JPS628524Y2 - - Google Patents

Info

Publication number
JPS628524Y2
JPS628524Y2 JP1976102568U JP10256876U JPS628524Y2 JP S628524 Y2 JPS628524 Y2 JP S628524Y2 JP 1976102568 U JP1976102568 U JP 1976102568U JP 10256876 U JP10256876 U JP 10256876U JP S628524 Y2 JPS628524 Y2 JP S628524Y2
Authority
JP
Japan
Prior art keywords
sample
flow path
reactor
methane
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1976102568U
Other languages
Japanese (ja)
Other versions
JPS5320990U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1976102568U priority Critical patent/JPS628524Y2/ja
Publication of JPS5320990U publication Critical patent/JPS5320990U/ja
Application granted granted Critical
Publication of JPS628524Y2 publication Critical patent/JPS628524Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Exhaust Silencers (AREA)

Description

【考案の詳細な説明】 本考案は自動車排ガス中のノンメタン炭化水素
測定装置に関する。従来自動車排ガスは、全炭化
水素濃度で規制が行なわれているが、排ガス中に
存在するメタンが光化学スモツグに無関係である
ことから、全炭化水素よりメタンを除外したノン
メタン炭化水素濃度で規制する方向にある。ノン
メタン測定法としては、ガスクロマトグラフ法に
よりメタンを分離する方法と、メタンの燃焼温度
が他の炭化水素より高い事を利用した選択燃焼法
がある。しかしながら前者は装置が高価であり、
本質的にバツチ測定である為、実際の検定作業に
は適していない。一方選択燃焼法はメタン以外の
炭化水素を反応器で選択的に燃焼させ、メタンの
みを水素炎イオン化検出器(FID検出器)で検出
し、一方未処理のサンプルガスをFID検出器に送
り、全炭化水素を検出し、両者の差によりノンメ
タン炭化水素濃度を知る方法であり、ガスクロマ
トグラフ法にくらべて安価であり、かつ連続測定
が可能である。しかしながら、自動車排ガスを直
接測定する場合は、従来のサンプルガスが大気で
あつた装置をそのまま適用する事は出来ない。な
ぜならば選択燃焼法では前記した様に、反応器で
メタン以外の炭化水素を燃焼するため、酸素が必
要であり、サンプルガスが大気の場合と異なり、
自動車排ガスの場合、空燃比がリツチ側になる
と、酸素濃度が低く燃焼が不完全となり測定誤差
として表われるからである。
[Detailed Description of the Invention] The present invention relates to a device for measuring non-methane hydrocarbons in automobile exhaust gas. Conventionally, automobile exhaust gas has been regulated based on total hydrocarbon concentration, but since methane present in exhaust gas is unrelated to photochemical smog, there is a trend toward regulating it based on non-methane hydrocarbon concentration, which excludes methane from total hydrocarbons. It is in. Methods for measuring non-methane include a method in which methane is separated using gas chromatography, and a selective combustion method that takes advantage of the fact that the combustion temperature of methane is higher than that of other hydrocarbons. However, the equipment for the former is expensive;
Since it is essentially a batch measurement, it is not suitable for actual verification work. On the other hand, the selective combustion method selectively burns hydrocarbons other than methane in a reactor, detects only methane with a flame ionization detector (FID detector), and sends untreated sample gas to the FID detector. This method detects all hydrocarbons and determines the concentration of non-methane hydrocarbons based on the difference between the two. It is cheaper than gas chromatography and allows for continuous measurement. However, when directly measuring automobile exhaust gas, it is not possible to directly apply conventional equipment in which the sample gas is the atmosphere. This is because, as mentioned above, in the selective combustion method, since hydrocarbons other than methane are burned in the reactor, oxygen is required, and unlike when the sample gas is air,
In the case of automobile exhaust gas, when the air-fuel ratio becomes rich, the oxygen concentration is low and combustion becomes incomplete, which appears as a measurement error.

本考案はこの点を解消すべく前記反応器に送ら
れるガス中の酸素濃度を15%以上とすることによ
り、自動車の広範囲な空燃比の変化に無関係に安
定した精度を有するノンメタン炭化水素測定装置
を提供しようとするものである。
In order to solve this problem, the present invention is a non-methane hydrocarbon measuring device that has stable accuracy regardless of the wide range of air-fuel ratio changes in automobiles by increasing the oxygen concentration in the gas sent to the reactor to 15% or more. This is what we are trying to provide.

