JPS6285835A - Breakage detecting method for anticorrosive layer or parallel wire cable for mooring ocean floating structure - Google Patents

Breakage detecting method for anticorrosive layer or parallel wire cable for mooring ocean floating structure

Info

Publication number
JPS6285835A
JPS6285835A JP22604685A JP22604685A JPS6285835A JP S6285835 A JPS6285835 A JP S6285835A JP 22604685 A JP22604685 A JP 22604685A JP 22604685 A JP22604685 A JP 22604685A JP S6285835 A JPS6285835 A JP S6285835A
Authority
JP
Japan
Prior art keywords
cable
layer
resistance
damage
mooring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22604685A
Other languages
Japanese (ja)
Other versions
JPH0213254B2 (en
Inventor
Tsugio Ishida
石田 次雄
Hideo Takato
高藤 英生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP22604685A priority Critical patent/JPS6285835A/en
Publication of JPS6285835A publication Critical patent/JPS6285835A/en
Publication of JPH0213254B2 publication Critical patent/JPH0213254B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

PURPOSE:To detect the size, position, etc., of a breakage in an anticorrosive layer by measuring variation in the resistance value between a cable element wire group and a resistance detection layer. CONSTITUTION:An upper socket 5 is supported and fixed on a socket support base 6 provided to an ocean structure and a lower socket 5 is supported and fixed on a socket support base 6' installed on the sea bottom to moor the ocean floating structure. If anticorrosive layers 2 and 4 are broken for some reason at some point and sea water enters the cable element wire groups 1 to damage the group 1, the resistance value between the cable element wire group 1 and resistance detection layer 3 varies. For the purpose, the resistance value of a resistance measurement part 10 is measured to detect the abnormality of the cable element wire group 1. Consequently, the breakage state of the anticorrosive layers 2 and 4 is detected accurately to secure the safety of the ocean floating structure.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、海洋浮遊構造物係留用平行線ケーブルの防食
層破損検知方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for detecting damage to a corrosion protection layer of a parallel cable for mooring a marine floating structure.

(従来の技術) 海底油田の開発等に用いられる海洋浮遊構造物の係留索
は、 20〜30年にわたる長期間の耐久性が要求され
る。
(Prior Art) Mooring lines for offshore floating structures used for the development of offshore oil fields are required to have long-term durability of 20 to 30 years.

一方吊橋等で使用されている平行線ケーブルは高い破断
強度、疲労強度と大きい縦弾性係数をもつため、引張構
造部材として最も優れた性能を有している。そこでこの
平行線ケーブルを°海洋構造物の係留索として使用する
ことが考えられるが。
On the other hand, parallel wire cables used in suspension bridges have high breaking strength, fatigue strength, and large modulus of longitudinal elasticity, so they have the best performance as tensile structural members. Therefore, it is possible to use this parallel cable as a mooring cable for offshore structures.

この場合には上記の優れた性能を長期間持続させるため
に平行線ケーブルの外層をプラスチック等で被覆し、海
水が平行線ケーブルに接触しないようにする必要がある
。そのためプレ防食平行線ケーブルの使用が不可欠であ
る。
In this case, in order to maintain the above-mentioned excellent performance for a long period of time, it is necessary to cover the outer layer of the parallel cable with plastic or the like to prevent seawater from coming into contact with the parallel cable. Therefore, it is essential to use pre-corrosion-proof parallel cables.

ところで、このプレ防食平行線ケーブルを係留索として
使用する場合、その性能が長期間にわたって保持されて
いるか否かをチェックする必要があり、その際のチェッ
クのポイントは防食層の破損の有無である。その理由は
防食層が破損すると海水が破損部から侵入して平行線ケ
ーブルに接触し、その結果腐食を生じ断線に至る事故が
発生する倶があるからである。
By the way, when using this pre-corrosion-protected parallel cable as a mooring cable, it is necessary to check whether its performance is maintained over a long period of time, and the key point to check is whether or not the corrosion-protection layer is damaged. . The reason for this is that if the anti-corrosion layer is damaged, seawater may enter through the damaged portion and come into contact with the parallel cable, resulting in corrosion and an accident that may lead to wire breakage.

従って、ケーブルの全使用期間にわたって、防食層破損
の有無のモニターを行い、一旦、破損を検知した場合は
、ケーブルをプラットホーム上に引上げ、破損部分の補
修あるいはケーブル全体の交換を行う必要がある。
Therefore, it is necessary to monitor the presence or absence of damage to the corrosion protection layer over the entire life of the cable, and once damage is detected, it is necessary to pull the cable onto the platform and repair the damaged part or replace the entire cable.

