JPS62861B2 - - Google Patents

Info

Publication number
JPS62861B2
JPS62861B2 JP1256279A JP1256279A JPS62861B2 JP S62861 B2 JPS62861 B2 JP S62861B2 JP 1256279 A JP1256279 A JP 1256279A JP 1256279 A JP1256279 A JP 1256279A JP S62861 B2 JPS62861 B2 JP S62861B2
Authority
JP
Japan
Prior art keywords
slag
gutter
opening
temperature
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1256279A
Other languages
Japanese (ja)
Other versions
JPS55104642A (en
Inventor
Masaoki Takahashi
Shigenori Nishioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP1256279A priority Critical patent/JPS55104642A/en
Publication of JPS55104642A publication Critical patent/JPS55104642A/en
Publication of JPS62861B2 publication Critical patent/JPS62861B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Manufacture Of Iron (AREA)
  • Glanulating (AREA)

Description

【発明の詳細な説明】 本発明は、製鉄業における製銑、製鋼の過程で
発生するスラグから滓粒を造粒する装置における
滓流制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a slag flow control device in an apparatus for granulating slag particles from slag generated in the process of pig iron production and steel production in the iron and steel industry.

製鉄業においては、製銑、製鋼の過程でスラグ
が発生する。このスラグは溶滓の形で発生する
が、この溶滓が凝固する過程でこれを粒状化させ
てコンクリート用砂あるいは骨材を製造すること
が行なわれている。
In the steel industry, slag is generated during the ironmaking and steelmaking processes. This slag is generated in the form of slag, which is granulated during the solidification process to produce concrete sand or aggregate.

溶滓よりこのような滓粒を造粒する従来の装置
を第1図について説明すると、溶滓鍋1は一定速
度で傾動され、内部の溶滓は樋2内に流し込まれ
る。樋2の底面には開孔4が穿設してあつて、樋
2内に流し込まれた溶滓は開孔4より流下して当
板3に衝突し、粒状化して溶滓軌跡5を描きなが
ら図示しない冷却器に達する。
A conventional apparatus for granulating slag granules from slag will be described with reference to FIG. 1. A slag ladle 1 is tilted at a constant speed, and the slag inside is poured into a gutter 2. A hole 4 is bored in the bottom of the gutter 2, and the slag poured into the gutter 2 flows down through the hole 4, collides with the plate 3, becomes granulated, and draws a slag trajectory 5. while reaching a cooler (not shown).

開孔4の大きさが一定であり、開孔4と当板3
との間の距離が一定であつて、しかも溶滓の粘度
が一定で溶滓の同量が同速度で落下すれば、溶滓
軌跡および造粒量、粒径等は一定で滓粒は量的、
質的に安定するが、現状では樋2内の溶滓レベル
一定、すなわち排出ヘツド一定で滓流を制御して
いる。このため溶滓の粘度の変化にともなう溶滓
流量の変化によつて滓粒の造粒量や粒径等の質が
変化し、さらに溶滓軌跡5も変化して冷却器への
入り方も変化して冷却効果にも影響を与えてい
る。
The size of the opening 4 is constant, and the opening 4 and the contact plate 3 are
If the distance between the Target,
Although it is qualitatively stable, currently the slag flow is controlled by keeping the slag level in the gutter 2 constant, that is, by keeping the discharge head constant. Therefore, as the slag viscosity changes, the slag flow rate changes, and the quality of the slag granules, such as the amount and particle size, changes, and the trajectory 5 of the slag also changes, and the way it enters the cooler changes. This also affects the cooling effect.

