JPS6285853A - Enzyme electrode - Google Patents

Enzyme electrode

Info

Publication number
JPS6285853A
JPS6285853A JP60226551A JP22655185A JPS6285853A JP S6285853 A JPS6285853 A JP S6285853A JP 60226551 A JP60226551 A JP 60226551A JP 22655185 A JP22655185 A JP 22655185A JP S6285853 A JPS6285853 A JP S6285853A
Authority
JP
Japan
Prior art keywords
enzyme
electrode
membrane
immobilized
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60226551A
Other languages
Japanese (ja)
Other versions
JPH0518377B2 (en
Inventor
Jinkichi Miyai
宮井 迅吉
Taiichi Asano
浅野 泰一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
DKK Corp
Original Assignee
DKK Corp
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK Corp, Denki Kagaku Kogyo KK filed Critical DKK Corp
Priority to JP60226551A priority Critical patent/JPS6285853A/en
Publication of JPS6285853A publication Critical patent/JPS6285853A/en
Publication of JPH0518377B2 publication Critical patent/JPH0518377B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:To extend the life of enzyme activity by depositing a pulverized powder carrier immobilized with enzyme by a covalent bond method on a holding film having a fractionation mol.wt. at which protein molecules of the enzyme can pass the film as an immobilized enzyme film. CONSTITUTION:A glucose enzyme electrode 1 is constituted of a detecting electrode 3 of an enzyme electrode 2, a gas permeable membrane 4 disposed to the top end of the electrode 2, an internal liquid 5 and the immobilized enzyme film 6 formed by depositing fine powder-like glass 8 immobilized with glucose oxidase by the covalent bond method on the surface of a hydrophilic filter membrane 7 having about 1-10mum micropore size. The enzyme electrode 6 is formed to approximately the same shape as the shape of the top end face of the detecting electrode 3 and is disposed to the top end of the electrode 2 in the state in which the surface on the carrying side of the glass 8 thereof is in contact with the membrane 4 while the membrane faces the top end face of the detecting electrode 3. A PP net 9 is attached to the electrode 2 in covering the enzyme electrode 6. Since the functional group is introduced into the surface of the glass 8 and the enzyme is immobilized to the surface of the glass 8 of the electrode 1 in the above-mentioned manner, the life of the enzyme activity is extended.

Description

【発明の詳細な説明】 童朶上卯■貝公団 本発明は、固定化酵素膜を下地電極の検出端に装着し、
酵素の作用による物質変化を下地電極で検知するように
した酵素電極に関し、更に詳述すると、酵素活性の寿命
が長く、しかも酵素活性が低下した場合に容易に再生す
ることができる酵素電極に関する。
[Detailed Description of the Invention] The present invention is characterized by attaching an immobilized enzyme membrane to the detection end of a base electrode,
The present invention relates to an enzyme electrode that detects substance changes due to the action of an enzyme using a base electrode, and more specifically, to an enzyme electrode that has a long enzyme activity life and can be easily regenerated when the enzyme activity decreases.

Uの技術及び発呼か算火(イーよ、−髪とする問題2弘
酵素電極は、酵素を水不溶性膜状担体に固定化し、酵素
の繰り返し使用を可能とした固定化酵素膜と、下地電極
とを組み合わせたもので、臨床化学分析、食品分析等の
分野で実用化されているものである。
U's technology and call or calculation (Yee, - Hair) Problem 2: The enzyme electrode consists of an immobilized enzyme membrane that immobilizes enzymes on a water-insoluble membrane carrier, which enables the enzyme to be used repeatedly, and a substrate. It is a combination of electrodes and has been put into practical use in fields such as clinical chemical analysis and food analysis.

この場合、担体への酵素の固定化方法としては、酵素を
担体に物理的に封止する包括法や、物理吸着させる方法
よりも、担体表面に架橋用官能基を導入し、この官能基
と酵素蛋白の末端基とを反応させることによって固定化
する共有結合法の方が、酵素の脱落を防いで酵素の長期
安定性を高めるために好ましい。従って、酵素電極の固
定化酵素膜としては、従来より膜状担体に酵素を共有結
合法によって固定化したものが多用されれている。
In this case, the method of immobilizing the enzyme on the carrier is to introduce a cross-linking functional group onto the carrier surface, and to connect the A covalent bonding method in which the enzyme is immobilized by reacting with the terminal group of the enzyme protein is preferable because it prevents the enzyme from falling off and increases the long-term stability of the enzyme. Therefore, as an immobilized enzyme membrane for an enzyme electrode, a membrane-like carrier in which an enzyme is immobilized by a covalent bonding method has been widely used.

