決定されるが、照射は、用い
る半導体を励起するに足りる量が必要である。
The type of electromagnetic wave and the amount of irradiation are determined in consideration of the type of semiconductor, the method of administration, the type of tumor, etc., but the amount of irradiation needs to be sufficient to excite the semiconductor used.

本発明に係る抗腫瘍剤の投与に際しては、腫瘍細胞に特
異的に親和性を有する物質とともに用いるのが好ましい
。化学的な親和性を有する物質としては、たとえばヘス
トポルフィリン誘導体(Hl;)D)がある(たとえば
、プイエンス、vO1,’ 4’ + Nn 6.91
1−109頁(z9yl ) o  このHpDは、生
体内に取り込まれると、正常細胞より腫瘍細胞中(で7
0倍]よ又上の濃度差で濃縮され。
When administering the antitumor agent according to the present invention, it is preferable to use it together with a substance that has specific affinity for tumor cells. Substances with chemical affinity include, for example, hestoporphyrin derivatives (Hl;
Pages 1-109 (z9yl) o When this HpD is taken into the body, it is more likely to be present in tumor cells than in normal cells.
0 times] and is concentrated with a concentration difference even higher than 0 times.

長時間滞留する性質を有する。It has the property of staying for a long time.

たとえば、半導体としてTlO2を用いる場合。For example, when TlO2 is used as a semiconductor.

その表面に存在するOH基と、HpDの有するカルボキ
シル基を結合させる化学修飾法により、TiO2に腫瘍
細胞に対する親和性を付与することができる。
TiO2 can be given affinity for tumor cells by a chemical modification method that combines the OH groups present on its surface with the carboxyl groups of HpD.

また、免疫学的な親和性を有する物質として、腫瘍細胞
に特異的なモノクローナル抗体が挙げられ、これを用い
ることにより、腫瘍1別胞に選択的に到達させることも
できる。
In addition, monoclonal antibodies specific to tumor cells can be cited as substances with immunological affinity, and by using these, it is also possible to selectively reach tumor cells.

たとえば、腫瘍細胞の表面に存在する特鴇な糖蛋白を抗
原とするモノクローナル抗体を常法により作成し、半導
体を封入したリポソームにこれを結合させることにより
、本発明に係る半導体を腫瘍細胞表面に選択的に取りn
かぜるととができる。この場合、半導体として、たとえ
ば上記HpDを結合させたものを用いることもできる。
For example, by creating a monoclonal antibody that uses a special glycoprotein present on the surface of tumor cells as an antigen and binding it to a liposome encapsulating a semiconductor, the semiconductor of the present invention can be applied to the surface of tumor cells. Selectively take n
When you cool it, you can make fire. In this case, as the semiconductor, for example, one in which the above-mentioned HpD is bonded can also be used.

この抗腫瘍剤の投与は、経口又は非経口で行うことがで
き、後者の例としては、静脈又は腫瘍部位への注射が挙
げられる。腫瘍の部位等によっても異なるが、一般的に
は非経口投与が採用される。
Administration of the anti-tumor agent can be carried out orally or parenterally, examples of the latter include intravenous or injection into the tumor site. Parenteral administration is generally used, although it varies depending on the site of the tumor.

投与量は、腫瘍の種類、大きさ、半導体の種類等によっ
て適宜決定されるが、通常、lη−/、000■程度/
1回程度から選ばれる。
The dosage is determined appropriately depending on the type and size of the tumor, the type of semiconductor, etc., but is usually about lη-/, 000/
Selected once.

投与に際しては、標的となる腫瘍に選択的に到達させる
ために、上記の親和性物質を結合させて用いることがで
きる。親和性物質としては、上記HpD、モノクローナ
ル抗体に限定されず、たとえばシスプラチン(白金錯体
)を用いることもできる。
During administration, the above-mentioned affinity substances can be combined and used in order to selectively reach the target tumor. The affinity substance is not limited to the above-mentioned HpD and monoclonal antibodies, and for example, cisplatin (platinum complex) can also be used.

半導体を励起させる時期は、通常、腫瘍細胞への到達後
が選ばれる。到達の有無は、半導体、HpD等の螢光を
検知することにより判定することもできる。
The timing to excite the semiconductor is usually chosen after it reaches the tumor cells. The presence or absence of arrival can also be determined by detecting fluorescence from a semiconductor, HpD, or the like.

励起された半導体は、腫瘍に作用して腫瘍細胞に障害を
与え、増殖を阻止する。
The excited semiconductor acts on the tumor, damaging the tumor cells and preventing their growth.

HpDと併用する場合、たとえば半導体とじてTlO2
を用い紫外線又はX線を照射すると、HpD自体も励起
されるので、協同した増殖阻止効果が得られる。
When used in combination with HpD, for example, TlO2 as a semiconductor
When HpD is irradiated with ultraviolet rays or X-rays, HpD itself is also excited, resulting in a cooperative growth-inhibiting effect.