本発明はこのような造粒量や粒径等の変化が生
じないようにして、安定した連続操業により量
的、質的に優れた滓粒を造粒することができるよ
うにしたもので、溶滓鍋から流し込まれた溶滓が
流下する開孔を底面に備えた樋と該樋の開孔から
流下した溶滓が衝突して粒状化する当板を備えた
滓粒造粒装置において、溶滓鍋から樋内の開孔が
設置されていない側に流し込まれた溶滓が樋内の
開孔設置側へ流れるのを制御することにより樋内
の開孔設置側の溶滓レベルを制御する昇降自在な
仕切板と、該仕切板で仕切られた樋内の開孔設置
側の溶滓レベルを連続的に測定する溶滓レベル計
と、開孔から流下する溶滓流の溶滓温度若しくは
樋内の開孔上の溶滓温度を連続的に測定する温度
計と、前記溶滓レベル計からのレベル信号及び温
度計からの温度信号をもとに樋内の開孔設置側溶
滓レベルが溶滓温度に見合つた溶滓レベルになる
よう前記仕切板を昇降させる駆動装置を作動させ
る制御装置を設けたことを特徴とする滓粒造粒装
置における滓流制御装置を要旨とするものであ
る。
The present invention prevents such changes in granulation amount, particle size, etc., and makes it possible to granulate quantitatively and qualitatively superior slag granules through stable continuous operation. In a slag granulation device comprising a gutter with an opening in the bottom through which slag poured from a slag pot flows down, and a plate on which the slag flowing down from the opening of the gutter collides and becomes granulated, The level of slag on the side of the gutter with open holes is controlled by controlling the flow of the slag poured from the slag pot into the side of the gutter where no open holes are installed to the side of the gutter with open holes installed. A partition plate that can be raised and lowered, a slag level meter that continuously measures the slag level on the side where the opening is installed in the gutter partitioned by the partition plate, and a slag temperature of the slag flowing down from the opening. Alternatively, a thermometer that continuously measures the temperature of the slag above the opening in the gutter, and a temperature signal from the slag level meter and the temperature signal from the thermometer to measure the temperature of the slag on the side of the opening in the gutter. A slag flow control device in a slag granulation device, characterized in that the device is provided with a control device that operates a drive device that raises and lowers the partition plate so that the slag level is commensurate with the slag temperature. It is.

次に本発明の一実施例を第2図を参照して説明
すると、樋2内には仕切板7が設けられていて、
この仕切板7は駆動装置10によつて昇降され、
上下方向の位置が変えられるようになつている。
仕切板7で仕切られた樋2の一側(第2図におい
て左側)には溶滓鍋1から溶滓が流し込まれ、こ
の溶滓は仕切板7の下を通つて仕切板7の他側
(第2図において右側)に流れ込むものである。
Next, an embodiment of the present invention will be described with reference to FIG. 2. A partition plate 7 is provided in the gutter 2,
This partition plate 7 is raised and lowered by a drive device 10,
The vertical position can be changed.
Molten slag is poured from the slag pot 1 into one side of the gutter 2 partitioned by a partition plate 7 (on the left side in FIG. 2), and this slag passes under the partition plate 7 to the other side of the partition plate 7. (to the right in Figure 2).

仕切板7の他側における樋2の底面には開孔4
が穿設されており、また溶滓レベル計8が設けて
あつて、この側における溶滓レベルhを連続して
計測し、制御装置9に入力するようになつてい
る。
An opening 4 is provided in the bottom of the gutter 2 on the other side of the partition plate 7.
A slag level meter 8 is provided to continuously measure the slag level h on this side and input it to the control device 9.

樋2の開孔4より流下した溶滓流11は落下点
Aで当板3に衝突することになるが、この溶滓流
11の溶滓温度を輻射温度計6で連続して測定
し、その温度変化の信号を制御装置9に入力する
ようになつている。
The slag flow 11 flowing down from the opening 4 of the gutter 2 collides with the plate 3 at the falling point A, but the slag temperature of this slag flow 11 is continuously measured with a radiation thermometer 6, A signal representing the temperature change is input to the control device 9.