上述したように、酵素電極は酵素を繰り返し使用できる
ものであるが、それにも限界があり、実際には電極の長
期使用によって酵素活性は低下してしまう。この場合、
酵素活性の低下原因としては、酵素の高次構造の安定性
が次第に失なわれることによる酵素の失活の他、担体か
らの酵素の脱落、熱変化やpl+変化による酵素の変性
、活性阻害物質との接触、蛋白質の付着、微生物等によ
る酵素の分解などの多くのものが考えられる。
As mentioned above, enzyme electrodes allow the repeated use of enzymes, but there are limits to this, and in reality, enzyme activity decreases with long-term use of the electrodes. in this case,
Causes of decreased enzyme activity include inactivation of the enzyme due to gradual loss of stability of the higher-order structure of the enzyme, detachment of the enzyme from the carrier, denaturation of the enzyme due to heat changes and PL+ changes, and activity inhibitors. There are many possible causes, such as contact with other people, adhesion of proteins, and decomposition of enzymes by microorganisms.

また、このように酵素活性が低下した場合、酵素膜を使
い捨てにして新しいものと交換することが従来行なわれ
ているが、このような方法を採用した場合、酵素電極の
ランニングコストが高くつく上、交換用の酵素膜の保存
が面倒であり、しかも酵素膜を交換する際に酵素膜の下
地電極への装着状態が微妙に変り、雪掻特性が変化する
という問題が生じる。
In addition, when enzyme activity decreases in this way, conventional practice has been to discard the enzyme membrane and replace it with a new one, but if such a method is adopted, the running cost of the enzyme electrode is high and However, it is troublesome to store replacement enzyme membranes, and when the enzyme membrane is replaced, the state of attachment of the enzyme membrane to the underlying electrode changes slightly, causing a problem in that the snow removal characteristics change.

このため、酵素活性の寿命が可及的に長く、しかも酵素
活性が低下した時に酵素膜を交換することなく、酵素膜
を再生して再使用することのできる酵素電極が望まれる
が、従来酵素電極を再生することについての有効な提案
は何らなされていないのが実情であった。
For this reason, it is desired to have an enzyme electrode that has as long a lifespan as possible for enzyme activity and that can regenerate and reuse the enzyme membrane without having to replace it when enzyme activity decreases. The reality is that no effective proposals have been made for regenerating electrodes.

本発明は、上記事情に鑑みなされたもので、酵素活性が
長時間安定である上、酵素活性が低下した場合に劣化し
た酵素膜を容易に再生することができる酵素電極を提供
することを目的とする。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide an enzyme electrode in which enzyme activity is stable for a long period of time, and in which a degraded enzyme membrane can be easily regenerated when enzyme activity decreases. shall be.

朋可脱禾1すUヌaひ知■月λ叉仏作四即ち、本発明ら
は、上記目的を達成するため共有結合法による酵素膜を
用いた電極を再生することにつき種々検討を行ない、共
有結合法による酵素膜が下記(a)〜(C)の条件を満
たせば、この酵素膜が劣化した場合に電極の検出端を酵
素液に浸漬するだけで、担体表面の架橋用官能基と酵素
の末端基とを反応させて酵素を担体に固定化することが
でき、酵素膜を再生できることに想到した。
Namely, in order to achieve the above object, the present inventors have conducted various studies on regenerating electrodes using enzyme membranes using covalent bonding methods. If the enzyme membrane produced by the covalent bonding method satisfies the following conditions (a) to (C), if the enzyme membrane deteriorates, simply immersing the sensing end of the electrode in the enzyme solution will remove the crosslinking functional groups on the carrier surface. They came up with the idea that the enzyme can be immobilized on a carrier by reacting with the terminal group of the enzyme, and that the enzyme membrane can be regenerated.

(a)担体表面の架橋用官能基そのものが脱離したり、
陰画されるようなことがあれば、再生は不可能となる。
(a) The crosslinking functional group itself on the surface of the carrier is detached,
If a negative image occurs, reproduction will be impossible.