本発明に係る抗腫瘍剤は、もちろん化学療法等の他の治
療法と併用することもできる。
Of course, the antitumor agent according to the present invention can also be used in combination with other treatments such as chemotherapy.

(実施例) 以下、実施例によりさらに本発明の詳細な説明する。(Example) Hereinafter, the present invention will be further explained in detail with reference to Examples.

実施例/ ヒト悪性腫瘍細胞と17てHeLa細胞を用いて、培養
での本発明に係る抗腫瘍剤の効果を判定した。すなわち
、HeLa細胞の培養地(MKM培地に10%ウシ胎児
血清を添加したものを用いた)に、 TiO2(アナタ
ーゼ)粉末(平均粒径約2j人)を0,1重量%添加し
、ついで下記の(1,)又は(11)の照射を行なった
後、培養を行なった。
Example/The effect of the antitumor agent according to the present invention in culture was determined using human malignant tumor cells and 17 HeLa cells. That is, 0.1% by weight of TiO2 (anatase) powder (average particle size of about 2J) was added to HeLa cell culture medium (MKM medium supplemented with 10% fetal bovine serum), and then the following After irradiation with (1,) or (11), culture was performed.

(1)X  線   100ラド (11)  紫外線  J′oo w  超高圧水銀灯
、lQ分間なお、比較のために、 a)コントロール(TiO2なし、照射なし)b)  
TiO2あり(θ、/重量係)、照射なしc)  Ti
O2なし、X線照射(上記に同じ)について同様に培養
を行なった。
(1) X-rays 100 rad (11) Ultra-high pressure mercury lamp, 1Q minutes For comparison, a) Control (no TiO2, no irradiation) b)
With TiO2 (θ, /weight ratio), without irradiation c) Ti
Culture was performed in the same manner without O2 and with X-ray irradiation (same as above).

その結果を図/に示す。The results are shown in Figure/.

すなわち、本発明による抗腫瘍剤を用いる場合には、H
θLa細胞の増殖が抑制されることがわかる。
That is, when using the antitumor agent according to the present invention, H
It can be seen that the proliferation of θLa cells is suppressed.

(発明の効果) 本発明に係る抗腫瘍剤は、標的腫瘍細胞の増殖を阻止す
ることができるので、効率的な抗腫瘍効果を達成しうる
(Effects of the Invention) The antitumor agent according to the present invention can inhibit the proliferation of target tumor cells, and therefore can achieve efficient antitumor effects.

出  願  人   藤  嶋      昭ほか1名 代 理 人  弁理士 長谷用  − 図1Applicant: Akira Fujishima and 1 other person Representative Patent Attorney Hase - Figure 1

Claims (4)

【特許請求の範囲】[Claims] (1)励起された半導体を有効成分とする抗腫瘍剤。(1) An antitumor agent containing an excited semiconductor as an active ingredient. (2)半導体が、無機半導体である特許請求の範囲第1
項記載の抗腫瘍剤。
(2) Claim 1 in which the semiconductor is an inorganic semiconductor
The antitumor agent described in Section 1.
(3)無機半導体がTiO_2、ZnS又はSrTiO
_3である特許請求の範囲第2項記載の抗腫瘍剤。
(3) The inorganic semiconductor is TiO_2, ZnS or SrTiO
The antitumor agent according to claim 2, which is _3.
(4)励起が電磁波で行なわれる特許請求の範囲第1〜
3項のいずれかに記載の抗腫瘍剤。
(4) Claims 1 to 3 in which excitation is performed by electromagnetic waves
The antitumor agent according to any one of Item 3.
JP60226387A 1985-10-11 1985-10-11 Antitumor agent Granted JPS6287526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60226387A JPS6287526A (en) 1985-10-11 1985-10-11 Antitumor agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60226387A JPS6287526A (en) 1985-10-11 1985-10-11 Antitumor agent

Publications (2)

Publication Number Publication Date
JPS6287526A true JPS6287526A (en) 1987-04-22
JPH0560449B2 JPH0560449B2 (en) 1993-09-02

Family

ID=16844324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60226387A Granted JPS6287526A (en) 1985-10-11 1985-10-11 Antitumor agent

Country Status (1)

Country Link
JP (1) JPS6287526A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474125A (en) * 1990-07-16 1992-03-09 Sangi Co Ltd Heating-assistant material for thermotherapy
GB2288123A (en) * 1994-04-04 1995-10-11 Asahi Kogaku Kk Apparatus for the ultra-violet treatment of tumours
JP2011524866A (en) * 2008-06-05 2011-09-08 ナノビオティックス Inorganic nanoparticles, their preparation and use
CN110448692A (en) * 2018-05-08 2019-11-15 中国科学院宁波材料技术与工程研究所 A kind of nanocomposite, preparation method and the application in HIFU synergist