落下点Aに達した溶滓流11は当板3に衝突し
て当板3の表面を滑つて拡散直径S1まで連続した
状態で拡がる。拡散直径S1上で溶滓の厚みがbに
なると溶滓の表面張力が厚みbを薄くする力より
打ち勝つて溶滓がちぎれ、滓粒となつて溶滓軌跡
5を描きながら落下する。
The slag flow 11 that has reached the falling point A collides with the contact plate 3, slides on the surface of the contact plate 3, and spreads continuously up to the diffusion diameter S1 . When the thickness of the slag becomes b on the diffusion diameter S1 , the surface tension of the slag overcomes the force that reduces the thickness b, and the slag breaks off, becoming slag particles and falling while tracing a slag trajectory 5.

溶滓軌跡5を描きながら落下する滓粒の粒径を
d、溶滓流11の単位時間当りの落下流量をQ、
拡散直径S1における溶滓速度をυとすると、 d∝Q=πS1∝b となる。粒径dは溶滓が連続した状態でどこまで
拡がるかという拡散直径S1に左右されることにな
り、これに直接影響するのが溶滓の粘度であり、
溶滓の粘度は溶滓流11の温度の関数になる。従
つて滓流11の温度が低下して来れば落下点Aで
の滓流落下速度を大きくし、落下点Aにおける溶
滓初速υを大きくして拡散直径S1までの溶滓の
拡がりを確保する必要がある。
The particle size of the slag particles falling while drawing the slag trajectory 5 is d, the falling flow rate per unit time of the slag flow 11 is Q,
If the slag velocity at the diffusion diameter S 1 is υ, then d∝Q=πS 1 ∝b. The particle size d depends on the diffusion diameter S1 , which is how far the slag spreads in a continuous state, and this is directly influenced by the viscosity of the slag.
The slag viscosity is a function of the temperature of the slag stream 11. Therefore, when the temperature of the slag flow 11 decreases, the falling speed of the slag flow at the falling point A is increased, and the initial velocity of the slag υ 0 at the falling point A is increased to increase the spread of the slag to the diffusion diameter S 1 . It is necessary to secure it.

開孔4より落下点Aまでの距離をHとすると、 υ∝(H+h) であり、距離Hを一定とすると、溶滓レベルhを
増すことになる。
If the distance from the opening 4 to the falling point A is H, then υ 0 ∝(H+h), and if the distance H is constant, the slag level h will increase.

一方、開孔4の面積をS2とすると、 Q∝h・S2・K となる。ここでKは開孔4の形状と溶滓の粘度と
に影響される係数であるが、開口4の形状が一定
であるとすると、係数Kは溶滓の粘度すなわち溶
滓流11の温度の関数となる。したがつて溶滓流
温度が低下すれば、溶滓レベルhを高くする必要
がある。
On the other hand, if the area of the opening 4 is S 2 , then Q∝h・S 2・K. Here, K is a coefficient that is influenced by the shape of the opening 4 and the viscosity of the molten slag, but if the shape of the opening 4 is constant, the coefficient K is a coefficient of the viscosity of the slag, that is, the temperature of the slag flow 11. Becomes a function. Therefore, if the slag flow temperature decreases, it is necessary to increase the slag level h.

これを総合的にみると、開孔4、さらには落下
点Aにおける溶滓流11の温度が影響して粒径d
および落下流量Qすなわち造粒量が変化すること
になる。そこで本発明においては輻射温度計6等
によつて溶滓温度を連続的に測定し、この温度変
化の信号を制御装置9に入力し、駆動装置10を
作動させて仕切板7を昇降し、その時点の溶滓温
度に見合つた溶滓レベルhになるように制御す
る。駆動装置10の停止は溶滓レベル計8の信号
によつて行う。
If we look at this comprehensively, the temperature of the slag flow 11 at the opening 4 and furthermore at the falling point A influences the particle size d.
And the falling flow rate Q, that is, the amount of granulation changes. Therefore, in the present invention, the slag temperature is continuously measured using a radiation thermometer 6 or the like, a signal of this temperature change is inputted to the control device 9, and the drive device 10 is operated to move the partition plate 7 up and down. It is controlled so that the slag level h corresponds to the slag temperature at that time. The driving device 10 is stopped by a signal from the slag level meter 8.