従って、担体に導入される官能基は通常の酵素電極の使
用条件で充分に安定していること。
Therefore, the functional group introduced into the carrier must be sufficiently stable under the conditions of normal use of enzyme electrodes.

(b)担体上の架橋用官能基と酵素の末端基との反応は
特別の条件を必要とせず、水中或いは緩衝液中において
室温に近い温和な条件で進行すること。
(b) The reaction between the crosslinking functional group on the carrier and the end group of the enzyme does not require special conditions and proceeds under mild conditions near room temperature in water or a buffer solution.

(c)電極を酵素液に浸漬した時、酵素蛋白分子が担体
の架橋用官能基部位に容易に到達すること。
(c) When the electrode is immersed in the enzyme solution, the enzyme protein molecules easily reach the crosslinking functional group site of the carrier.

しかしながら、膜状担体に共有結合法によって酵素を固
定化した通常の酵素膜は上記条件を充分満足しないため
、更に検討を行なった結果、共有結合法によって酵素を
固定化したガラス等の微粉末担体を酵素の蛋白分子が通
過可能な分画分子量を存する保持膜に担持させることに
より、上記各条件を満たし、しかも酵素が長時間安定な
酵素膜が得られること、従ってこの酵素膜を用いること
により、酵素寿命が長く、しかも検出端を酵素液に浸漬
するだけで簡単に再生し得る電極が得られることを知見
し、本発明をなすに至ったものである。
However, since ordinary enzyme membranes in which enzymes are immobilized on membrane-like carriers by covalent bonding do not fully satisfy the above conditions, further studies have revealed that micropowder carriers such as glass, in which enzymes are immobilized by covalent bonding, have been developed. By supporting the enzyme on a retention membrane having a molecular weight cut-off through which the protein molecules of the enzyme can pass, it is possible to obtain an enzyme membrane that satisfies each of the above conditions and in which the enzyme is stable for a long time. The inventors discovered that it is possible to obtain an electrode that has a long enzyme life and can be easily regenerated by simply immersing the detection end in an enzyme solution, leading to the present invention.

従って、本発明は、固定化酵素膜を下地電極の検出端に
装着した酵素電極において、上記固定化酵素膜として、
共有結合法によって酵素を固定化した微粉末担体を該酵
素の蛋白分子が通過可能な分画分子量を有する保持膜に
担持させてなるものを用いたことを特徴とする酵素電極
を提供することを目的とする。
Therefore, the present invention provides an enzyme electrode in which an immobilized enzyme membrane is attached to the detection end of a base electrode, as the immobilized enzyme membrane.
It is an object of the present invention to provide an enzyme electrode characterized in that it uses a fine powder carrier on which an enzyme is immobilized by a covalent bonding method and supported on a holding membrane having a molecular weight cut-off through which protein molecules of the enzyme can pass. purpose.

本発明酵素電極においては、微粉末担体表面に官能基を
導入し、この担体表面に酵素を固定化しているので、有
効表面積が大きく、酵素゛活性の寿命が非常に長い。ま
た官能基が通常の電極使用条件で安定あると共に、保持
膜を酵素の蛋白分子が通過し得るため、酵素活性が低下
した場合、電極の検出端を酵素液に浸漬することにより
、酵素蛋白分子が保持膜を通過して担体の位置に到達し
、この担体に固定化され、酵素膜が容易に再生されるも
のである。
In the enzyme electrode of the present invention, a functional group is introduced onto the surface of the fine powder carrier and the enzyme is immobilized on the surface of the carrier, so the effective surface area is large and the life of the enzyme activity is very long. In addition, the functional groups are stable under normal electrode usage conditions, and the enzyme protein molecules can pass through the retention membrane, so if the enzyme activity decreases, the enzyme protein molecules can be removed by immersing the detection end of the electrode in the enzyme solution. passes through the retention membrane and reaches the position of the carrier, where it is immobilized on the carrier and the enzyme membrane is easily regenerated.

以下、本発明につき更に詳しく説明する。The present invention will be explained in more detail below.

