JPS6287416A - Production of high-purity niobium iodide - Google Patents

Production of high-purity niobium iodide

Info

Publication number
JPS6287416A
JPS6287416A JP22686385A JP22686385A JPS6287416A JP S6287416 A JPS6287416 A JP S6287416A JP 22686385 A JP22686385 A JP 22686385A JP 22686385 A JP22686385 A JP 22686385A JP S6287416 A JPS6287416 A JP S6287416A
Authority
JP
Japan
Prior art keywords
iodide
niobium
pentaiodide
tantalum
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22686385A
Other languages
Japanese (ja)
Inventor
Nagaaki Satou
佐藤 修彰
Michio Nanjo
南條 道夫
Hajime Sudo
一 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP22686385A priority Critical patent/JPS6287416A/en
Publication of JPS6287416A publication Critical patent/JPS6287416A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain high-purity niobium iodide directly from ferroniobium with simple procedure, by iodinating ferroniobium and subjecting the resultant mixed iodide to the separation of volatile iodide, removal of iron and then removal of tantalum. CONSTITUTION:An iron alloy containing >=50wt% niobium is iodinated with iodine and the resultant mixed iodide is subjected to the step to separate volatile iodide as impurity, the step to remove iron and the step to remove tantalum. The above mixed iodide is preferably treated by the following procedure to obtain high-purity niobium iodide. (1) Ferroniobium is completely reacted with iodine and volatile titanium tetraiodide, tin tetraiodide and aluminum triiodide are separated from the resultant mixed iodide by controlling the temperature of collecting part. (2) obtained mixed iodide is heated to reduce iron triiodide to hardly volatile iron diiodide, which is separated from mixed iodide composed of niobium pentaiodide and tantalum pentaiodide. (3) A mixed iodide composed of niobium pentaiodide and tantalum pentaiodide is heated to reduce niobium pentaiodide to hardly volatile niobium triiodide, which is separated from tantalum pentaiodide.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 ニオブ等の金属沃化物は医薬品、触媒およびセンサーな
どに広く使用されている。
[Detailed Description of the Invention] [Industrial Application Field] Metal iodides such as niobium are widely used in pharmaceuticals, catalysts, sensors, and the like.

特にニオブ沃化物は近年、電子材料や高純度の金属ニオ
ブ製造用として高純度の沃化ニオブが要求されている。
In particular, in recent years, high-purity niobium iodide has been required for electronic materials and the production of high-purity niobium metal.

〔従来の技術〕  ・ 従来、高純度の沃化ニオブなえるためには、できるだけ
高純度の金属ニオブと沃素を反応させるか、高純度の五
塩化ニオブな沃化水素で沃素化する方法がおこなわれて
きた。
[Conventional technology] Conventionally, in order to produce high-purity niobium iodide, the methods used were to react iodine with metal niobium of the highest possible purity, or to iodine it with high-purity niobium pentachloride or hydrogen iodide. It's here.

これらの方法では原料の価格が高い他、純度をあげるた
め複雑な蒸留操作が必要であった。
These methods require high raw material costs and require complicated distillation operations to improve purity.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は従来技術ではおこなえなかった7エロニオブか
ら直接簡単な操作で高純度の沃化ニオブな製造すること
にある。
The object of the present invention is to produce high-purity niobium iodide directly from 7-elonium niobium by a simple operation, which has not been possible with the prior art.

〔問題点を解決する手段〕[Means to solve problems]

本発明は鉄を50重t%以下、その他タンタル。 The present invention uses less than 50% by weight of iron and tantalum.