以下、図面に基づいて具体的に説明する。第1
図は従来の大気をサンプルガスとする場合のフロ
ーシートであり定量ポンプ1によりサンプルガス
入口2からサンプリングされた大気の一部は第2
サンプルガス流路3に送られ、しぼり4を通り、
反応器5でメタン以外の炭化水素は燃焼され、第
2FID検出器6でメタン濃度が測定される。一方
サンプリングされた大気の残りは第1サンプルガ
ス流路7に送られ、しぼり8、ガス流抵抗調節部
9を通り、第1FID検出器10で全炭化水素濃度
が測定される。ここでしぼり8,4は第1、第2
サンプル流路に送られる大気の流量を等しくする
ためのものであり、ガス流抵抗調節部9は両検出
器6,10の立上りを等しくするためのもの、即
ち、サンプルガス入口からサンプルされた大気を
同時に両検出器6,10で検出するためのもので
あり、これは後述する減算処理にとつて必要なも
のである。前記両検出器よりの信号は減算器11
で減算され、ノンメタン炭化水素濃度に対応する
信号とされて、指示計12で指示される。なお1
3は校正ガス流路であり、校正時に三方電磁弁1
4が切換られゼロガス入口15かスパンガス入口
16からゼロガス又はスパンガスが供給される。
その切換は電磁弁17で行う。
A detailed explanation will be given below based on the drawings. 1st
The figure is a flow sheet for the conventional case where atmospheric air is used as the sample gas. Part of the atmospheric air sampled from the sample gas inlet 2 by the metering pump 1 is
The sample gas is sent to the flow path 3, passes through the squeezer 4,
Hydrocarbons other than methane are burned in reactor 5, and the
2FID detector 6 measures the methane concentration. On the other hand, the rest of the sampled atmosphere is sent to the first sample gas flow path 7, passes through the throttle 8 and the gas flow resistance adjustment section 9, and the total hydrocarbon concentration is measured by the first FID detector 10. Here, squeezers 8 and 4 are the first and second
The gas flow resistance adjustment unit 9 is used to equalize the flow rate of the atmosphere sent to the sample flow path, and the gas flow resistance adjustment unit 9 is used to equalize the rise of both the detectors 6 and 10, that is, the air flow sampled from the sample gas inlet. is detected by both detectors 6 and 10 at the same time, and this is necessary for the subtraction process described later. The signals from both detectors are sent to a subtracter 11
is subtracted by , and is used as a signal corresponding to the non-methane hydrocarbon concentration, which is then indicated by the indicator 12 . Note 1
3 is a calibration gas flow path, which is a three-way solenoid valve 1 during calibration.
4 is switched, and zero gas or span gas is supplied from zero gas inlet 15 or span gas inlet 16.
The switching is performed by a solenoid valve 17.

第2図は本考案に係る一実施例である。サンプ
ルガスが自動車排ガスの場合空燃比がリツチ側に
なると酸素量が少なく反応器5で燃焼が完全に行
なわれず、測定誤差となる。それを防止するた
め、前記反応器5の前方において、第2サンプル
ガス流路3に酸素ガス流路18が接続され、自動
車排ガスに酸素を混合した後反応器に送られる構
造になつており、酸素は酸素ボンベ19を出た
後、レギユレータ20、圧力計21、毛細管22
からなる流量調節器を通つた後、第2サンプルガ
ス流路3を流れる自動車排ガスと混合される。酸
素供給源としては大気を使用する事も可能であ
る。なお、第1図と同一番号のものは同一部品を
示している。
FIG. 2 shows an embodiment of the present invention. When the sample gas is automobile exhaust gas, if the air-fuel ratio is on the rich side, the amount of oxygen will be small and combustion will not be completed in the reactor 5, resulting in a measurement error. In order to prevent this, an oxygen gas flow path 18 is connected to the second sample gas flow path 3 in front of the reactor 5, and the structure is such that oxygen is mixed with automobile exhaust gas and then sent to the reactor. After oxygen leaves the oxygen cylinder 19, it passes through a regulator 20, a pressure gauge 21, and a capillary tube 22.
After passing through a flow rate regulator consisting of a gas flow controller, the sample gas is mixed with the automobile exhaust gas flowing through the second sample gas flow path 3. It is also possible to use the atmosphere as an oxygen source. Note that the same numbers as in FIG. 1 indicate the same parts.