本発明の酵素電極は、上述したように、共有結合法によ
って酵素を固定化した微粉末担体を該酵素の蛋白分子が
通過可能な分画分子量を有する保持膜に担持させた酵素
膜を用いたものであり、この場合微粉末担体の材質、性
状は特に制限されないが、微粉末ガラスを用いることが
特に好ましく、例えばミクロ孔径が450人程度の多孔
質ガラスを粒径3〜4μmの微粉末に調製したもの等を
好適に使用し得る。なお、本発明において共有結合法と
は、担体表面に酵素蛋白の末端基と温和な条件で反応す
る架橋用官能基を導入し、この担体表面の官能基と酵素
蛋白の末端基との反応によって酵素を担体に固定化する
方法を指し、例えば担体表面にアルキルアルデヒド基を
導入し、シッフ塩基反応により固定化する方法や、カル
ボキシル基等を導入し、ペプチド結合によって固定化す
る方法などが挙げられる。
As described above, the enzyme electrode of the present invention uses an enzyme membrane in which a fine powder carrier on which an enzyme is immobilized by a covalent bonding method is supported on a retention membrane having a molecular weight cut-off through which protein molecules of the enzyme can pass. In this case, the material and properties of the fine powder carrier are not particularly limited, but it is particularly preferable to use fine powder glass. For example, porous glass with a micropore size of about 450 micrometers is made into fine powder with a particle size of 3 to 4 μm. Those prepared can be suitably used. In the present invention, the covalent bonding method refers to the introduction of a crosslinking functional group that reacts with the end group of the enzyme protein on the surface of the carrier under mild conditions, and the reaction between the functional group on the carrier surface and the end group of the enzyme protein. Refers to a method of immobilizing an enzyme on a carrier, such as a method of introducing an alkyl aldehyde group to the carrier surface and immobilizing it by Schiff base reaction, a method of introducing a carboxyl group, etc. and immobilizing it by peptide bonding, etc. .

また、上記保持膜の材質、性状も特に限定されない。本
発明において、保持膜は微粉末担体を膜状に展開する目
的を持つと共に、試料液と直接接触する外膜としても機
能するものであり、従って保持膜としては測定時に基質
が通過し得ると共に、再生時に酵素蛋白分子が通過し得
るものであればいずれのものでも使用し得る。例えば酵
素としてグルコースオキシターゼを用いる場合、保持膜
としてはアセチルセルロース、再生セルロース、混合セ
ルロース等からなるミクロ孔径が1〜10μm程度の親
水性?P iU II々を好適に用いることができる。
Furthermore, the material and properties of the holding film are not particularly limited. In the present invention, the retention membrane has the purpose of spreading the fine powder carrier into a membrane shape, and also functions as an outer membrane that comes into direct contact with the sample solution. Any material through which enzyme protein molecules can pass during regeneration can be used. For example, when glucose oxidase is used as the enzyme, the retention membrane is made of acetyl cellulose, regenerated cellulose, mixed cellulose, etc. and has a hydrophilic membrane with a micropore diameter of about 1 to 10 μm. P iU II can be suitably used.

なお、保持膜に微粉末担体を保持させる方法に制限はな
い。また、微粉末組体は保持膜表面に均一に膜状に分散
させることが好ましい。更に、保持膜のミクロ孔径を適
宜選択することにより、電極感度を調整することができ
る。
Note that there is no restriction on the method for holding the fine powder carrier on the holding film. Further, it is preferable that the fine powder assembly is uniformly dispersed in the form of a film on the surface of the holding film. Furthermore, electrode sensitivity can be adjusted by appropriately selecting the micropore diameter of the holding membrane.

次に、実施例により本発明を具体的に示す。Next, the present invention will be specifically illustrated by examples.