チタン、スズなどの不純物を含むフェロニオブな沃素で
沃素化して捕集温度を制御することにより揮発性(高蒸
気圧)沃化物のチタン沃化物(TtT4)、スズ沃化物
TSnT4)および三沃化アルミニウム(ム4T、)を
分離した後、えられた混合沃化物〔五沃化ニオブn1b
r、)十五沃化タンタルlTa工。)十三沃化鉄(F6
.T、))を加熱してpe工、を難揮発性の二沃化鉄(
For、)KW元して分離し、ついでここでえられた含
タンタル沃化ニオブを加熱してNbQを三沢化ニオブ(
Nbr、)K還元してTaT4と分離することを特徴と
する高純度沃化ニオブの製造法を提供することKある。
Volatile (high vapor pressure) iodides such as titanium iodide (TtT4), tin iodide (TSnT4) and aluminum triiodide are obtained by iodizing with ferroniodine containing impurities such as titanium and tin and controlling the collection temperature. After separating (mu4T, ), the obtained mixed iodide [niobium pentaiodide n1b
r,) 15 tantalum iodide lTa. ) Thirteen iron iodide (F6
.. T,
For,) KW is separated and then the tantalum-containing niobium iodide obtained here is heated to convert NbQ to niobium Misawa (
An object of the present invention is to provide a method for producing high-purity niobium iodide, which is characterized by reducing Nbr, )K and separating it from TaT4.

〔発明の作用効果〕 本発明の各工程を反応式で示せば次の通りである。(↓
は難揮発性を↑は揮発性を示す。)(1)沃素化・脱ア
ルミニウム、チタン、スズ工程Wb + 5/2r、 
−+ NbI。
[Operations and Effects of the Invention] Each step of the present invention is shown in the following reaction formula. (↓
indicates low volatility and ↑ indicates volatility. ) (1) Iodination/dealumination, titanium, tin process Wb + 5/2r,
−+NbI.

Ta +s7’2Tt−+ Ta16 Fe +3/2r、 −+ Fed。Ta +s7'2Tt-+ Ta16 Fe +3/2r, -+ Fed.

2ムt−4−5r、→A4T4↑ Sn +2T、 −+ 8nT4↑ Ti+2T、→TiT4↑ (21脱鉄工程 Wb−→Nblll Tal6→T&I。2mu t-4-5r, →A4T4↑ Sn +2T, -+8nT4↑ Ti+2T, →TiT4↑ (21 Iron removal process Wb-→Nbllll Tal6→T&I.

1!e工、→ FeT4↓+1/24 (3)  脱タンタル工程 Nb−→Nb工、↓+4 ’1”aI6−+ ”ll (4)  再沃素化工程 ybx、+T*−+狙1 次に本発明を各工程毎に具体的に説明する。1! e engineering, → FeT4↓+1/24 (3) Detantalization process Nb-→Nb engineering, ↓+4 '1"aI6-+"ll (4) Re-iodination process ybx, +T*-+Aim 1 Next, the present invention will be specifically explained for each step.

本発明の出発物質として用いられるフェロニオブ中には
鉄が50真it%以下、タンタル、アルミニウムが1%
以下含有されており、このはかにチタン、スズなどが含
まれている。
The ferroniobium used as a starting material in the present invention contains less than 50% iron and 1% tantalum and aluminum.
It contains the following elements, including titanium, tin, etc.

(1)沃素化−脱アルミニウム・チタン−スズ工程沃素
化反応は回分式又は連続式のいずれの方法でもおこなう
ことができるが、連続式の方が生産性、経済性などの観
点より好ましい。
(1) Iodination-dealumination titanium-tin step The iodination reaction can be carried out either batchwise or continuously, but the continuous method is preferred from the viewpoints of productivity and economy.

反応温度は300℃以上であれば沃素化が急激に速度を
増すため、300℃以上であれば特に制限はないが、通
常は4000〜600℃が採用される。反応軒了後、混
合沃化物は蒸留により精製され、A/J、 、 TiT
4. SnI、などの蒸気圧の高い揮発性沃化物は分離
される。この温度は100℃以上であればよいが、あま
り高いとこの段階でν・−→シ1の還元がおこるので1
50’〜250℃がよい。
There is no particular restriction on the reaction temperature as long as it is 300°C or higher, since the rate of iodination increases rapidly if the reaction temperature is 300°C or higher, but a temperature of 4000 to 600°C is usually adopted. After the reaction is complete, the mixed iodide is purified by distillation to obtain A/J, , TiT
4. Volatile iodides with high vapor pressure, such as SnI, are separated. This temperature should be 100℃ or higher, but if it is too high, reduction of ν・−→Si1 will occur at this stage, so 1
The temperature is preferably 50' to 250°C.