その際、防食層破損の検知方法として重要なことは、破
損の有無のみが検知できるだけでなく、その大きさ、位
置が検知できることである。何故ならば、破損の大きさ
を知ることによって、ケーブルの補修、交換の緊急性が
判断できるためであり、また破損の位置を知ることによ
って補修に必要なケーブル引上げ長さがわかるためであ
る。特に、破損部分が微少な場合は、ケーブルの引上げ
時に目視で破損部を探すことは困難であり、且つプラッ
トホーム上の厳しい環境条件を考えると、作業性の面か
らも破損部の大きさ、位置を知ることが検査方法として
要求される。
In this case, what is important as a method for detecting damage to the anticorrosion layer is that it can detect not only the presence or absence of damage, but also its size and location. This is because by knowing the size of the damage, it is possible to determine the urgency of repairing or replacing the cable, and by knowing the location of the damage, it is possible to determine the length of the cable required for repair. In particular, if the damaged part is minute, it is difficult to visually detect the damaged part when pulling up the cable, and considering the harsh environmental conditions on the platform, the size and location of the damaged part must be determined from the viewpoint of workability. It is required to know this as an inspection method.

防食層破損検知方法として、例えば、米国特許第4,2
85,615号明細書に示されるように、防食層の内側
に不活性ガスを充填すると共にこれに加圧しておき、そ
の不活性ガスの圧力低下をモニターすることによって防
食層の破損を検知することが提案されているが、この方
法の場合は、検査に常時不活性ガス加圧するという煩雑
な手段を必要とし、かつ上部端末部での閉塞処理方法も
困難であると共に、防食層破損の大きさ、位置を知るこ
とは困難である。
As a corrosion protection layer damage detection method, for example, U.S. Patent Nos. 4 and 2
As shown in the specification of No. 85,615, damage to the corrosion protection layer is detected by filling the inside of the corrosion protection layer with an inert gas and pressurizing it, and monitoring the pressure drop of the inert gas. However, this method requires a complicated method of constantly pressurizing inert gas for inspection, and it is also difficult to treat the blockage at the upper end, and the damage to the anticorrosion layer may be large. It is difficult to know the location.

また、特開昭59−176180号公報には、防食層内
に設けた導電性の防護プレートとケーブル中心に配置さ
れた素線群との間の電気抵抗を測定することによって防
食層の破損を検知する方法が示されており、破損の有無
、大きさく具体的には海水侵入亀裂部の断面積)を検知
することはできるが、破損の位置については検知不可能
である。さらに特開昭59−176181号公報には、
防食層内に一対の抵抗検知層を同心円上に設け、且つそ
の抵抗検知層をケーブルの長手方向およびまたは半径方
向に複数のユニットに分割し、ユニット毎の抵抗検知層
間の電気抵抗を測定することによって、防食層の破損位
置を検知する方法が提案されている。しかし、破損位置
の検知精度を上げるためには、該検知層の分割数を精度
に比例して増加しなければならず、ケーブル製作の技術
面やコストの面で問題が多い。このため安価で技術的に
も簡単で、精度の良い破損検知方法が望まれていた。
Furthermore, in Japanese Patent Application Laid-open No. 59-176180, damage to the anti-corrosion layer is detected by measuring the electrical resistance between a conductive protective plate provided within the anti-corrosion layer and a group of wires arranged at the center of the cable. A detection method has been proposed, and although it is possible to detect the presence or absence of damage and its size (specifically, the cross-sectional area of the seawater intrusion crack), it is not possible to detect the location of the damage. Furthermore, in Japanese Patent Application Laid-Open No. 59-176181,
A pair of resistance sensing layers are provided concentrically within the anticorrosion layer, and the resistance sensing layer is divided into a plurality of units in the longitudinal direction and/or radial direction of the cable, and the electrical resistance between the resistance sensing layers of each unit is measured. proposed a method for detecting the location of damage to a corrosion protection layer. However, in order to improve the accuracy of detecting the damage location, the number of divisions of the detection layer must be increased in proportion to the accuracy, which poses many problems in terms of cable production technology and cost. For this reason, there has been a desire for a method for detecting damage that is inexpensive, technically simple, and highly accurate.