」M 第1図は本発明の一実施例に係るグルコース酵素電極1
を示すもので、図中2は酸素電極(下地電極)、3は酸
素電極2の検知極、4は酸素電極2の先端部に配設され
たガス透過膜、5は内部液である。また、6は第2図に
示すように、ミクロ孔径が1〜10μm程度の親水性が
過膜(保持膜)7表面に共有結合法によってグルコース
オキシターゼを固定化した微粉末多孔性ガラス(微粉末
担体)8を担持させてなる固定化酵素膜である。この酵
素膜6は、検知極3の先端面とほぼ同形状に形成されて
おり、検知極3先端面に対狗した状態で、かつその担体
8担持側面がガス透過膜4に当接した状態で酸素電極2
先端部に配置されていると共に、この酵素膜6を覆って
ポリプロピレン製ネット9が酸素電極2に取り付けられ
、これにより酵素膜6がネット9によって酸素電極2先
端部に挿着、固定されている。
"M FIG. 1 shows a glucose enzyme electrode 1 according to an embodiment of the present invention.
In the figure, 2 is an oxygen electrode (base electrode), 3 is a detection electrode of the oxygen electrode 2, 4 is a gas permeable membrane disposed at the tip of the oxygen electrode 2, and 5 is an internal liquid. In addition, as shown in Fig. 2, 6 is a micropowder porous glass (fine powder) with glucose oxidase immobilized on the surface of the hydrophilic membrane (retention membrane) 7 with a micropore diameter of about 1 to 10 μm by a covalent bonding method. This is an immobilized enzyme membrane on which carrier) 8 is supported. This enzyme membrane 6 is formed in almost the same shape as the tip surface of the sensing electrode 3, and is in a state where it is opposed to the tip surface of the sensing electrode 3, and with its support 8 supporting side in contact with the gas permeable membrane 4. Oxygen electrode 2
A polypropylene net 9 is attached to the oxygen electrode 2 to cover the enzyme membrane 6, and the enzyme membrane 6 is inserted and fixed to the oxygen electrode 2 tip by the net 9. .

なお、上記酵素膜6は、具体的には下記方法で製造した
Note that the enzyme membrane 6 was specifically manufactured by the following method.

即ち、まずミクロ孔径が約450人の多孔性ガラスをボ
ールミルで粉砕した後、粒径3〜4μmオーダーのもの
を分級して採取し、これを担体8とする。次いで、上記
微粉末ガラス8を純水中に懸濁させると共に、この)懸
濁液をアセチルセルロース、再生セルロース、混合セル
ロース等からなるミクロ孔径1〜10μm程度の親水性
′U5過膜7に吸引濾過させ、膜7表面部の微細孔に粉
末ガラス8を充填することにより、膜7表面に粉末ガラ
ス7を膜状に均一に分散し、担持させる。次に、ガラス
8を担持させた保持膜7をシランカップリング剤である
γ−アミノプロピルトリエトキシシランで処理してこれ
にアルキルアミノ基を導入した後、更にグルタルアルデ
ヒドで処理してアルキルアルデヒド基を導入する。更に
、保持膜7を常/詰においてグルコースオキシターゼを
)容かしたpH7,0のリン酸緩衝液に浸漬することに
より、架橋用官能基と酵素末端のアミノ基とがシッフ塩
基生成反応を行ない、これによって酵素が固定化され、
酵素膜6が得られるものである。なお、この場合微粉末
ガラス8に上記と同様の方法で予め酵素を固定化した後
、このガラス8を同様の方法でl濾過膜7に担持させる
ようにしても差支えない。
That is, first, a porous glass having a micropore size of about 450 is ground in a ball mill, and then particles having a particle size on the order of 3 to 4 μm are classified and collected, and this is used as the carrier 8. Next, the fine powder glass 8 is suspended in pure water, and this suspension is sucked into a hydrophilic membrane 7 made of acetyl cellulose, regenerated cellulose, mixed cellulose, etc. with a micropore size of about 1 to 10 μm. By filtering and filling the fine pores on the surface of the membrane 7 with powdered glass 8, the powdered glass 7 is uniformly dispersed and supported on the surface of the membrane 7 in the form of a film. Next, the holding film 7 supporting the glass 8 is treated with γ-aminopropyltriethoxysilane, which is a silane coupling agent, to introduce an alkylamino group therein, and then further treated with glutaraldehyde to form an alkyl aldehyde group. will be introduced. Furthermore, by immersing the retaining membrane 7 in a phosphate buffer solution containing glucose oxidase at a pH of 7.0, the crosslinking functional group and the amino group at the end of the enzyme undergo a Schiff base generation reaction. This immobilizes the enzyme,
An enzyme membrane 6 is obtained. In this case, the enzyme may be immobilized on the finely powdered glass 8 in advance in the same manner as described above, and then this glass 8 may be supported on the filtration membrane 7 in the same manner.