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56163661A (en) * 1980-04-29 1981-12-16 Electro Biology Inc Electrochemical treatment device
JPS58201793A (en) * 1982-05-19 1983-11-24 Katsuo Unno Hematoporphyrin derivative and its preparation
JPS6081128A (en) * 1983-10-13 1985-05-09 Advance Res & Dev Co Ltd Agent for photochemical diagnosis and remedy of tumor
JPS60227669A (en) * 1984-04-27 1985-11-12 Tadashi Matsunaga Method for photoelectrochemical control of cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56163661A (en) * 1980-04-29 1981-12-16 Electro Biology Inc Electrochemical treatment device
JPS58201793A (en) * 1982-05-19 1983-11-24 Katsuo Unno Hematoporphyrin derivative and its preparation
JPS6081128A (en) * 1983-10-13 1985-05-09 Advance Res & Dev Co Ltd Agent for photochemical diagnosis and remedy of tumor
JPS60227669A (en) * 1984-04-27 1985-11-12 Tadashi Matsunaga Method for photoelectrochemical control of cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474125A (en) * 1990-07-16 1992-03-09 Sangi Co Ltd Heating-assistant material for thermotherapy
GB2288123A (en) * 1994-04-04 1995-10-11 Asahi Kogaku Kk Apparatus for the ultra-violet treatment of tumours
GB2288123B (en) * 1994-04-04 1998-02-25 Asahi Kogaku Kk Tumor treatment apparatus
US5855595A (en) * 1994-04-04 1999-01-05 Asahi Kogaku Kogyo Kabushiki Kaisha Tumor treatment apparatus
JP2011524866A (en) * 2008-06-05 2011-09-08 ナノビオティックス Inorganic nanoparticles, their preparation and use
CN110448692A (en) * 2018-05-08 2019-11-15 中国科学院宁波材料技术与工程研究所 A kind of nanocomposite, preparation method and the application in HIFU synergist
CN110448692B (en) * 2018-05-08 2022-06-21 中国科学院宁波材料技术与工程研究所 Nano composite material, preparation method thereof and application of nano composite material in HIFU synergist

Also Published As

Publication number Publication date
JPH0560449B2 (en) 1993-09-02

Similar Documents

Publication Publication Date Title
US10709900B2 (en) Phosphors and scintillators for light stimulation within a medium
Mao et al. AIEgen-coupled upconversion nanoparticles eradicate solid tumors through dual-mode ROS activation
US9433800B2 (en) Activatable particles, preparation and uses
WO2020180451A1 (en) Energy augmentation structures, emitters or collectors, for use in non-invasive in-situ photobiomodulation
ES2602048T3 (en) High density inorganic nanoparticles to destroy cells in vivo
US20220062419A1 (en) Methods for radiotherapy to trigger light activation drugs
US20130195979A1 (en) Core-Excited Nanoparticles and Methods of Their Use in the Diagnosis and Treatment of Disease
CN102711776B (en) For the granule with X-ray therapy treatment of cancer with combinations
JPWO2011102407A1 (en) Radiation therapy
JP6965252B2 (en) X-ray psoralen-activated cancer treatment (X-PACT)
He et al. CdSe/ZnS quantum dots induce photodynamic effects and cytotoxicity in pancreatic cancer cells
Xue et al. Low dose soft X-ray-controlled deep-tissue long-lasting NO release of persistent luminescence nanoplatform for gas-sensitized anticancer therapy
CN105031669A (en) Core-shell structured nano composite material and a preparing method and application thereof
WO2019014413A1 (en) Methods for radiotherapy to trigger light activated drugs
Popova et al. Layer-by-layer capsules as smart delivery systems of CeO2 nanoparticle-based theranostic agents
JPS6287526A (en) Antitumor agent
Chang et al. Novel N-TiO2/SiO2/Fe3O4 nanocomposite as a photosensitizer with magnetism and visible light responsiveness for photodynamic inactivation of HeLa cells in vitro
Ren et al. Smart Fe3O4@ ZnO core-shell nanophotosensitizers potential for combined chemo and photodynamic skin cancer therapy controlled by UVA radiation
Fa et al. − 808 nm-activated Ca2+ doped up-conversion nanoparticles that release no inducing liver cancer cell (HepG2) apoptosis
Farooq et al. Exploring technological innovations of doped rare earth materials
Lukуanenko et al. Magnetic Radio Modifier Based on The Fe3O4/Ta2O5 Nanoparticles
Zha et al. Energy Transfer between Lanthanide to Lanthanide in Phosphors for Bioapplications
JPS60255728A (en) Preparation of magnetic vesicle composition for carcinostatic use
Dutta et al. Upconversion and Downconversion Quantum Dots for Biomedical and Therapeutic Applications
Giri et al. Optimum management of advanced squamous cell carcinomas of the maxillary sinus