(2)  脱鉄工程 前工程でえられた混合沃化物(NbI、−1−TaI。(2) Deiron removal process Mixed iodide (NbI, -1-TaI) obtained in the previous step.

+IP6エ、)を不活性ガス雰囲気又は水素ガス雰囲気
下又は減圧下で200°〜400℃に加熱してIFeI
、を難揮発性のFed、に還元して含タンタルニオブ沃
化物(NbT、十T a ]1.)と分離する。
+IP6D,) is heated to 200° to 400°C under an inert gas atmosphere or hydrogen gas atmosphere or under reduced pressure to form IFeI.
, is reduced to less volatile Fed, and separated from tantalum niobium iodide (NbT, 10T a ]1.).

加熱温度が低いと1)eT、の還元が不充分で温度が高
いとNbI、も一部還元されるので、加熱温度は250
°〜550℃が好ましい。(水素ガスを使用するときは
2500〜500℃が望ましい。) (3)脱タンタル工程 脱鉄工程でえられた含タンタルニオブ沃化物(Nbr、
+TaT4ス加熱処理してNb4を難揮発性のNbI4
に還元してT&T、と分離する。
If the heating temperature is low, the reduction of 1) eT is insufficient, and if the temperature is high, some of the NbI will also be reduced, so the heating temperature is 250
°~550°C is preferred. (When hydrogen gas is used, the temperature is preferably 2500 to 500°C.) (3) De-tantalum step Tantalum-containing niobium iodide (Nbr,
+TaT4 heat treatment to convert Nb4 to non-volatile NbI4
It is reduced to T&T and separated.

加熱は不活性ガス雰囲気下又は水素ガス雰囲気下又は減
圧下で300°〜600℃、好ましくは350°〜45
0℃でおこなわれる。加熱温度が低いと還元が不充分で
、高いとNbI。
Heating is performed at 300° to 600°C, preferably 350° to 45°C under an inert gas atmosphere or hydrogen gas atmosphere or under reduced pressure.
It is carried out at 0°C. If the heating temperature is low, the reduction will be insufficient, and if it is high, NbI will be produced.

のままTagと飛散する割合が多くなり、ニオブ収率が
低下するためである。
This is because the proportion of niobium that is scattered as it is with Tag increases, and the yield of niobium decreases.

(4)  再沃素化工程 脱タンタル工程でえられた沃化ニオブはNbI、の形で
きわめて高純度で大気中で比較的安定なため、この工程
は必らずしも必要でないが、沃化ニオブな気相熱分解の
原料として使用するときはより活性で蒸気圧の高いNb
I。
(4) Re-iodination step Since the niobium iodide obtained in the tantalum removal step is in the form of NbI, it has extremely high purity and is relatively stable in the atmosphere, so this step is not always necessary, but When used as a raw material for niobium gas phase pyrolysis, Nb is more active and has a higher vapor pressure.
I.

の方が有利である。is more advantageous.

Nb−とtの反応も500℃以上あればよいが、通常は
400°〜600℃が採用される。
The reaction between Nb- and t may also be carried out at a temperature of 500°C or higher, but a temperature of 400° to 600°C is usually adopted.

〔効果の説明〕[Explanation of effects]

以上の説明から明らかなように本発明によれば0) 安
価な7エロニオブから (2)加熱温度を変えるだけの簡単な操作で高純度の沃
化ニオブがえられる。
As is clear from the above description, according to the present invention, (2) highly purified niobium iodide can be obtained from (0) inexpensive 7-eroniobium by a simple operation of changing the heating temperature.

〔実施例〕〔Example〕

以下本発明を回分式の実施例で説明するが、本発明はこ
れら実施例により何ら限定されるものではない。
The present invention will be explained below using batch-type examples, but the present invention is not limited to these examples in any way.

実施例1 原料の7エロニオブと沃素を入れ、真空封じをおこなっ
たパイレックスガラス管中で全ての工程をおこなった。
Example 1 All steps were carried out in a vacuum-sealed Pyrex glass tube containing the raw materials 7-Eloniobium and iodine.