(発明が解決しようとする問題点) 本発明は、このような従来からの要望に基いてなされた
もので、上記のような防食層の破損による平行線ケーブ
ル部分への海水の侵入の有無、破損の大きさ1位置等を
検知し、係留索の保守、交換を迅速、能率的に行うこと
を可能とする海洋浮遊構造物係留用平行線ケーブルの防
食層破損検知方法を提供することを目的とする。
(Problems to be Solved by the Invention) The present invention has been made based on such conventional demands, and solves the problem of seawater intrusion into the parallel cable portion due to damage to the anti-corrosion layer as described above. The purpose of the present invention is to provide a method for detecting damage to the anti-corrosion layer of a parallel cable for mooring a floating structure in the ocean, which enables the maintenance and replacement of mooring cables to be performed quickly and efficiently by detecting the size and location of damage. shall be.

(問題点を解決するための手段) 本発明は、中心にケーブル素線群を配置し、かつその周
囲に防食層を囲繞するとともに、該防食層内に導電性の
抵抗検知層を有する海洋浮遊構造物係留用ケーブルにお
いて、前記ケーブル素線群と抵抗検知層の上端との間お
よびケーブル素線群と抵抗検知層の下端との間に、それ
ぞれ電気抵抗測定器を接続し、それぞれの電気抵抗値を
測定することにより、防食層の破損位置と破損の大きさ
を検知することを特徴とするものである。
(Means for Solving the Problems) The present invention provides a marine floating cable in which a group of cable wires is arranged at the center, an anti-corrosion layer is surrounded therearound, and an electrically conductive resistance sensing layer is provided within the anti-corrosion layer. In the cable for mooring a structure, an electrical resistance measuring device is connected between the cable wire group and the upper end of the resistance detection layer, and between the cable wire group and the lower end of the resistance detection layer, and each electrical resistance is measured. This method is characterized by detecting the location and size of damage to the anti-corrosion layer by measuring the values.

以下図面により本発明の詳細な説明する。The present invention will be explained in detail below with reference to the drawings.

第1図および第2図は本発明対象のケーブルの縦断面お
よび横断面を示すもので、平行線ケーブル素線群1が最
内層に配置され、その周囲にポリエチレン等のプラスチ
ックからなる防食層2、釦あるいはアルミニウムなどか
らなる導電性の抵抗検知層3.前記防食層2と同質の防
食層4が同心円状に配置されている。5,5′はケーブ
ルの上下端に結合した上部ソケットおよび下部ソケッ1
〜で、これによってケーブルは上部ソケット支持台6お
よび下部ソケット支持台6′ に支持固定される。
Figures 1 and 2 show a longitudinal section and a cross section of a cable to which the present invention is applied, in which a group of parallel cable wires 1 is arranged in the innermost layer, and around it a corrosion protection layer 2 made of plastic such as polyethylene. , a conductive resistance sensing layer made of a button or aluminum, etc.3. A corrosion protection layer 4 having the same quality as the corrosion protection layer 2 is arranged concentrically. 5, 5' are the upper socket and lower socket 1 connected to the upper and lower ends of the cable.
. . . , whereby the cable is supported and fixed to the upper socket support 6 and the lower socket support 6'.

なお、ケーブル素線群1は各素線に付加される張力を均
一にするため、ソケット5,51内で分枝された状態で
結合用合金によって鋳込まれている。
The cable wire group 1 is cast with a bonding alloy in a branched state within the sockets 5 and 51 in order to equalize the tension applied to each wire.

また、素線の表面は通常メッキが施されているが、特に
絶縁被覆が施されていないためケーブル素線群1は電気
的には全部導通短絡状態になっている。
Further, although the surfaces of the wires are usually plated, since no insulating coating is particularly applied, the cable wire group 1 is all electrically conductive and short-circuited.

一方、抵抗検知層3はホットメルトタイプの接着剤で表
面コートした金属テープを防食層2の周囲に包帯状に巻
いたものでケーブルの全長、にわたって設けてあり、ケ
ーブル素線群1との間は電気的に絶縁されている。また
、7,7′は抵抗検知層3の上端及び下端からそれぞれ
引き出した抵抗測定用のリード線、8はケーブル素線群
lから引き出した抵抗測定用リード線、9は切換スイッ
チ。
On the other hand, the resistance detection layer 3 is made by wrapping a metal tape whose surface is coated with a hot-melt adhesive around the anti-corrosion layer 2 like a bandage. is electrically isolated. Further, 7 and 7' are lead wires for resistance measurement drawn out from the upper and lower ends of the resistance detection layer 3, respectively, 8 is a lead wire for resistance measurement drawn out from the cable wire group 1, and 9 is a changeover switch.

