JPS6286877A - Photodetector - Google Patents

Photodetector

Info

Publication number
JPS6286877A
JPS6286877A JP60229243A JP22924385A JPS6286877A JP S6286877 A JPS6286877 A JP S6286877A JP 60229243 A JP60229243 A JP 60229243A JP 22924385 A JP22924385 A JP 22924385A JP S6286877 A JPS6286877 A JP S6286877A
Authority
JP
Japan
Prior art keywords
light absorbing
absorbing layer
photodetector
photoresist
absorption layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60229243A
Other languages
Japanese (ja)
Inventor
Masahiko Fujiwara
雅彦 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60229243A priority Critical patent/JPS6286877A/en
Publication of JPS6286877A publication Critical patent/JPS6286877A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To improve the rise of a response by reducing the thickness of a light absorbing layer of a portion formed with a pair of ohmic electrodes formed on the light absorbing layer thinner than that of the other portion. CONSTITUTION:An InGaAs light absorbing layer 12 is grown by 3mum by a halide vapor-phase growing method on a semi-insulating InP substrate 11. An SiO2 film 14 is grown by a chemical vapor-phase accumulating method on the wafer, and with a photoresist as a mask the film 14 of the portion to form electrodes is removed with buffered HF. Then, with the photoresist and the film 14 as masks the layer 12 is etched. After etching, AgGeNi is deposited on the wafer, and the photoresist is removed with exfoliating solution. Then, the AuGeNi is removed except the recessed part. Finally, ohmic electrodes 13a, 13b are formed by heat treating in H2. Thus, since the distribution of the electric field intensity in the light absorbing layer can be reduced, the fall of a pulse response can be improved to obtain a photodetector having excellent responding characteristic.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体材料を用いた光検出器に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a photodetector using a semiconductor material.

〔従来の技術〕[Conventional technology]

現在、種々の光システムの中で光信号を電気信号に変換
するための光検出器としては、半導体材料によるフオI
−ダイオード(PD)やアバランシェ・フォトダイオー
ド(APD)が広く用いられている。近年、これに対し
半導電現象を利用したP C(Photb Coodu
etive)光検出器は、高速性。
Currently, photodetectors made of semiconductor materials are used as photodetectors for converting optical signals into electrical signals in various optical systems.
-Diodes (PD) and avalanche photodiodes (APD) are widely used. In recent years, PC (Photob Coodu), which utilizes semiconducting phenomenon, has been
etive) The photodetector is high speed.

低雑音性があり、低電圧で動作し、構造が簡単である等
の利点から注目され研究が盛んになってきている。
Due to its low noise, low voltage operation, and simple structure, it has attracted attention and is being actively researched.

第2図は従来のPC光検出器の構造を示す断面図であり
、光吸収層として1.G、A、を用いた1μm帯用0デ
バイスの一例を示している。Feをドープした半絶縁性
I。P基板11上に光吸収層となるnあるいはi −1
flG、A、層12が液相あるいは気相。
FIG. 2 is a cross-sectional view showing the structure of a conventional PC photodetector, in which 1. An example of a 1 μm band zero device using G and A is shown. Semi-insulating I doped with Fe. n or i −1 to become a light absorption layer on the P substrate 11
flG, A, layer 12 is in liquid phase or gas phase.

分子線エピタキシャル法により成長され、InG、A一
層12上に一対のオーム性電ff113a、13bがA
、GeN1により形成されている。これらオーツ\性電
1g!!13a、13’b間にバイアスを印加し、オー
ム性電極13a、13b間の1.G、A、層12に検出
すべき光信号を入射させれば1.G、A、層12中の光
導電現象により、オーム性電極13a、13b間に充電
変換された電気信号をとり出すことができる。
A pair of ohmic conductors ff113a and 13b are grown on the InG and A layer 12 by the molecular beam epitaxial method.
, GeN1. These oats\1g of sex electricity! ! A bias is applied between the ohmic electrodes 13a and 13'b. If an optical signal to be detected is made incident on the G, A and layers 12, 1. Due to the photoconductive phenomenon in the G, A, and layers 12, an electric signal charged and converted between the ohmic electrodes 13a and 13b can be taken out.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このようなPC光検出器は、高速のパルス光信号を受光
した場合帯られる応答信号の立上りは、数100 ps
ec程度以下の非常に高速なものとなる。
When such a PC photodetector receives a high-speed pulsed optical signal, the rise of the response signal is several 100 ps.
It is very fast, about ec or less.