第3図は本考案の他の実施例であり背圧レギユ
レータ23、毛細管24,25により流量調節が
より正確にされている。なお第1図と同一番号の
ものは同一部品を示している。
FIG. 3 shows another embodiment of the present invention, in which a back pressure regulator 23 and capillary tubes 24 and 25 are used to more accurately control the flow rate. Note that the same numbers as in FIG. 1 indicate the same parts.

本考案において酸素の混合比率をたえず一定に
しておけば、その混合比率で校正するため正確な
混合比率はわからなくてもよい。ただし第4図か
らわかる様に酸素濃度が15%以上となるようにす
る必要はある。第4図において横軸は酸素濃度、
縦軸は燃焼効率を表わしており曲線26は
C2H610000ppm−C、曲線27はCH410000ppm
−Cの酸化効率を示している。C2H6以外の炭化
水素はより燃焼しやすいので、C2H6とCH4との
分離を考えればよい。なお触媒としては銅、マン
ガンの酸化物や白金、パラジウム等が使用されて
いるが第4図の場合は触媒としてホプカライト
(主に銅、マンガンの酸化物)を使用した。
In the present invention, if the mixing ratio of oxygen is kept constant, there is no need to know the exact mixing ratio since calibration is performed using that mixing ratio. However, as shown in Figure 4, it is necessary to ensure that the oxygen concentration is 15% or more. In Figure 4, the horizontal axis is oxygen concentration,
The vertical axis represents combustion efficiency, and curve 26 is
C 2 H 6 10000ppm-C, curve 27 is CH 4 10000ppm
-C oxidation efficiency is shown. Since hydrocarbons other than C 2 H 6 are more combustible, we can consider separating C 2 H 6 and CH 4 . Although oxides of copper and manganese, platinum, palladium, etc. are used as catalysts, in the case of FIG. 4, hopcalite (mainly oxides of copper and manganese) was used as a catalyst.

以上の通り本考案においては直接サンプリング
された自動車排ガスに一定量の酸素を混合して、
酸素濃度を15%以上としたガスを反応器へ送る事
により、反応器を安定に作動させる事が出来、精
度よく自動車排ガス中のノンメタン炭化水素濃度
を測定出来るのである。
As mentioned above, in this invention, a certain amount of oxygen is mixed with directly sampled automobile exhaust gas,
By sending gas with an oxygen concentration of 15% or more to the reactor, the reactor can be operated stably and the concentration of non-methane hydrocarbons in automobile exhaust gas can be measured with high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のサンプルガスが大気の場合のノ
ンメタン炭化水素測定装置を示す説明図であり、
第2,3図は本考案に係るサンプルガスが自動車
排ガスの場合のノンメタン炭化水素測定装置を示
す説明図、第4図は酸素濃度とC2H6及びCH4
燃焼効率の関係を示すグラフである。 5……反応器、6……第2FID検出器、10…
…第1FID検出器、18……酸素ガス流路。
FIG. 1 is an explanatory diagram showing a conventional non-methane hydrocarbon measuring device when the sample gas is air.
Figures 2 and 3 are explanatory diagrams showing the non-methane hydrocarbon measuring device according to the present invention when the sample gas is automobile exhaust gas, and Figure 4 is a graph showing the relationship between oxygen concentration and combustion efficiency of C 2 H 6 and CH 4 It is. 5...Reactor, 6...2nd FID detector, 10...
...1st FID detector, 18...oxygen gas flow path.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 第1、第2FID検出器と、試料の一部を該第
1FID検出器へ送る第1サンプルガス流路と、試
料の残部を前記第2FID検出器へ送る第2サンプ
ルガス流路と、該第2サンプルガス流路中に設け
られ、ノンメタン炭化水素を除去する反応器と、
前記第1FID検出器の検出信号より前記第2検出
器の検出信号を減算する減算器と、指示器とから
なるノンメタン炭化水素測定装置において、前記
反応器の前方においてサンプルガス流路に、流量
調節器を有する酸素ガス流路を接続して、前記反
応器に送られるガス中の酸素濃度を15%以上とし
てある事を特徴とする自動車排ガス中のノンメタ
ン炭化水素測定装置。
The first and second FID detectors and a part of the sample are connected to the first and second FID detectors.
1 A first sample gas flow path for sending the sample to the FID detector, a second sample gas flow path for sending the remainder of the sample to the second FID detector, and a second sample gas flow path for removing non-methane hydrocarbons. a reactor;
In the non-methane hydrocarbon measuring device comprising a subtracter that subtracts the detection signal of the second detector from the detection signal of the first FID detector, and an indicator, a flow rate adjustment device is provided in the sample gas flow path in front of the reactor. 1. An apparatus for measuring non-methane hydrocarbons in automobile exhaust gas, characterized in that the oxygen concentration in the gas sent to the reactor is set to 15% or more by connecting an oxygen gas flow path having a reactor.
JP1976102568U 1976-07-31 1976-07-31 Expired JPS628524Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1976102568U JPS628524Y2 (en) 1976-07-31 1976-07-31