10は電気抵抗測定部、11は演算表示部である。10 is an electrical resistance measuring section, and 11 is a calculation display section.

上記ケーブルを使用するには、上部ソケット5を海洋構
造物に設けたソケット支持台6に支持固定し、下部ソケ
ット5゛ を海底に設置したソケット支持台6′に支持
固定することによって海洋浮遊構造物を係留するのであ
るが、防食層2,4が何等かの原因である箇所で損傷し
、海水がケーブル素線群lに侵入し、ケーブル素線群1
に損傷を生じるとケーブル素線群lと抵抗検知層3との
間の抵抗値が変化するので、ケーブル素線群の異常を検
知することができる。
To use the above-mentioned cable, the upper socket 5 is supported and fixed to a socket support 6 installed on the offshore structure, and the lower socket 5 is supported and fixed to a socket support 6' installed on the seabed. The object is to be moored, but the anti-corrosion layers 2 and 4 are damaged for some reason, and seawater intrudes into the cable group 1.
If damage occurs to the cable wire group 1, the resistance value between the cable wire group l and the resistance detection layer 3 changes, so that an abnormality in the cable wire group can be detected.

先ず、ケーブルに損傷がない場合、ケーブル素線群lと
抵抗検知層3間の電気抵抗R,は近似的に次式のように
なる。
First, when there is no damage to the cable, the electrical resistance R between the cable wire group l and the resistance sensing layer 3 is approximately expressed by the following equation.

Ro =po X (d/A)     (1)但し、
R0はケーブル素線群1と抵抗検知層3間の防食層2の
比抵抗、d、Aはそれぞれ電気抵抗層の等価間隔および
断面積である。
Ro = po X (d/A) (1) However,
R0 is the specific resistance of the anti-corrosion layer 2 between the cable wire group 1 and the resistance sensing layer 3, and d and A are the equivalent spacing and cross-sectional area of the electrical resistance layer, respectively.

ところが、第3図に示すように何等かの原因によってケ
ーブル上端から距@Xの位置にケーブル表面からケーブ
ル索線群外表面に達する亀裂12が生じ、該亀裂12に
海水が侵入した場合、電気抵抗は第4図の等価回路で示
されたものとなる。
However, as shown in Fig. 3, for some reason a crack 12 occurs at a distance @ The resistance is as shown in the equivalent circuit of FIG.

第4図において、R1はケーブル上端から亀裂12まで
の抵抗検知層3の電気抵抗、R2はケーブル下端から亀
裂I2までの抵抗検知層3の電気抵抗を示し、RWは上
部ソケットから亀裂12までのケーブル素線群1の電気
抵抗を示しており。
In FIG. 4, R1 represents the electrical resistance of the resistance sensing layer 3 from the upper end of the cable to the crack 12, R2 represents the electrical resistance of the resistance sensing layer 3 from the lower end of the cable to the crack I2, and RW represents the electrical resistance from the upper socket to the crack 12. It shows the electrical resistance of cable wire group 1.

ΔRは亀裂部I2の電気抵抗で次式で表わされる。ΔR is the electrical resistance of the crack I2 and is expressed by the following formula.

ΔR=ρX(d/S)     (2)但し、ρは海水
の比抵抗、Sは亀裂の平均断面積である。なお、第4図
において、厳密には防食層2の電気抵抗Roが並列に電
気抵抗測定部に加わるが(図示していない)、R1,、
R2,ΔR2Rwに比べて非常に大きいので無視できる
ΔR=ρX(d/S) (2) However, ρ is the resistivity of seawater, and S is the average cross-sectional area of the cracks. In addition, in FIG. 4, strictly speaking, the electrical resistance Ro of the anticorrosive layer 2 is applied to the electrical resistance measuring section in parallel (not shown), but R1,...
Since it is very large compared to R2 and ΔR2Rw, it can be ignored.