しかし、立下りには数n5ec程度のすそ引きが生じる
。この原因は、光照射により生成された正孔・電子対の
うち正孔の移動度が電子のそれに比べ1/40程度(I
nG、A、では電子移動度段8000小さいことと、1
.G、A、光吸収層12内の厚さ方向(X方向〉に、正
孔、電子を加速するX方向の電界強度が減少することに
ある(雑誌[アプライド・フィジクス・レターズ(Ap
pl、t’bys、Letl)」、第44巻、第1号、
1984年、99〜101頁参照〉。
However, at the falling edge, a trailing effect of about several n5 ec occurs. The reason for this is that among the hole-electron pairs generated by light irradiation, the mobility of the hole is about 1/40 of that of the electron (I
In nG, A, the electron mobility step is 8000 smaller and 1
.. G, A, the electric field strength in the X direction that accelerates holes and electrons decreases in the thickness direction (X direction) in the light absorption layer 12 (Magazine [Applied Physics Letters (Ap
pl, t'bys, Letl), Volume 44, No. 1,
1984, pp. 99-101).

つまり、光吸収層内の表面から深く内部に入った部分で
吸収された光により生成された正孔は元々移動度が低く
かつ加速のための電界強度も弱いため電極間・走行時間
が長くなり、これが応答のすそ引きとなって現われる。
In other words, holes generated by light absorbed deep into the light absorption layer from the surface have low mobility and weak electric field strength for acceleration, resulting in a long transit time between the electrodes. , this appears as the basis of the response.

本発明の目的は、このような問題を解決し、PC光検出
器のパルス応答のすそ引きを改善し、応答特性の良好な
光検出器を提供することにある。
An object of the present invention is to solve such problems, improve the pulse response profile of a PC photodetector, and provide a photodetector with good response characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の構成は、半絶縁性半導体基板上に形成された半
導体材料からなる光吸収層と、この光吸収層上に形成さ
れた一対のオーム性電極とから成る光検出器において、
前記一対のオーム性電極が形成されている部分の前記光
吸収層の厚みが他の部分に比べ薄くなっていることを特
徴とする光検出器。
The structure of the present invention is a photodetector including a light absorption layer made of a semiconductor material formed on a semi-insulating semiconductor substrate, and a pair of ohmic electrodes formed on the light absorption layer.
A photodetector characterized in that a portion of the light absorption layer where the pair of ohmic electrodes are formed is thinner than other portions.

〔作用〕[Effect]

このように本発明の電極構造をとることにより、通常の
ように一様な厚みの光吸収層上に電極を形成する場合に
比べ光照射により生成された正孔、電子を加速する電界
強度の一様性を高めることができるため、応答の立下り
を改善できる。
By adopting the electrode structure of the present invention as described above, the electric field strength that accelerates holes and electrons generated by light irradiation can be reduced compared to the case where an electrode is formed on a light absorption layer with a uniform thickness. Since the uniformity can be increased, the fall of the response can be improved.

このことを、第3図を用いて説明する。第3図(a>、
(b)は従来および本発明によるPC光検出器の電極1
3の構造断面図、第3図(C)。
This will be explained using FIG. 3. Figure 3 (a>,
(b) shows the electrode 1 of the PC photodetector according to the conventional method and the present invention.
3 (C).