第1図は反応に用いたパイレックス反応管でA。Figure 1 shows the Pyrex reaction tube A used for the reaction.

B、OおよびD室の西南にわかれ、加熱には各室別個に
温度制御が可能な口達の電気炉を用いた。
It was divided into southwest rooms B, O, and D, and an electric furnace made by Kuchitatsu, whose temperature could be controlled separately for each room, was used for heating.

パイレックス管は直径50.φで各室は200關の長さ
があり、20wJφの管で連結した。
The Pyrex tube has a diameter of 50. Each chamber had a length of 200 mm and was connected with a 20wJφ pipe.

(1)沃素化:脱アルミニウム、チタン、スズ工程A室
に沃素■1,00ロク、D室に7工ロニオブ■150g
を入れ、開口部からロータリーポンプで10−’TOr
rまで1時間ひき封じた。
(1) Iodination: Dealumination, titanium, and tin process 1,00 g of iodine in room A, 150 g of 7-d rhoniobium in room D
and apply 10-' Torr from the opening with a rotary pump.
The mixture was ground and sealed for 1 hour until r.

これを口達炉に入れ、A室を180℃、B室550℃、
0室およびD室を500℃にして24時間保った。冷却
後(図1−b)A室には未反応沃素■A/、I6 、 
TiI4およびSn4■が残り、D室にはわずかの未反
応7エ0=オブ■が残った。0室は空で、B室に混合沃
化物(NbT、+Fa工m+T aTi )■が凝集し
た。
Place this in a mouth furnace, chamber A at 180℃, chamber B at 550℃,
Room 0 and room D were heated to 500°C and maintained for 24 hours. After cooling (Fig. 1-b), chamber A contains unreacted iodine A/, I6,
TiI4 and Sn4■ remained, and a small amount of unreacted 7E0=of■ remained in chamber D. Chamber 0 was empty, and mixed iodide (NbT, +Fa + TaTi) was aggregated in chamber B.

A室およびD室を封じきった。Rooms A and D have been sealed off.

(2)脱鉄工程 B室を300℃、0室を室温に24時間保った。冷却後
(図1−0)B室には’fats−■がB室にタンタル
を含む沃化ニオブ(libT、+T&4)■が凝集した
(2) Deiron removal process Room B was kept at 300°C and room 0 was kept at room temperature for 24 hours. After cooling (FIG. 1-0), 'fats-■' was aggregated in chamber B, and niobium iodide (libT, +T&4)■ containing tantalum was aggregated in chamber B.

(3)  脱タンタル工程 B室を室温、0室な400℃に24時間保った。冷却後
(図1−d)B室にはTaT、と少量のNt+T、■が
、0室にはWb工、■が凝集した。
(3) Detantalization process Room B was kept at room temperature, 400° C., for 24 hours. After cooling (FIG. 1-d), TaT, a small amount of Nt+T, and ■ were aggregated in chamber B, and Wb and ■ were aggregated in chamber 0.

グループボックス中で開管して0室のN’bT、をとり
だした。NbI、は3509えられ、ニオブ収率は70
%であった。
The tube was opened in the group box and N'bT in chamber 0 was taken out. NbI was obtained at 3509, and the niobium yield was 70
%Met.

原料の7エロニオブ、えられた沃化ニオブの分析値は以
下の通りであった。
The analytical values of the raw material 7-eroniobium and the obtained niobium iodide were as follows.

NbF@ TIL   At   an     Ti
フエaニオスvyt%)  65 30  [1)4[
144α14   凹7以上の結果で分るように極めて
高純度の沃化ニオブがえられた。
NbF@TIL At an Ti
65 30 [1) 4[
144α14 As can be seen from the results of concavity 7 and above, extremely high purity niobium iodide was obtained.

実施例2 連続式で高純度沃化ニオブを製造した。実施例を図面に
基づき説明する。第2図は7エロニオブを原NK沃素化
工程、脱アルミニウム、チタン。
Example 2 High purity niobium iodide was produced in a continuous manner. Examples will be described based on the drawings. Figure 2 shows the raw NK iodination process of 7-Eloniobium, dealluminization, and titanium.

