JPS6285411A - Cooling structure of normal conductive magnet for nmr imaging apparatus - Google Patents

Cooling structure of normal conductive magnet for nmr imaging apparatus

Info

Publication number
JPS6285411A
JPS6285411A JP60224749A JP22474985A JPS6285411A JP S6285411 A JPS6285411 A JP S6285411A JP 60224749 A JP60224749 A JP 60224749A JP 22474985 A JP22474985 A JP 22474985A JP S6285411 A JPS6285411 A JP S6285411A
Authority
JP
Japan
Prior art keywords
groove
cooling plate
cooling
water pipe
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60224749A
Other languages
Japanese (ja)
Inventor
Masayuki Otsuka
雅之 大塚
Takeshi Miyajima
宮島 剛
Takeshi Shudo
主藤 剛
Osamu Uchida
治 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60224749A priority Critical patent/JPS6285411A/en
Publication of JPS6285411A publication Critical patent/JPS6285411A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To shorten a working time by buying a nonmagnetic metal without thermal working in a gap between a cooling plate groove and a water pipe to completely bury between the groove and the pipe, thereby reducing a thermal resistance and improving the operating efficiency. CONSTITUTION:Four coils 5 are placed on a trestle 4 for forming a body supporting frame, and cooling plates 6 are respectively attached to the sides of the coils 4 by bonding materials 7. A nonmagnetic metal such as stainless steel or aluminum is normally used for the plates 6, and a water pipe 6b is buried in the groove of the cooling plate. The grooves of the plate is dug so that a sectional shape becomes a square, the water pipe is disposed in the groove, a mold punching material capable of containing a cooling tube in the center of U-shaped section made of soft high thermal conductive material is press-fitted to the groove to enhance the heat transmission property of the cooling tube and the cooling plate.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、NMRインメージング装置に係り、特にNM
Rイメージング装置用常電導磁石の冷却構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an NMR imaging device, and particularly to an NMR imaging device.
The present invention relates to a cooling structure for a normal conducting magnet for an R imaging device.

〔発明の背景〕[Background of the invention]

一般にNMRイメージング装置用常電導磁石は均一な磁
界を発生させるコイル、コイルを励磁する電源、および
コイルの発生熱を奪う冷却機構で構成されている。
In general, a normal conducting magnet for an NMR imaging device is comprised of a coil that generates a uniform magnetic field, a power source that excites the coil, and a cooling mechanism that removes the heat generated by the coil.

この冷却機槽の一つである間接冷却機構では、水配管お
よび水配管を支持する冷却板、冷却板とコイルを接着す
る接合材が必要とされる。水配管は一般に冷却板に溝切
りを行い、その中に埋め込まれる。
The indirect cooling mechanism, which is one type of cooling tank, requires water piping, a cooling plate for supporting the water piping, and a bonding material for bonding the cooling plate and the coil. Water pipes are generally embedded in grooves cut into the cooling plate.