第2図に示す装置においては、開孔4から流下
する溶滓流の温度を測定する場合について説明し
たが、輻射温度計6は直接開孔4上の溶滓温度を
測定することも可能である。さらに開孔4の面積
S2を変化可能にして溶滓の流出量、流出速度を制
御することもできる。
In the apparatus shown in FIG. 2, a case has been described in which the temperature of the slag flowing down from the aperture 4 is measured, but the radiation thermometer 6 can also directly measure the temperature of the slag above the aperture 4. be. Furthermore, the area of opening 4
It is also possible to control the outflow amount and speed of slag by making S 2 variable.

温度変化による流出量の変化が少ない場合に
は、速度を高めるために溶滓レベルhを大きくす
ると、流出量まで大きく変わることになる。その
時には開孔4の部分に制御棒を入れる等して開孔
4の面積S2を変化させることもできる。
If the change in outflow amount due to temperature change is small, increasing the slag level h to increase the speed will result in a large change in the outflow amount. At that time, the area S 2 of the opening 4 can be changed by inserting a control rod into the opening 4 or the like.

以上のように本発明は、溶滓の粘性係数となる
溶滓温度をほぼ連続的に測定すると共に樋の溶滓
レベルをほぼ連続的に測定し溶滓温度が変化した
場合にも溶滓レベルを制御して溶滓の流出量、速
度を制御することにより、造粒量を一定にして冷
却槽での熱負荷を一定とし、熱交換効率を高めて
安定した熱回収をすることができ、滓粒の粒径変
化を少なくして製品の質的向上をはかることがで
きる。
As described above, the present invention measures the slag temperature, which is the viscosity coefficient of the slag, almost continuously, and also almost continuously measures the slag level in the gutter, so that even when the slag temperature changes, the slag level remains constant. By controlling the outflow amount and speed of slag, the amount of granulation can be kept constant, the heat load in the cooling tank can be kept constant, the heat exchange efficiency can be increased, and heat can be recovered stably. It is possible to improve the quality of the product by reducing the change in particle size of the slag particles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来における造粒装置の一例の縦断面
図、第2図は本発明の装置の一実施例の縦断面図
である。 2……樋、5……溶滓軌跡、6……輻射温度
計、8……溶滓レベル計、11……溶滓流。
FIG. 1 is a longitudinal cross-sectional view of an example of a conventional granulation apparatus, and FIG. 2 is a longitudinal cross-sectional view of an embodiment of the apparatus of the present invention. 2...Gutter, 5...Slag trajectory, 6...Radiation thermometer, 8...Slag level meter, 11...Slag flow.

Claims (1)