およびスズ工程、脱鉄工程および脱タンタル工程を連続
的におこなう装置である。
This is an equipment that continuously performs the tin process, iron removal process, and tantalum removal process.

第2図において1)は沃素ポットであり、12は密閉さ
れた沃素フィーダー(例えば電磁フィーダー)であり、
粉体状の沃素を定量的に15の沃素気化器内に供給する
。ここでガス状になった沃素は反応器14に送られ、7
エロニオプ用ボツト15から定量的に供給され16のメ
ザラに落下するフェロニオブと反応して沃化物を生成す
る。生成した混合沃化物は脱鉄塔17で脱鉄される。こ
のとき生成した二沃化鉄は下部の回収ボット18捕集器
19で析出する。
In Figure 2, 1) is an iodine pot, 12 is a sealed iodine feeder (for example, an electromagnetic feeder),
Powdered iodine is quantitatively supplied into 15 iodine vaporizers. The gaseous iodine here is sent to the reactor 14,
It reacts with the ferroniobium which is quantitatively supplied from the ferroniobium bottle 15 and falls into the mezzara 16 to produce iodide. The generated mixed iodide is deironated in the deironation tower 17. The iron diiodide produced at this time is deposited in the lower collection bot 18 and collector 19.

ここで過剰の沃素、揮発性の四沃化チタン(TiI4)
、四沃化スズ(llinx4)および三沃化アル之ニウ
ム(AA)は22のコールドラップに回収される。
Here, excess iodine, volatile titanium tetraiodide (TiI4)
, tin tetraiodide (llinx4) and aluminum triiodide (AA) are recovered in 22 cold wraps.

19で捕集された混合沃化物は20の脱タンタル塔に固
体状で供給される。脱タンタル塔の下部からムrガスが
供給され、混合沃化物は流動状態となりNbl1lは五
沃化ニオブ(Nbr、)に還元され、下部の回収ボッ)
21に回収される。ガス状になったTa′1.は捕集器
23に析出し、下部の回収ポット24に回収される。N
bI、がNbI、に還元されるとき生成する沃素は25
のコールドトラップに回収される。
The mixed iodide collected in step 19 is fed in solid form to the detantalizing tower in step 20. MR gas is supplied from the lower part of the detantalizing tower, and the mixed iodide becomes fluid, and 1l of Nbl is reduced to niobium pentaiodide (Nbr), which is then transferred to the lower recovery box.
It will be collected on the 21st. Ta′1. is deposited in the collector 23 and collected in the collection pot 24 at the bottom. N
When bI is reduced to NbI, the iodine produced is 25
collected in a cold trap.

更に具体的な操作方法としては、全系内を1O−2to
rr以下に排気し、約500℃以上に加熱保持をして脱
気する。
As a more specific operating method, the entire system is 10-2 to
Evacuate to below rr, heat and maintain at about 500°C or above to degas.

次に沃素を沸点以上に加熱された沃素気化器に適量供給
し、反応器を沃素宴囲気にする。さらに各部が所定の温
度に達した後、フェロニオブな供給し沃素化する。
Next, an appropriate amount of iodine is supplied to an iodine vaporizer heated above its boiling point to create an iodine atmosphere in the reactor. Furthermore, after each part reaches a predetermined temperature, ferroniodine is supplied and iodized.

図中26.27はAr ガス流入を、28.29は排ガ
スの流れを示す。
In the figure, 26.27 indicates the inflow of Ar gas, and 28.29 indicates the flow of exhaust gas.

第2図の装置を使用、次の条件で高純度沃化ニオブなえ
た。
Using the apparatus shown in Figure 2, high purity niobium iodide was exhausted under the following conditions.