冷却板溝部に水配管を埋め込む方法としては、第12図
、第13図に示す如く溝部と水配管とのギャップに溶融
したハンダを流し込んだり、銀ろう付けなどを行ってい
た。しかし、この方法によると冷却板に充分な熱を加え
なければならず、熱容量が大きく、かつ放熱効果の大き
い冷却板にとっては技術的に難しい。また、ハンダを流
し込む方法の場合、もし充分な熱が加えられなかったと
すると、ハンダが溝の奥の方まで流れ込まないので、中
に空洞が残り、冷却板と水配管との伝熱性が悪いものに
なる。また熱を加える事によって冷却板や水配管に変形
を促し、作業性も悪くなり、かつ不良を発生する結果に
なる。また、長い区間にわたって水配管を埋め込まなけ
ればならないので、作業後に放熱しなければ次の作業に
取りかかれないことから、作業時間も多大になる。その
他、溶融したハンダが溝の外で膨む形に固化するため、
冷却板の溝を堀った表面側がフラットな面にならず、接
合材によりコイルと冷却板を接着した場合、最悪″あ時
、冷却板とコイルが接触する不良が発生する恐れがあっ
た。
Methods for embedding water pipes in the cooling plate grooves include pouring molten solder into the gap between the grooves and the water pipes, or silver brazing, as shown in FIGS. 12 and 13. However, this method requires applying sufficient heat to the cooling plate, which is technically difficult for cooling plates that have a large heat capacity and a large heat dissipation effect. Also, in the case of the method of pouring solder, if sufficient heat is not applied, the solder will not flow deep into the groove, leaving a cavity inside and causing poor heat transfer between the cooling plate and the water pipe. become. Furthermore, the addition of heat causes deformation of the cooling plate and water piping, resulting in poor workability and the occurrence of defects. Furthermore, since the water piping must be buried over a long section, the heat must be dissipated after the work is completed before the next work can be started, which increases the time required for the work. In addition, because the molten solder solidifies in a shape that swells outside the groove,
If the grooved surface of the cooling plate is not flat and the coil and cooling plate are bonded using a bonding material, there is a risk that the cooling plate and coil may come into contact in the worst case scenario.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、加二「が容易で、かつ効率良く、排熱
を行うことのできるNMRイメージング装置装置 用常電導磁石の冷却構造を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a cooling structure for a normal conductive magnet for an NMR imaging apparatus, which can easily and efficiently exhaust heat.

〔発明の概要〕[Summary of the invention]

本発明は、冷却板溝部と水配管のギャップに、゛熱加工
を行わずに非磁性金属を埋め込むことにより、冷却板溝
部と水配管の間を完全に埋めつくして熱抵抗を引き下げ
、かつ作業性を改善し1作業時間を短縮する点にある。
The present invention completely fills the gap between the cooling plate groove and the water piping by embedding a non-magnetic metal in the gap between the cooling plate groove and the water piping without performing any thermal processing, thereby lowering the thermal resistance and improving the workability. The aim is to improve efficiency and shorten the time required for one operation.

すなわち、本発明は、核磁気共鳴現象を用い、生体の断
層像を得る診断装置用電磁石にあって、常電導コイル材
を用いたシート巻きコイルと冷却管詮埋め込んだ円盤状
の冷却板を有し、該コイルの側面に高熱伝導性接合材を
介して前記冷却板を取り付けるコイルの冷却構造におい
て、前記冷却板の溝部を断面形状が四角になるように掘
り、溝部に水配管を配した後、軟質の高熱伝導材料で作
られた断面形状がコの字形の、中央部に冷却管の収納可
能な型抜き材を、溝部に圧入を行って介在させることに
より、冷却管と冷却板との伝熱性を高めたことを特徴と
するものである。
That is, the present invention relates to an electromagnet for a diagnostic device that obtains a tomographic image of a living body using a nuclear magnetic resonance phenomenon, which includes a sheet-wound coil made of a normally conducting coil material and a disk-shaped cooling plate embedded in a cooling tube. In the coil cooling structure in which the cooling plate is attached to the side surface of the coil via a highly thermally conductive bonding material, a groove in the cooling plate is dug so that the cross-sectional shape is square, and water piping is arranged in the groove. By press-fitting a die-cut material made of a soft, high heat conductive material with a U-shaped cross section and capable of storing a cooling pipe in the center into the groove, the connection between the cooling pipe and the cooling plate is created. It is characterized by improved heat conductivity.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

第1図にNMRイメージング装置の常電導磁石システム
の基本構成が示されている。すなわち常電導磁石システ
ムの全体は均一磁界を発生する磁石本体1と磁石本体1
を励磁する電源2および磁石本体1の発生熱を辱う熱交
換器3の三つの構成からなる。
FIG. 1 shows the basic configuration of a normal conducting magnet system of an NMR imaging apparatus. In other words, the entire normal conducting magnet system consists of a magnet body 1 that generates a uniform magnetic field and a magnet body 1 that generates a uniform magnetic field.
It consists of three components: a power source 2 that excites the magnet, and a heat exchanger 3 that absorbs the heat generated by the magnet body 1.