従って、切換スイッチ9が抵抗検知層3の上端側に接続
されている場合(図示の状態)に、電気抵抗測定部10
が測定する抵抗Rは次式のようになり(RwはR++ 
ΔRに比べて小さいので省略する)。
Therefore, when the changeover switch 9 is connected to the upper end side of the resistance sensing layer 3 (the state shown in the figure), the electrical resistance measuring section 10
The resistance R measured by is expressed as the following formula (Rw is R++
(omitted as it is smaller than ΔR).

R=R1+ΔR(3) また、切換スイッチが抵抗検知層3の下端側に接続され
た場合の測定抵抗R′は次式で表わされる。
R=R1+ΔR (3) Furthermore, the measured resistance R' when the changeover switch is connected to the lower end side of the resistance sensing layer 3 is expressed by the following equation.

R’ =R2+ΔR(4) 次に、演算表示部10により、上記二つの状態の測定値
R,R’  を加算すると次式が求まり。
R' = R2 + ΔR (4) Next, by adding the measured values R and R' of the above two states using the calculation display unit 10, the following equation is obtained.

RA = R+ R’  = R1,+ R2+ 2Δ
R(5)(2) 、 (5)式から海水侵入亀裂部の断
面積Sは次式で求められる。
RA = R+ R' = R1, + R2+ 2Δ
From equations R(5)(2) and (5), the cross-sectional area S of the seawater intrusion crack can be calculated using the following equation.

S=2ρd/ (Ra  (R1+R2) )   (
6)上式において、R1+R2は抵抗検知層3のケーブ
ル全長にわたる電気抵抗であり、予め測定しておくこと
ができるから、(6)式によって海水侵入状況ひいては
防食層の破損状況を定量的に検知することができる。
S=2ρd/ (Ra (R1+R2)) (
6) In the above equation, R1+R2 is the electrical resistance of the resistance detection layer 3 over the entire length of the cable, and can be measured in advance, so the situation of seawater intrusion and the damage of the corrosion protection layer can be quantitatively detected by equation (6). can do.

また、演算表示部10によって、上記測定値R。Further, the above-mentioned measured value R is displayed by the calculation display unit 10.

R’ の減算を行うと次式が求まる。By subtracting R', the following equation is obtained.

RB=RR’ =RI  R2(7) 一方、海水侵入位[Xはケーブル単位長さあたりの抵抗
検知層の抵抗をrとすると次式で表わされる。
RB=RR'=RI R2 (7) On the other hand, the seawater intrusion potential [X is expressed by the following formula, where r is the resistance of the resistance detection layer per unit length of the cable.

X=Rt/r             (8)従って
、 (7)、(8)式から X= (Ra +R1+R2) / 2 r    (
9)上式が求まり、上述のようにR1+R2は既知であ
り、またrはケーブル全長をLとすればr = (R1
+R2)’/Lとして求めらレルカラ。
X=Rt/r (8) Therefore, from equations (7) and (8), X= (Ra +R1+R2) / 2 r (
9) The above formula is found, and as mentioned above, R1+R2 is known, and r is the total length of the cable, then r = (R1
+R2)'/L.

(9)式によって海水侵入位置Xが検知できる。The seawater intrusion position X can be detected by equation (9).

(実施例) 次に本発明の実施例を示す。(Example) Next, examples of the present invention will be shown.

第1図に示す構造においてケーブル素線群の径が160
■φ、防護層の径が180+++o+φ、ケーブルの全
長が500mであり、防食層の部材として高密度ポリエ
チレンを用い、また、抵抗検知層としては、ホットメル
トタイプの接着剤でコートした厚さ50μm。
In the structure shown in Figure 1, the diameter of the cable wire group is 160 mm.
■φ, the diameter of the protective layer is 180+++o+φ, the total length of the cable is 500 m, the anti-corrosion layer is made of high-density polyethylene, and the resistance detection layer is coated with a hot-melt adhesive and has a thickness of 50 μm.

巾60+w+mの鉛ラミネートテープを用い、防食層2
の周囲にハーフラップで包帯状に巻いた。この抵抗検知
層の全長にわたる電気抵抗はおよそ658Ω、ケーブル
1m当りの抵抗は1.32Ωである。
Using lead laminate tape with a width of 60+w+m, anti-corrosion layer 2
Wrapped half-wrap around the area like a bandage. The electrical resistance over the entire length of this resistance sensing layer is approximately 658Ω, and the resistance per meter of cable is 1.32Ω.