(d)は従来および本発明のX方向の電界強度の光吸収
層深さ方向の分布図を示している。このPC光検出器に
照射された光は、光吸収層の吸収係数に応じて侵入深さ
dだけ吸収層内に侵入して吸収される。
(d) shows a distribution diagram of the electric field strength in the X direction in the depth direction of the light absorption layer in the conventional method and the present invention. The light irradiated onto this PC photodetector penetrates into the absorption layer by a penetration depth d according to the absorption coefficient of the light absorption layer and is absorbed.

第3図(a>の場合、電極13a、13bの間隔をWと
し、これら電極間に加えるバイアス電圧を■とすると、
第一次近似では表面から深さXの点でのX方向の電界強
度はV/(w+2x)と表わされる。つまり、表面から
内部へと行く程電界強度は減少する(第3図(C))。
FIG. 3 (In the case of a>, let the interval between the electrodes 13a and 13b be W, and the bias voltage applied between these electrodes be ■),
In the first approximation, the electric field strength in the X direction at a depth X from the surface is expressed as V/(w+2x). In other words, the electric field strength decreases from the surface to the inside (FIG. 3(C)).

一方、第3図(b)に示すように電極1.3a、13b
が光吸収層表面よりd。たけ薄くなったところに形成さ
れている場合、X方向の電界強度はV/(w+21Xd
ol)と書け、x=doの位置で最大となる。
On the other hand, as shown in FIG. 3(b), the electrodes 1.3a and 13b
d from the light absorption layer surface. If it is formed in a thinner area, the electric field strength in the X direction is V/(w+21Xd
ol), which is maximum at the position x=do.

ここで、1例としてdO=d/2としてO<xくdの範
囲でのX方向の電界強度の最小値は、第3図(c)の場
合V、/ (W+2 d ) 、第3図(d)の場合V
/(w+d)となり、第3図(d)の本発明の場合の方
が電界強度の一様性が高い。パルス応答の立下りは、光
照射により生成された正孔のうち最も弱い電界により加
速されるものの電極間走行時間により決定されるので、
このように電界強度の一様性を高めることにより立下り
応答を改善できる。− 〔実施例〕 以下本発明につき実施例により詳細に説明する。
Here, as an example, assuming dO=d/2, the minimum value of the electric field strength in the X direction in the range of O<x×d is V, / (W+2 d ) in the case of Fig. 3(c), Fig. 3 In case (d), V
/(w+d), and the uniformity of the electric field strength is higher in the case of the present invention shown in FIG. 3(d). The fall of the pulse response is determined by the transit time between the electrodes of the holes generated by light irradiation, which are accelerated by the weakest electric field.
By increasing the uniformity of the electric field strength in this way, the falling response can be improved. - [Example] The present invention will be explained in detail below with reference to Examples.

第1図は本発明による光検出器の一実施例を説明する断
面図である。まず、本実施例の製作方法について説明す
る。ここではTnGaAs/InP系材料による1μm
帯材料検出器について示している。
FIG. 1 is a sectional view illustrating an embodiment of a photodetector according to the present invention. First, the manufacturing method of this embodiment will be explained. Here, 1μm of TnGaAs/InP material is used.
A strip material detector is shown.

半絶縁性I。P基板11(Feドープ、抵抗率P≧10
 Ωcm)上にハイドライド気相成長法により、1、G
、As光吸収層12(n型キャリア濃度〈1×化学気相
堆積(CVD)法により、Si0□14を成膜し、シブ
レー社MP−13007オ)〜レジストをマスクとして
電極を形成すべき部分の810□をバッファドHFによ
り除去する。
Semi-insulating I. P substrate 11 (Fe doped, resistivity P≧10
1, G by the hydride vapor phase epitaxy method on
, As light absorption layer 12 (n-type carrier concentration <1× Si0□14 film formed by chemical vapor deposition (CVD) method, Sibley MP-13007O) ~ Portion where electrodes are to be formed using resist as a mask 810□ is removed by buffered HF.