【特許請求の範囲】[Claims] 1 溶滓鍋から流し込まれた溶滓が流下する開孔
を底面に備えた樋と該樋の開孔から流下した溶滓
が衝突して粒状化する当板を備えた滓粒造粒装置
において、溶滓鍋から樋内の開孔が設置されてい
ない側に流し込まれた溶滓が樋内の開孔設置側へ
流れるのを制御することにより樋内の開孔設置側
の溶滓レベルを制御する昇降自在な仕切板と、該
仕切板で仕切られた樋内の開孔設置側の溶滓レベ
ルを連続的に測定する溶滓レベル計と、開孔から
流下する溶滓流の溶滓温度若しくは樋内の開孔上
の溶滓温度を連続的に測定する温度計と、前記溶
滓レベル計からのレベル信号及び温度計からの温
度信号をもとに樋内の開孔設置側溶滓レベルが溶
滓温度に見合つた溶滓レベルになるよう前記仕切
板を昇降させる駆動装置を作動させる制御装置を
設けたことを特徴とする滓粒造粒装置における滓
流制御装置。
1. In a slag granulation device equipped with a gutter having an opening on the bottom surface through which the slag poured from the slag pot flows down, and a plate on which the slag flowing down from the opening of the gutter collides and becomes granulated. By controlling the flow of the slag poured into the side of the gutter from the slag pan to the side of the gutter where the open hole is installed, the level of the slag on the side of the gutter where the open hole is installed is controlled. A partition plate that can be raised and lowered to control, a slag level meter that continuously measures the slag level on the side where the opening is installed in the gutter partitioned by the partition plate, and a slag flow that flows down from the opening. A thermometer that continuously measures the temperature or the temperature of the molten slag above the opening in the gutter, and a thermometer that measures the temperature of the slag on the side where the opening in the gutter is installed based on the level signal from the slag level meter and the temperature signal from the thermometer. 1. A slag flow control device for a slag granulation device, comprising a control device that operates a drive device that moves the partition plate up and down so that the slag level corresponds to a slag temperature.
JP1256279A 1979-02-06 1979-02-06 Controlling method for sludge flow in granulation of sludge grain Granted JPS55104642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1256279A JPS55104642A (en) 1979-02-06 1979-02-06 Controlling method for sludge flow in granulation of sludge grain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1256279A JPS55104642A (en) 1979-02-06 1979-02-06 Controlling method for sludge flow in granulation of sludge grain

Publications (2)

Publication Number Publication Date
JPS55104642A JPS55104642A (en) 1980-08-11
JPS62861B2 true JPS62861B2 (en) 1987-01-09

Family

ID=11808779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1256279A Granted JPS55104642A (en) 1979-02-06 1979-02-06 Controlling method for sludge flow in granulation of sludge grain

Country Status (1)

Country Link
JP (1) JPS55104642A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59206035A (en) * 1983-05-10 1984-11-21 Mitsubishi Heavy Ind Ltd Air crushing apparatus of high-temperature molten slag

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53124193A (en) * 1977-04-05 1978-10-30 Nippon Steel Corp Production of granulated blast furnace slag

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53124193A (en) * 1977-04-05 1978-10-30 Nippon Steel Corp Production of granulated blast furnace slag

Also Published As

Publication number Publication date
JPS55104642A (en) 1980-08-11

Similar Documents

Publication Publication Date Title
KR100984597B1 (en) Storage medium storing automatic pouring control method and tilt movement control program for ladle
US4936375A (en) Continuous casting of ingots
RU2701975C2 (en) Nozzle and tundish arrangement for the granulation of molten material
AU613223B2 (en) Cold hearth refining
Thomas Fluid flow in the mold
US2772455A (en) Metal pouring apparatus for continuous casting
US3224051A (en) Method of introducing addition agent into a melt
US2571033A (en) Apparatus for pouring molten metal
JPS62861B2 (en)
US4306610A (en) Method of controlling continuous casting rate
US3467284A (en) Distributor for continuous casting machine
JP2003207281A (en) Operating method of continuous solidification device of slag
US4245758A (en) Method and apparatus for measuring molten metal stream flow
JPH0123227B2 (en)
JPH07112268A (en) Automatic molten metal pouring device
US4100960A (en) Method and apparatus for casting metals
JPH0715659Y2 (en) Tundish for small rod production
JPS62197257A (en) Pouring method for molten steel in continuous casting
USRE30979E (en) Method and apparatus for casting metals
JP2648707B2 (en) Method of scraping out slag from cast iron injection gutter
US3275244A (en) Apparatus for introducing addition agent into a melt
JPS6316840A (en) Control method for molten surface fluctuation in continuous casting
JPH0569110A (en) Automatic molten metal pouring method
JPS6310213Y2 (en)
JPH02137654A (en) Method for controlling alloy charging quantity in tundish