上記ケーブルの使用前の層間抵抗は1000MΩ以上で
あったが、ケーブル上端から100mの位置に断面積1
 mm”相当の亀裂が生じ海水が侵入してケーブル素線
群表面に達したときの層間電気抵抗の測定値は、抵抗検
知層上端とケーブル素線群との間で約2480Ω、抵抗
検知層下端とケーブル素線群との間で約2870Ωと層
間抵抗が大巾に低下し、海水の侵入が顕著に検知された
。また、演算表示部はこれらの測定値から前記(6)、
(9)式の演算を行い、亀裂部の大きさとしてS =0
.98mm” 。
The interlayer resistance of the above cable before use was 1000MΩ or more, but the cross-sectional area of 100m from the top of the cable was
When seawater enters the surface of the cable wire group, a crack with a diameter equivalent to 1.5 mm is generated, and the measured value of the interlayer electrical resistance is approximately 2480 Ω between the upper end of the resistance sensing layer and the cable wire group, and 2480 Ω at the lower end of the resistance sensing layer. The interlayer resistance significantly decreased to approximately 2870 Ω between the wires and the cable wire group, and the intrusion of seawater was significantly detected.Furthermore, the calculation display section uses these measured values to determine the above (6).
Calculate equation (9) and calculate the size of the crack as S = 0
.. 98mm”.

破損位置としてX =101.5mを表示した。X = 101.5m was displayed as the damage location.

この結果から、本発明の防食層破損検知方法を使用する
ことにより、使用中、万一防食層に損傷があることが検
知された場合、その位置、損傷の程度を迅速適確に把握
して補修、交換等の対策を講じることができ、事故を未
然に防止することが可能である。
From this result, by using the corrosion protection layer damage detection method of the present invention, if damage to the corrosion protection layer is detected during use, the location and degree of damage can be quickly and accurately determined. Measures such as repair and replacement can be taken to prevent accidents.

また1本発明方法は海水のみならず陸上における係留索
製造時検査、使用後の中間点検等も行えることは勿論で
ある。
Furthermore, it goes without saying that the method of the present invention can be used not only in seawater but also on land for inspections during manufacturing of mooring ropes, intermediate inspections after use, and the like.

(発明の効果) 以上説明したように防食層の健全性がその使用性能を決
定的に左右する防食平行線ケーブルにおいて、本発明は
防食層の破損状態を的確に検知し得るので海洋浮遊構造
物の安全確保への寄与は大なるものである。
(Effects of the Invention) As explained above, the present invention can accurately detect the damage state of the corrosion protection layer in a corrosion protection parallel cable whose usability is determined by the soundness of the corrosion protection layer. The contribution to ensuring safety is significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施する海洋浮遊構造物係留用ケーブ
ルの縦断面図、第2図は同じく横断面図、第3図は防食
層が損傷した状態を示す縦断面図、第4図は損傷時の測
定系等価回路を示す電気回路図である。 l:ケーブル素線群   2,4:防食層3:抵抗検知
層 5.5’:上部及び下部ソケット 6.6’:上部及び下部ソケット支持台7.7’:抵抗
検知層上端及び下端から引出した測定用リード線 8:ケーブル素線から引出した測定用リード線9:切換
スイッチ    10:電気抵抗測定部ll:演算表示
部    、12:亀裂特許出願人 新日本製鐵株弐會
社1テ。 代理人 弁理士 杉 信  興に。 霜1■ 13圓
Fig. 1 is a longitudinal cross-sectional view of a cable for mooring a marine floating structure embodying the present invention, Fig. 2 is a cross-sectional view of the same, Fig. 3 is a longitudinal cross-sectional view showing a state in which the anti-corrosion layer is damaged, and Fig. 4 is a longitudinal cross-sectional view of a cable for mooring a marine floating structure according to the present invention. FIG. 3 is an electrical circuit diagram showing an equivalent circuit of the measurement system when damaged. l: Cable wire group 2, 4: Corrosion protection layer 3: Resistance detection layer 5.5': Upper and lower sockets 6.6': Upper and lower socket support bases 7.7': Resistance detection layer pulled out from the upper and lower ends Measurement lead wire 8: Measurement lead wire drawn out from the cable wire 9: Changeover switch 10: Electrical resistance measurement section 11: Calculation display section, 12: Crack patent applicant Nippon Steel Corporation 2 Company 1 Te. Agent: patent attorney Nobuoki Sugi. Frost 1■ 13 circles

Claims (1)