次Gこ、フォトレジストとSho□をマスクとしてIn
GaAs光吸収層12をエッチラグする。この工・・l
チングには、H,PO4: )120□:H20=1:
1:3の゛ 混合液を用い、エツチング深さは光の侵入
深さく〜1.5μm)の約半分である0、75μmとな
るように行なった。エツチングの後に、ウェハ上にAu
GeNiを蒸着しフオトレジス1−MP−1300をは
ぐり液により除去すると、窪みの部分を残してAuGe
Niが除去される(リフト・オフ法)。最後にH2中で
の熱処理によりオーム性電極13a、13bを形成した
。なお、5i02は入射光に対するARコート膜となる
ように予め厚みを設定しておき特に除去はしていない。
Next G, In using photoresist and Sho□ as a mask.
The GaAs light absorption layer 12 is etched. This work...l
For ching, H, PO4: )120□:H20=1:
A 1:3 mixed solution was used, and the etching depth was 0.75 μm, which is about half of the light penetration depth (~1.5 μm). After etching, Au
When GeNi is deposited and the photoresist 1-MP-1300 is removed using a stripping solution, the AuGe
Ni is removed (lift-off method). Finally, ohmic electrodes 13a and 13b were formed by heat treatment in H2. Note that the thickness of 5i02 was set in advance so that it would serve as an AR coating film for incident light, and it was not specifically removed.

ここで製作したデバイスは、電極間隔が5μmであるが
、電極13a、13b間に5■の電圧を加えた場合、表
面から侵入深さ以内の範囲で生成された正孔に加わる電
界の最小値は7.7KV/Ω−/′v5の移動度を仮定
すると、電極間走行時間は約400 psecとなる。
In the device manufactured here, the electrode spacing is 5 μm, but when a voltage of 5 μm is applied between the electrodes 13a and 13b, the minimum electric field applied to the holes generated within the penetration depth from the surface Assuming a mobility of 7.7 KV/Ω-/'v5, the transit time between the electrodes is about 400 psec.

これに対し通常のように一様な厚みの光吸収層上にオー
ム性電極がある場合には正孔の走行時間は約640 p
secであるから応答特性は大きく改善される。更にこ
の改善の程度は電極の微細化により電極間距離が光の侵
入深さと同程度になってくると一更大きくなる。
On the other hand, when there is an ohmic electrode on a light absorption layer with a uniform thickness as usual, the transit time of a hole is about 640 p.
sec, the response characteristics are greatly improved. Furthermore, the degree of this improvement becomes even greater when the distance between the electrodes becomes approximately the same as the penetration depth of light due to the miniaturization of the electrodes.

本実施例の製作に於て1.、G、A、層の成長は液相や
分子線エピタキシャル法、有機金属法も用いることがで
きる。また、本実施例では、材料として1゜G5As/
 InP系を用いたが、本発明がこれに限定されるもの
ではな(Ga^IAs/GaAs系等にも適用可能なの
は明らかである。また、光吸収層の導電型はp型でも良
いがp型の方が効果が大きい。また、電極の形状として
は、受光部面積を等方かつ大きくできるくし形電極が望
ましい。
In the production of this example: 1. , G, A, a liquid phase method, a molecular beam epitaxial method, or an organometallic method can be used to grow the layer. In addition, in this example, the material is 1°G5As/
Although the InP system is used, the present invention is not limited to this (it is obvious that it can also be applied to Ga^IAs/GaAs systems, etc.).Also, the conductivity type of the light absorption layer may be p type, but p A shape is more effective. Also, as for the shape of the electrode, a comb-shaped electrode is desirable because it can make the area of the light-receiving part isotropic and large.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、光吸収層中の電
界強度な分布を小さくできるので、パルス応答の立下り
の改善が可能で応答特性の優れた光検出器が得られる。
As described above, according to the present invention, it is possible to reduce the electric field intensity distribution in the light absorption layer, so that it is possible to improve the fall of the pulse response and to obtain a photodetector with excellent response characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による光検出器の一実施例を示す断面図
、第2図は従来の光検出器の構成を示す断面図、第3図
(a>、(b)は従来および本発明による光検出器の作
用を説明する断面図、第3図(c)、(d)は従来およ
び本発明のy方向電界強度の光吸収層の深さ方向の分布
図である。 図に於て、11・・・半絶縁1nP基板、12・・・I
nGaAS層、13 a、  13 b・・−オーム性
電極、14・・・5102である。
FIG. 1 is a sectional view showing an embodiment of the photodetector according to the present invention, FIG. 2 is a sectional view showing the configuration of a conventional photodetector, and FIGS. 3(c) and 3(d) are distribution diagrams of the y-direction electric field strength in the depth direction of the light absorption layer of the conventional and the present invention. , 11...Semi-insulating 1nP substrate, 12...I
nGaAS layer, 13a, 13b...-ohmic electrode, 14...5102.