第2図においては、磁石本体1の構成がされている。本
体支持枠を形成する架台4には四本のコイル5が搭載さ
れ、四本のコイル5の側面にはそれぞれ冷却板6が接合
材7により接着されている。
In FIG. 2, the structure of the magnet body 1 is shown. Four coils 5 are mounted on a pedestal 4 forming a main body support frame, and cooling plates 6 are bonded to the side surfaces of each of the four coils 5 with a bonding material 7.

第3図には、冷却板6の構成がされている。冷却板6に
は通常ステンレスやアルミニウムなどの非磁性の金属が
使われ、冷却板溝部6aには水配ハンダ、釦のような塑
性変形の容易な金属8を複数個用意する。また冷却板6
には第5図、第6図、第7図、第8図のような溝切りを
行う。第5図のような溝切りを行った場合、溝の側面は
荒削りの方が良い、これは後に書くように金属圧入をし
た場合、圧入した金属がはずれる心配がないようにする
ためであり、かつ接触を完全なものにするためである。
In FIG. 3, the configuration of the cooling plate 6 is shown. A non-magnetic metal such as stainless steel or aluminum is normally used for the cooling plate 6, and a plurality of metals 8 that are easily plastically deformed, such as water distribution solder or buttons, are prepared in the cooling plate groove 6a. Also, the cooling plate 6
In this case, grooves are cut as shown in Figs. 5, 6, 7, and 8. When cutting a groove as shown in Figure 5, it is better to roughen the sides of the groove.This is to prevent the press-fitted metal from coming off when press-fitting metal as described later. This is to ensure complete contact.

第6図ではこのために溝の側面にローレット切りをした
物を示している。第7図では同様な考えから冷却板溝部
8を逆テーパに掘った物、第8図にはのこぎり歯の突起
をつけた物をそれぞれ示している。水配管6bには金属
圧入の際に変形を来す心配のない非磁性金属のパイプ、
例えば鋼管なでを用いる。そこで、第9図のように冷却
板溝部6a内に金属8をセットし、その上に水配管6b
を置き、さらに金属11を被せる。
In FIG. 6, knurling is shown on the side surface of the groove for this purpose. Based on the same idea, FIG. 7 shows a cooling plate groove 8 having a reverse taper, and FIG. 8 shows a cooling plate groove 8 having sawtooth protrusions. The water pipe 6b is a non-magnetic metal pipe that does not cause deformation when metal is press-fitted.
For example, use a steel pipe. Therefore, as shown in FIG. 9, a metal 8 is set in the cooling plate groove 6a, and a water pipe 6b is placed on top of the metal 8.
, and then cover with metal 11.

その後、第10図のようにハンマーなどを用い台、この
時金属8がはみ出さないように金属8の量をあらかじめ
計算しておく必要がある。
Thereafter, as shown in FIG. 10, it is necessary to calculate the amount of metal 8 in advance so that the metal 8 does not protrude.

前記実施例において、第4図に示すような金属8を用い
ているが、第11図に示すように非磁性金属を綿状、網
状に編んだ物9を冷却板溝部6aと水配管6bのギャッ
プに詰め込み、プレスする方法を用いてもよい。
In the embodiment described above, the metal 8 shown in FIG. 4 is used, but as shown in FIG. A method of filling the gap and pressing may also be used.

また、綿状もしくは網状の非磁性金属9の代わりに粉末
状の非磁性金属11を冷却板溝部6aと水配管6bのギ
ャップに詰め込んだ状態で、樹脂10を溝からあふれ出
る手前まで注入して固化する方法を用いてもよい。
In addition, powdered non-magnetic metal 11 is packed in the gap between cooling plate groove 6a and water pipe 6b instead of cotton-like or net-like non-magnetic metal 9, and resin 10 is injected until it overflows from the groove. A solidification method may also be used.