【特許請求の範囲】[Claims] 中心にケーブル素線群を配置し、かつその周囲に防食層
を囲繞するとともに、該防食層内に導電性の抵抗検知層
を有する海洋浮遊構造物係留用ケーブルにおいて、前記
ケーブル素線群と抵抗検知層の上端との間およびケーブ
ル素線群と抵抗検知層の下端との間に、それぞれ電気抵
抗測定器を接続し、それぞれの電気抵抗値を測定するこ
とにより防食層の破損位置と破損の大きさを検知するこ
とを特徴とする海洋浮遊構造物係留用平行線ケーブルの
防食層破損検知方法。
In a cable for mooring a floating structure at sea, which has a group of cable wires arranged in the center, an anti-corrosion layer surrounding it, and an electrically conductive resistance detection layer within the anti-corrosion layer, the group of cable wires and the resistance An electrical resistance measuring device is connected between the upper end of the detection layer and between the cable group and the lower end of the resistance detection layer, and by measuring the respective electrical resistance values, it is possible to determine the location of damage to the corrosion protection layer and the location of the damage. A method for detecting damage to a corrosion protection layer of a parallel cable for mooring a floating structure in the ocean, characterized by detecting the size.
JP22604685A 1985-10-11 1985-10-11 Breakage detecting method for anticorrosive layer or parallel wire cable for mooring ocean floating structure Granted JPS6285835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22604685A JPS6285835A (en) 1985-10-11 1985-10-11 Breakage detecting method for anticorrosive layer or parallel wire cable for mooring ocean floating structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22604685A JPS6285835A (en) 1985-10-11 1985-10-11 Breakage detecting method for anticorrosive layer or parallel wire cable for mooring ocean floating structure

Publications (2)

Publication Number Publication Date
JPS6285835A true JPS6285835A (en) 1987-04-20
JPH0213254B2 JPH0213254B2 (en) 1990-04-03

Family

ID=16838935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22604685A Granted JPS6285835A (en) 1985-10-11 1985-10-11 Breakage detecting method for anticorrosive layer or parallel wire cable for mooring ocean floating structure

Country Status (1)

Country Link
JP (1) JPS6285835A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7258681B2 (en) * 2019-07-12 2023-04-17 東日本高速道路株式会社 Sealed wire rope inspection method, sealed wire rope repair method, and sealed wire rope

Also Published As

Publication number Publication date
JPH0213254B2 (en) 1990-04-03

Similar Documents

Publication Publication Date Title
US20100005895A1 (en) Smart coat for damage detection information, detecting device and damage detecting method using said coating
JP2007297777A (en) Cable for suspension structure and measurement system
CN105683733A (en) Pipeline apparatus and method
RU2686839C2 (en) Device and method for electromechanical cable overvoltage indicator
US20080136425A1 (en) Device for detecting the state of steel-reinforced concrete construction parts
CN109385956B (en) Intelligent suspender or inhaul cable structure with built-in extension sensor for monitoring stress
US4684293A (en) Cable for fastening structures and method of detecting damage to corrosion-preventive layer thereof
EP3063520B1 (en) Detection apparatus and method
JP2001066117A (en) Method and device for detecting cracking and peeling of reinforcing material tunnel in
JP7128566B2 (en) Corrosion sensor and corrosion detection method
CN104198366B (en) A kind of post-tensioned concrete structure steel strand wires corrosion monitoring method
JPS6285835A (en) Breakage detecting method for anticorrosive layer or parallel wire cable for mooring ocean floating structure
WO2011046463A1 (en) Fluid pipe and method for detecting a deformation on the fluid pipe
Raoof COMPARISON BETWEEN THE PERFORMANCE OF NEWLY MANUFACTURED AND WELL-USED SPIRAL STRANDS.
JP2005156552A (en) Crack detection system, and adhesive agent and linear sensing tool available for system
JP3759144B2 (en) Tunnel reinforcing material peeling detection method and apparatus
JP7084575B2 (en) Crack detection sensor and crack detection system
CN108872319B (en) Corrosion sensor
JPS59176181A (en) Parallel cable for mooring ocean floating structure
JP2010112942A (en) Method for monitoring of steel structure
JPH0259950B2 (en)
JPH0213068B2 (en)
CN110306430B (en) Self-sensing parallel steel wire cold cast anchor and manufacturing method thereof
JP7416492B2 (en) armored dss cable
JPS59176180A (en) Parallel cable for mooring ocean floating structure