(条件) 沃素供給速度    1597 winフェロニオブ供
給途度 19/min 沃素気化器温度    200℃ 反応器温度      500°C 脱鉄塔温度      300℃ 混合沃化物捕集器温度 150℃ 脱タンタル塔温度   450℃ 捕集器温度      室温 回収ポット温度    室温 コールドトラップ   液体ちつそ 上記した条件のもとで製造した高純度沃化ニオブの品位
および原料フェロニオブの組成は次の通りであった。
(Conditions) Iodine supply rate 1597 win Ferron niobium supply rate 19/min Iodine vaporizer temperature 200°C Reactor temperature 500°C De-iron tower temperature 300°C Mixed iodide collector temperature 150°C Detantalist tower temperature 450°C Collector Temperature: Room temperature recovery pot temperature: Room temperature cold trap: Liquid nitride: The grade of high purity niobium iodide produced under the above conditions and the composition of the raw material ferroniobium were as follows.

Wb ]Fe  置  Atan  ’I’1フェロニ
オブ(vrt%)   65 30  α14  [1
44α14   (12710時間運転したときの収支
は次の通りであった。
Wb ]Fe Setting Atan 'I'1 Ferroniobium (vrt%) 65 30 α14 [1
44α14 (The balance after operating for 12,710 hours was as follows.

フェロニオブ    600g 沃素   7.8009 高純度沃化ニオブ 1.zao91Nb19.2%、工
8α8%)ニオブ収率    63%
Ferroniobium 600g Iodine 7.8009 High purity niobium iodide 1. zao91Nb19.2%, engineering8α8%) Niobium yield 63%

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いる回分式沃素化反応装置の一例を
示すもので、第2図は連続式沃素化反応装置の一例を示
すものである。 1・・・沃素 2・・・7エロニオブ、2′・・・フェロニオブ残金3
・・・三沃化アルゼニウム、四沃化チタンおよび四次化
スズの混合物4・・・五1イヒニオブ、五表イヒタンタ
ルおよび=tらb鉄C虐ハγ吻5・・・二沃化鉄 6・・・五沃化ニオブおよび五沃化タンタルの混合物7
・・・五沃化タンタル 8・・・五沃化ニオブ 1)・・・沃素ポット 13・・・沃素揮化器 14・・・反応器 15・・・フェロニオブポット 17・・・脱鉄塔 20・・・脱タ/タル塔
FIG. 1 shows an example of a batch-type iodination reactor used in the present invention, and FIG. 2 shows an example of a continuous-type iodination reactor. 1...Iodine 2...7 Eloniobium, 2'...Feroniobium balance 3
...Mixture of arzenium triiodide, titanium tetraiodide and tin quaternary 4...51 Ihiniobium, ichtantal and = trab iron C agamma 5... iron diiodide 6 ...Mixture 7 of niobium pentaiodide and tantalum pentaiodide
... Tantalum pentaiodide 8 ... Niobium pentaiodide 1) ... Iodine pot 13 ... Iodine volatilizer 14 ... Reactor 15 ... Ferroniobium pot 17 ... De-iron removal tower 20・・・Detaching/Taru Tower

Claims (4)