上記実施例の酵素電極1においては、ガラス粉末8の表
面に官能基を導入し、このガラス粉末8表面に酵素を固
定化しているので、酵素活性の寿命が非常に長い。また
、官能基が酸、アルカリ、100℃程度の高温に対して
安定で、従って通常の使用条件では極めて安定であると
共に、保持膜7をグルコースオキシターゼ酵素蛋白分子
が通過し得るため、酵素膜6の酵素活性が低下した場合
、酵素電極1の先端部をグルコースオキシターゼ酵素液
に常温で浸漬することにより、酵素蛋白分子が保持膜7
を通過して保持膜7上面のガラス微粉末8の位置に到達
し、このガラス粉末8に固定化されて酵素膜が容易に再
生される。しかも、酵素膜6を検知極3の先端面とほぼ
同形状に形成し、検知極3の先端面に対向して配設した
ので、極めて良好に再生が行なわれるものである。
In the enzyme electrode 1 of the above embodiment, a functional group is introduced onto the surface of the glass powder 8 and the enzyme is immobilized on the surface of the glass powder 8, so that the life of the enzyme activity is extremely long. In addition, the functional group is stable against acids, alkalis, and high temperatures of about 100° C., and is therefore extremely stable under normal usage conditions. In addition, since glucose oxidase enzyme protein molecules can pass through the retention membrane 7, the enzyme membrane 6 If the enzyme activity of the enzyme electrode 1 decreases, by immersing the tip of the enzyme electrode 1 in a glucose oxidase enzyme solution at room temperature, the enzyme protein molecules can be transferred to the retention membrane 7.
The enzyme passes through and reaches the position of the fine glass powder 8 on the upper surface of the holding membrane 7, where it is immobilized on the glass powder 8 and the enzyme membrane is easily regenerated. Moreover, since the enzyme membrane 6 is formed in substantially the same shape as the tip surface of the sensing electrode 3 and is disposed opposite to the tip surface of the sensing electrode 3, regeneration can be carried out extremely well.

なお、上記実施例においては保持膜7としてミクロ孔径
1〜10μm程度の濾過膜を用いたが、これは再生する
際にグルコースオキシターゼ酵素蛋白分子の微粉末担体
8への到達を可能ならしめるためである。しかし、通常
測定時は、この保持膜7の機能は基質であるグルコース
を通過させることにあるので、それ以外の蛋白等の巨大
分子は通過しない方が酵素膜6を保護する上で好ましい
In the above example, a filtration membrane with a micropore diameter of about 1 to 10 μm was used as the retention membrane 7, but this was to enable the glucose oxidase enzyme protein molecules to reach the fine powder carrier 8 during regeneration. be. However, during normal measurements, the function of this retention membrane 7 is to allow glucose, which is a substrate, to pass through it, so it is preferable in order to protect the enzyme membrane 6 that other macromolecules such as proteins do not pass therethrough.

そこで、この酵素膜6の外部にミクロ孔径が0、O1μ
m程度のガード膜を通常取り付けておいて、電極1の再
生操作を行なう時だけこのガード膜を取り外すようにす
ることも可能である。
Therefore, the outside of this enzyme membrane 6 has micropore diameters of 0 and 01μ.
It is also possible to normally attach a guard film of about 1.0 m and to remove this guard film only when regenerating the electrode 1.

次に、上記酵素電極1の直線応答性、再生可能性、活性
寿命をそれぞれ調べた。
Next, the linear response, reproducibility, and active life of the enzyme electrode 1 were examined.

(1)直線応答性 ミクロ孔径が0.015μm及び12.0μmの2種類
のが過膜7を用いて電極1をそれぞれ作成し、直線応答
性を調べた。結果を第3図(ミクロ孔径0.015μm
の場合)及び第4図(ミクロ孔径″i2.0μmの場合
)に示す。
(1) Linear response Electrodes 1 were prepared using two types of membranes 7 with micropore diameters of 0.015 μm and 12.0 μm, and the linear response was examined. The results are shown in Figure 3 (micropore diameter 0.015 μm).
) and FIG. 4 (in the case of micropore diameter ``i'' of 2.0 μm).