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1976102568U JPS628524Y2 (en) 1976-07-31 1976-07-31

Publications (2)

Publication Number Publication Date
JPS5320990U JPS5320990U (en) 1978-02-22
JPS628524Y2 true JPS628524Y2 (en) 1987-02-27

Family

ID=28712756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1976102568U Expired JPS628524Y2 (en) 1976-07-31 1976-07-31

Country Status (1)

Country Link
JP (1) JPS628524Y2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49121591A (en) * 1973-02-28 1974-11-20
JPS50110386A (en) * 1974-02-05 1975-08-30
JPS5125991B2 (en) * 1972-06-26 1976-08-03

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125991U (en) * 1974-08-19 1976-02-25

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125991B2 (en) * 1972-06-26 1976-08-03
JPS49121591A (en) * 1973-02-28 1974-11-20
JPS50110386A (en) * 1974-02-05 1975-08-30

Also Published As

Publication number Publication date
JPS5320990U (en) 1978-02-22

Similar Documents

Publication Publication Date Title
US3762878A (en) Apparatus for analyzing ambient air
CN101368921B (en) High sensitivity and high-selective gas transducer
US5948966A (en) Gas sensor, method of measuring gas component by utilizing gas sensor, and method of diagnosing malfunction of exhaust gas purifying apparatus
US4102648A (en) Measuring non-methane hydrocarbon contents in gases
Meitzler Application of Exhaust-Gas-Oxygen Sensors to the Study of Storage Effects in Automotive Three-Way Catalysts
GB2119088A (en) An apparatus for measuring or controlling the separation ratio of a gas
US4201550A (en) Process and apparatus for the determination of the total organic substance content of gases by a flame ionization detector
JPH0552755U (en) Methane analyzer
US3537823A (en) Gas testing process for smog forming constituents
JPS628524Y2 (en)
US3549327A (en) Method and analyzer for hydrogen carbon monoxide and hydrocarbons in exhaust gases
JP2832905B2 (en) City gas combustion rate measurement device
JP3606499B2 (en) Sample dilution method for chemiluminescence analyzer
US4116053A (en) Thermal reactor/catalytic converter efficiency determination method
KR810001203Y1 (en) Measuring device for hydrocarbon
CN110376324A (en) Utilize the method and gas chromatograph of flame ionization ditector measurement oxygen concentration
JPH04110768A (en) Method and device for analysis of hydrocarbon
Dubois et al. The analysis of carbon monoxide in urban air at the ppm level, and the normal carbon monoxide value
US4164142A (en) Method for setting side to side carburetor balance
JPH0835950A (en) Hydrocarbon analysis method and its analyzer and device for improving resolution of methane/non-methane constituent
McKee Effects of engine parameters and catalyst composition on vehicle sulfate emissions
Graiff et al. A Fast-Response Flame Ionization Detector for Exhaust Hydrocarbons
JPH1151891A (en) Selective gas measuring method based on nonlinear gas reaction
JP2832906B2 (en) City gas combustion rate measurement device
CN117054511B (en) Non-methane total hydrocarbon detection device and method based on double detectors