【特許請求の範囲】[Claims] (1)ニオブを少くとも50重量%以上含む鉄合金を沃
素で沃素化して不純物の揮発性沃化物を分離する工程、
脱鉄工程ついで脱タンタル工程をへることを特徴とする
高純度沃化ニオブの製造法。
(1) A step of iodizing an iron alloy containing at least 50% by weight of niobium with iodine to separate volatile iodide impurities;
A method for producing high-purity niobium iodide, which is characterized by performing an iron removal step and then a tantalum removal step.
(2)フェロニオブと沃素を全量反応させ生成した混合
沃化物を捕集部の温度制御により揮発性四沃化チタン、
四沃化スズおよび三沃化アルミニウムを分離する特許請
求の範囲第(1)項記載の高純度沃化ニオブの製造法。
(2) The mixed iodide produced by reacting the entire amount of ferroniobium with iodine is converted into volatile titanium tetraiodide by controlling the temperature of the collection section.
A method for producing high-purity niobium iodide according to claim (1), which separates tin tetraiodide and aluminum triiodide.
(3)混合沃化物を真空、不活性ガス又は水素ガス気流
中で熱処理をおこない、三沃化鉄を難揮発性の二沃化鉄
に還元して五沃化ニオブと五沃化タンタルの混合沃化物
から分離する特許請求の範囲第(1)項又は第(2)項
に記載の高純度沃化ニオブの製造法。
(3) Heat-treating the mixed iodide in a vacuum or in an inert gas or hydrogen gas stream to reduce iron triiodide to less volatile iron diiodide and mixing niobium pentaiodide and tantalum pentaiodide. A method for producing high-purity niobium iodide according to claim (1) or (2), in which niobium iodide is separated from iodide.
(4)五沃化ニオブと五沃化タンタルの混合沃化物を真
空、不活性ガス又は水素ガス気流中で熱処理をおこない
、五沃化ニオブを難揮発性の三沃化ニオブに還元して五
沃化タンタルと分離する特許請求の範囲第1項、第2項
又は第3項記載の高純度沃化ニオブの製造法。
(4) A mixed iodide of niobium pentaiodide and tantalum pentaiodide is heat-treated in a vacuum or in an inert gas or hydrogen gas stream to reduce niobium pentaiodide to less volatile niobium triiodide. A method for producing high-purity niobium iodide according to claim 1, 2 or 3, wherein the niobium iodide is separated from tantalum iodide.
JP22686385A 1985-10-14 1985-10-14 Production of high-purity niobium iodide Pending JPS6287416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22686385A JPS6287416A (en) 1985-10-14 1985-10-14 Production of high-purity niobium iodide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22686385A JPS6287416A (en) 1985-10-14 1985-10-14 Production of high-purity niobium iodide

Publications (1)

Publication Number Publication Date
JPS6287416A true JPS6287416A (en) 1987-04-21

Family

ID=16851749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22686385A Pending JPS6287416A (en) 1985-10-14 1985-10-14 Production of high-purity niobium iodide

Country Status (1)

Country Link
JP (1) JPS6287416A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114438327A (en) * 2021-12-29 2022-05-06 中南大学 Iodination separation method for iron in iron-containing alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114438327A (en) * 2021-12-29 2022-05-06 中南大学 Iodination separation method for iron in iron-containing alloy
CN114438327B (en) * 2021-12-29 2023-01-24 中南大学 Iodination separation method for iron in iron-containing alloy

Similar Documents

Publication Publication Date Title
US4668287A (en) Process for producing high purity zirconium and hafnium
US7674441B2 (en) Highly pure hafnium material, target and thin film comprising the same and method for producing highly pure hafnium
WO2003040036A1 (en) Method for producing silicon
JPS6259051B2 (en)
US5700519A (en) Method for producing ultra high purity titanium films
WO2013084672A1 (en) Method for producing calcium of high purity
US2773760A (en) Production of titanium metal
US5711783A (en) Preparation from metal alkoxides of high purity metal powder
US4720300A (en) Process for producing niobium metal of an ultrahigh purity
JPS6287416A (en) Production of high-purity niobium iodide
JP4295823B2 (en) Method for reducing and purifying high-purity metal from vaporizable metal compound by magnetron capacitively coupled plasma and apparatus therefor
US2760857A (en) Production and purification of titanium
Campbell et al. Preparation of high-purity vanadium by magnesium reduction of vanadium dichloride
US2885281A (en) Method of producing hafnium-free "crystal-bar" zirconium from a crude source of zirconium
US4465511A (en) Making niobium intermetallic compounds
Kononov et al. Electrorefining in molten salts—an effective method of high purity tantalum, hafnium and scandium metal production
JPS63274725A (en) Method for recovering nb and ti from superconductive material
JP2016530986A (en) A method for separating and extracting industrially important products from bauxite, from red mud resulting from the processing of bauxite and from chemically similar substances
JPH0526726B2 (en)
JPH06104572B2 (en) Method for producing high-purity zirconium tetrachloride
US3146094A (en) Method of producing refractory metal
RU2175021C1 (en) Titanium carbonitride production method
JPH0536485B2 (en)
JP3023960B2 (en) Method for recovering high-purity niobium and its derivatives from niobium-titanium alloy scrap or ferroniob
JPH0192338A (en) High purity niobium-titanium alloy sponge and its manufacture