〔発明の効果〕〔Effect of the invention〕

以」二説明したj′うに、本発明によれば、容易な加工
で冷却板ど水配管との伝熱性を白土させることが可能で
ある。それにより、熱交換器におけろ排熱効率の良いN
 M I<イメージンダ装「l用常電導磁石システムが
実現できるので、磁石本体の発生熱を空調設備などで奪
う率が低くなるので、その分のランニンクコス1〜を低
減する111が可能である。
As explained below, according to the present invention, it is possible to make the heat conductivity between the cooling plate and the water piping similar to that of clay by easy processing. As a result, N
Since it is possible to realize a normal conductive magnet system for M I<image conductor equipment, the rate at which the heat generated by the magnet body is taken away by air conditioning equipment, etc. is lowered, so it is possible to reduce the running cost by that amount.

かつ、磁石本体に蓄積される熱の少い、qちトりの迅速
な常電導磁石システ11が実現できる効果がある。
In addition, there is an effect that a normal conductive magnet system 11 can be realized with less heat accumulated in the magnet body and a quick q-chip.

その他、熱を使わないため、作業性の改善、作業時間の
短縮ができる。また、熱による変形の心配がないため、
不良を起こす確率を引き下げることができる。
Additionally, since no heat is used, workability can be improved and work time can be shortened. In addition, there is no need to worry about deformation due to heat.
It is possible to reduce the probability of defects occurring.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はNMRイメージング装置の常電導磁石シ(ス耕
ムのブロック図、第2図は常電導磁石本体の一例として
の側面図、第3図は冷却板の一例としての平面図、第4
図は本発明の一実施例においで使用される部材の斜視図
、第5図は本発明の一実施例における冷却板の一部縦断
面図、第6図、第7図ないし第8図は他の実施例におけ
る冷却板の一部縦断面図、第9図ないし第10図は本発
明を実施するに当っての工程の一例を示す冷却板の一部
縦断面図、第11図は他の実施例における冷却板の一部
縦断面図、第12図、第13図は従来の冷却板髪示す図
である。 1・・・常電導磁石本体、2・・・電源、;3・・熱交
換器、4・・架台、5・・・コイル、6・・・冷却板、
7・・接合材、6a・・・冷却板溝部、6 b・・・水
配管、8・・・塑性変形容易な金属、9・・・綿状、網
状金属、10・・・液状の樹脂。
Fig. 1 is a block diagram of the normal conducting magnet system of the NMR imaging device, Fig. 2 is a side view as an example of the normal conducting magnet main body, Fig. 3 is a plan view as an example of the cooling plate, and Fig. 4 is a block diagram of the normal conducting magnet system of the NMR imaging device.
The figure is a perspective view of members used in one embodiment of the present invention, FIG. 5 is a partial vertical sectional view of a cooling plate in one embodiment of the present invention, and FIGS. A partial vertical sectional view of a cooling plate in another embodiment, FIGS. 9 and 10 are partial vertical sectional views of a cooling plate showing an example of steps in carrying out the present invention, and FIG. 11 is a partial longitudinal sectional view of a cooling plate in another embodiment. FIGS. 12 and 13 are partial vertical cross-sectional views of the cooling plate in this embodiment, and are views showing conventional cooling plates. DESCRIPTION OF SYMBOLS 1...Normal conducting magnet main body, 2...Power supply,; 3...Heat exchanger, 4...Base, 5...Coil, 6...Cooling plate,
7... Bonding material, 6a... Cooling plate groove, 6 b... Water piping, 8... Metal that is easily plastically deformable, 9... Cotton-like, net-like metal, 10... Liquid resin.

Claims (1)