(2)再生可能性 電極1を0.IN)II水溶液、0. I N NaO
H水溶液及び約90℃の水にそれぞれ1時間浸漬して酵
素膜6をそれぞれ劣化させる。次に、劣化して100p
pm 、200ppmのグルコース標準液に対して殆ど
出力を示さなくなった電極1の先端部を0.01モルの
りん酸系緩衝液(pH7,0) 50 m7!中にグル
コースオキシクーゼ(140ユニツト/■)を10mg
溶かした溶液中に常温で浸漬し、溶液を1時間攪拌して
再生した後、電極を純水でよく洗浄し、再び100pp
m 、 200ppmのグルコース標準液に浸漬して出
力を調べた。
(2) Renewable electrode 1 is 0. IN) II aqueous solution, 0. I N NaO
The enzyme membrane 6 is degraded by immersing it in an H aqueous solution and water at about 90° C. for 1 hour, respectively. Next, it deteriorates to 100p
The tip of electrode 1, which showed almost no output in response to the 200 ppm glucose standard solution, was soaked in 0.01 molar phosphate buffer (pH 7.0) 50 m7! Contains 10mg of glucose oxygen (140 units/■)
After immersing the electrode in the dissolved solution at room temperature and stirring the solution for 1 hour to regenerate it, the electrode was thoroughly washed with pure water, and then 100 pp
m, the output was examined by immersing it in a 200 ppm glucose standard solution.

結果を第5図(II(l溶液に浸漬した場合)、第6図
(N a OIIl溶液浸漬した場合)及び第7図(熱
水に浸漬した場合)に示す。図中aは劣化前、bは劣化
後、Cは再生後の出力を表わすが、再生後の出力は劣化
前の出力とほぼ同じレベルであり、電極1が良好に再生
されていることが認められる。
The results are shown in Figure 5 (when immersed in II solution), Figure 6 (when immersed in NaOII solution), and Figure 7 (when immersed in hot water). b represents the output after deterioration, and C represents the output after regeneration. The output after regeneration is approximately the same level as the output before deterioration, and it is recognized that the electrode 1 has been successfully regenerated.

なお、再生した電極1の出力の経時安定性を調べたとこ
ろ1ケ月以上安定であることが確認され、上記再生操作
が実用的に有効であることが確認された。
In addition, when the stability over time of the output of the regenerated electrode 1 was examined, it was confirmed that it was stable for more than one month, and it was confirmed that the above regeneration operation is practically effective.

(3)活性寿命 上記電極1を常温において常時、約300ppm濃度の
グルコース溶液中に浸漬して保持し、随時100ppm
 、  200ppmのグルコース標準液を用いてその
出力を調べたところ、第8図に示すように1年に亘って
酵素活性は殆ど低下せず、本発明酵素膜の活性寿命が極
めて長いことが認められた。
(3) Active life The above electrode 1 is constantly immersed and maintained in a glucose solution with a concentration of about 300 ppm at room temperature.
When the output was examined using a 200 ppm glucose standard solution, the enzyme activity hardly decreased over a year as shown in Figure 8, indicating that the enzyme membrane of the present invention had an extremely long active life. Ta.

発明の詳細 な説明したように、本発明の酵素電極は、酵素活性の寿
命が長く、しかも酵素活性が低下した場合に容易に再生
することができるものである。
DETAILED DESCRIPTION OF THE INVENTION As described in detail, the enzyme electrode of the present invention has a long lifetime of enzyme activity and can be easily regenerated when the enzyme activity decreases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る酵素電極を示す部分断
面図、第2図は同側の酵素膜を示す断面図、第3図及び
第4図はそれぞれ本発明電極の直線応答性を示すグラフ
、第5図、第6図及び第7図はそれぞれ本発明電極を再
生処理した結果を示すグラフ、第8図は本発明電極の出
力の経時変化を示すグラフである。 ■・・・酵素電極、2・・・酸素電橋(下地電極)、6
・・・固定化酵素膜、7・・・保持膜、8微粉末世体。
FIG. 1 is a partial cross-sectional view showing an enzyme electrode according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing the enzyme membrane on the same side, and FIGS. 3 and 4 respectively show the linear response of the electrode of the present invention. FIG. 5, FIG. 6, and FIG. 7 are graphs showing the results of regenerating the electrode of the present invention, and FIG. 8 is a graph showing the change over time in the output of the electrode of the present invention. ■...Enzyme electrode, 2...Oxygen bridge (base electrode), 6
...immobilized enzyme membrane, 7.retention membrane, 8. fine powder body.