Claims (1)

【特許請求の範囲】[Claims]  半絶縁性半導体基板上に形成された半導体からなる光
吸収層と、この光吸収層上に形成された一対のオーム性
電極とからなる光検出器に於て、前記一対のオーム性電
極が形成されている部分の前記光吸収層の厚みが他の部
分に比べ薄くなっていることを特徴とする光検出器。
In a photodetector consisting of a light absorption layer made of a semiconductor formed on a semi-insulating semiconductor substrate and a pair of ohmic electrodes formed on this light absorption layer, the pair of ohmic electrodes are formed. A photodetector characterized in that the thickness of the light absorption layer in the portion where the light absorption layer is exposed is thinner than in other portions.
JP60229243A 1985-10-14 1985-10-14 Photodetector Pending JPS6286877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60229243A JPS6286877A (en) 1985-10-14 1985-10-14 Photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60229243A JPS6286877A (en) 1985-10-14 1985-10-14 Photodetector

Publications (1)

Publication Number Publication Date
JPS6286877A true JPS6286877A (en) 1987-04-21

Family

ID=16889059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60229243A Pending JPS6286877A (en) 1985-10-14 1985-10-14 Photodetector

Country Status (1)

Country Link
JP (1) JPS6286877A (en)

Similar Documents

Publication Publication Date Title
JP4220688B2 (en) Avalanche photodiode
EP0053513B1 (en) Avalanche photodiodes
JP2762939B2 (en) Superlattice avalanche photodiode
US5157473A (en) Avalanche photodiode having guard ring
JP5109981B2 (en) Semiconductor photo detector
JP2699807B2 (en) Compositionally modulated avalanche photodiode
JPS6328506B2 (en)
JPS6016474A (en) Hetero multiple junction type photo detector
JP2941349B2 (en) Super lattice APD
JP2006040919A (en) Avalanche photodiode
KR100303471B1 (en) Avalanche photodetector device and method for manufacturing the same
JP2009004812A (en) Avalanche photo-diode
JPS63955B2 (en)
JPS6286877A (en) Photodetector
JPH11330536A (en) Semiconductor light receiving element
Osaka et al. Electron and hole ionization coefficients in (100) oriented Ga0. 33In0. 67As0. 70P0. 30
JPS59232470A (en) Semiconductor light receiving element
JPS6286878A (en) Manufacture of photo detector
US7687874B2 (en) Surface illuminated photodiode and optical receiver module
KR940001293B1 (en) Semiconductor photodetection device
JPS6237976A (en) Light conducting type light detector
KR102078316B1 (en) Structure and Fabrication Method of Photo Detector Device using Two Dimensional Doping Technology
JPS6286772A (en) Photodetector
JPH03248482A (en) Avalanche photodiode
JPS62232975A (en) Photoconducting detector