【特許請求の範囲】[Claims] 1、核磁気共鳴現象によつて生体の断層像を得るNMR
イメージング装置用電磁石を常電導コイル材を用いたシ
ート巻きコイルと該コイルの側面に高熱伝導性接合材を
介して取りつけられる冷却管を埋め込んだ円盤状の冷却
板とによつて構成するものにおいて、上部冷却板に断面
矩形状の溝部を形成し、該溝部に水導管を嵌着せしめ、
軟質の高熱伝導材によって構成され断面コの字状に形成
される部材を前記溝部に密に嵌着したことを特徴とする
NMRイメージング装置用常電導磁石の冷却構造。
1. NMR that obtains tomographic images of living organisms using nuclear magnetic resonance phenomena
An electromagnet for an imaging device comprising a sheet-wound coil using a normal conductive coil material and a disk-shaped cooling plate embedded with a cooling pipe attached to the side surface of the coil via a highly thermally conductive bonding material, forming a groove with a rectangular cross section in the upper cooling plate, and fitting a water conduit into the groove;
1. A cooling structure for a normal conductive magnet for an NMR imaging apparatus, characterized in that a member made of a soft, highly thermally conductive material and having a U-shaped cross section is tightly fitted into the groove.
JP60224749A 1985-10-11 1985-10-11 Cooling structure of normal conductive magnet for nmr imaging apparatus Pending JPS6285411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60224749A JPS6285411A (en) 1985-10-11 1985-10-11 Cooling structure of normal conductive magnet for nmr imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60224749A JPS6285411A (en) 1985-10-11 1985-10-11 Cooling structure of normal conductive magnet for nmr imaging apparatus

Publications (1)

Publication Number Publication Date
JPS6285411A true JPS6285411A (en) 1987-04-18

Family

ID=16818634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60224749A Pending JPS6285411A (en) 1985-10-11 1985-10-11 Cooling structure of normal conductive magnet for nmr imaging apparatus

Country Status (1)

Country Link
JP (1) JPS6285411A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332988A (en) * 1992-05-15 1994-07-26 Massachusetts Institute Of Technology Removable coil form for superconducting nmr magnets and a method for its use
CN113050005A (en) * 2019-12-26 2021-06-29 西门子(深圳)磁共振有限公司 Gradient coil cooling component and gradient coil
WO2022128232A1 (en) * 2020-12-17 2022-06-23 Isovolta Gatex GmbH Method for a positionally fixed connection of a tubular element on a support plate
WO2022172848A1 (en) * 2021-02-09 2022-08-18 株式会社アドバンテック Stage for heating and cooling object

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332988A (en) * 1992-05-15 1994-07-26 Massachusetts Institute Of Technology Removable coil form for superconducting nmr magnets and a method for its use
CN113050005A (en) * 2019-12-26 2021-06-29 西门子(深圳)磁共振有限公司 Gradient coil cooling component and gradient coil
CN113050005B (en) * 2019-12-26 2024-01-30 西门子(深圳)磁共振有限公司 Gradient coil cooling component and gradient coil
WO2022128232A1 (en) * 2020-12-17 2022-06-23 Isovolta Gatex GmbH Method for a positionally fixed connection of a tubular element on a support plate
WO2022172848A1 (en) * 2021-02-09 2022-08-18 株式会社アドバンテック Stage for heating and cooling object

Similar Documents

Publication Publication Date Title
JP4339875B2 (en) Pulsed magnetic field generator
JP2002525844A (en) Temperature controller for permanent magnetic systems
JPS6285411A (en) Cooling structure of normal conductive magnet for nmr imaging apparatus
JPS59230541A (en) Ultra-low temperature magnet apparatus
GB0002569D0 (en) Heat exchanger
JP3651497B2 (en) X-ray tube device
JPS6041704A (en) Current lead for cryogenic device
EP0002558A1 (en) Superleak and heat exchanger
JPS6028098Y2 (en) Coil device for electromagnet
JP2847670B2 (en) Heat sink for semiconductor devices with excellent heat dissipation effect
JP2598352Y2 (en) Oil cooler current plate mounting structure
JPS6121140Y2 (en)
JPS5829000U (en) Excitation coil cooling device for electromagnets for nuclear devices
JPS6276519U (en)
JPS5844613A (en) Current lead for superconductive device
JPS5838709Y2 (en) electrodynamic speaker
JPS60158714U (en) Oil-feed water-cooled cooling system for oil-filled electrical equipment
JPS61151311U (en)
JPS58184706A (en) Superconductive magnet
JPS5839060U (en) Mounting structure for flat semiconductor devices
JPS60125786A (en) Cooling device for he gas compressor used in water
JPS6033854A (en) Mold plate for continuous casting
JPS59231805A (en) Gas insulated electromagnetic induction machine
JPS59195709U (en) Cooling device for electromagnetic drive
JPS6318433B2 (en)