Claims (1)

【特許請求の範囲】 1、固定化酵素膜を下地電極の検出端に装着した酵素電
極において、上記固定化酵素膜として、共有結合法によ
って酵素を固定化した微粉末担体を該酵素の蛋白分子が
通過可能な分画分子量を有する保持膜に担持させてなる
ものを用いたことを特徴とする酵素電極。 2、微粉末担体が微粉末多孔性ガラスである特許請求の
範囲第1項記載の酵素電極。
[Claims] 1. In an enzyme electrode in which an immobilized enzyme membrane is attached to the detection end of a base electrode, a fine powder carrier on which an enzyme is immobilized by a covalent bonding method is used as the immobilized enzyme membrane to carry protein molecules of the enzyme. An enzyme electrode characterized by using an enzyme electrode supported on a retention membrane having a molecular weight cut-off through which the enzyme can pass. 2. The enzyme electrode according to claim 1, wherein the fine powder carrier is fine powder porous glass.
JP60226551A 1985-10-09 1985-10-09 Enzyme electrode Granted JPS6285853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60226551A JPS6285853A (en) 1985-10-09 1985-10-09 Enzyme electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60226551A JPS6285853A (en) 1985-10-09 1985-10-09 Enzyme electrode

Publications (2)

Publication Number Publication Date
JPS6285853A true JPS6285853A (en) 1987-04-20
JPH0518377B2 JPH0518377B2 (en) 1993-03-11

Family

ID=16846925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60226551A Granted JPS6285853A (en) 1985-10-09 1985-10-09 Enzyme electrode

Country Status (1)

Country Link
JP (1) JPS6285853A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0368855A (en) * 1989-08-09 1991-03-25 Nikkiso Co Ltd Enzyme sensor
JPH03158750A (en) * 1989-11-15 1991-07-08 Nikkiso Co Ltd Enzyme sensor
JPH0682321A (en) * 1992-05-19 1994-03-22 Motoyuki Tomita Pressure gage
US5328847A (en) * 1990-02-20 1994-07-12 Case George D Thin membrane sensor with biochemical switch

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0368855A (en) * 1989-08-09 1991-03-25 Nikkiso Co Ltd Enzyme sensor
JPH03158750A (en) * 1989-11-15 1991-07-08 Nikkiso Co Ltd Enzyme sensor
US5328847A (en) * 1990-02-20 1994-07-12 Case George D Thin membrane sensor with biochemical switch
JPH0682321A (en) * 1992-05-19 1994-03-22 Motoyuki Tomita Pressure gage

Also Published As

Publication number Publication date
JPH0518377B2 (en) 1993-03-11

Similar Documents

Publication Publication Date Title
Kuriyama et al. Plant tissue-based bioselective membrane electrode for glutamate
Broun [20] Chemically aggregated enzymes
HU177369B (en) Industrial molecule-selective sensing device and method for producing same
JPS6129667B2 (en)
Devi et al. Amperometric determination of xanthine in tea, coffee, and fish meat with graphite rod bound xanthine oxidase
JPS5846317B2 (en) I'm going to have a good time.
JPH0235933B2 (en)
JPS6285853A (en) Enzyme electrode
Higson et al. Diamond like carbon coated films for enzyme electrodes; characterization of biocompatibility and substrate diffusion limiting properties
US4268419A (en) Support matrices for immobilized enzymes
JPS60173452A (en) Formation of immobilized enzyme film for enzyme electrode
JPS5835679B2 (en) Kosohannouno Jitsushihouhou
JPS6285854A (en) Method for regenerating enzyme electrode
US5190872A (en) Immobilized alcohol utidase for use in an alcohol measuring apparatus
SU1034618A3 (en) Electrochemical transducer for determining concentration of substances in solutions
JPH08336399A (en) Detection of arginine and arginine sensor
JPS59164953A (en) Immobilized enzyme film and manufacture thereof
JP3016529B2 (en) Microorganism immobilization method, microorganism immobilization membrane, and method and apparatus for measuring BOD or sulfurous acid
JPS5843797A (en) Enzyme electrode
JPS58224689A (en) Immobilized enzyme
JP2604857B2 (en) Enzyme electrode
JPH0266440A (en) Enzyme electrode and method of measuring concentration of alcohol
JPS6039545A (en) Enzyme electrode
JPH0614020B2 (en) Enzyme electrode activation method
JP2656108B2 (en) Immobilized enzyme and method for producing the same