JPS6285136A - Electric power generating method - Google Patents

Electric power generating method

Info

Publication number
JPS6285136A
JPS6285136A JP60226278A JP22627885A JPS6285136A JP S6285136 A JPS6285136 A JP S6285136A JP 60226278 A JP60226278 A JP 60226278A JP 22627885 A JP22627885 A JP 22627885A JP S6285136 A JPS6285136 A JP S6285136A
Authority
JP
Japan
Prior art keywords
heat
gas
regenerators
heat storage
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60226278A
Other languages
Japanese (ja)
Inventor
Shunichi Sugiyama
峻一 杉山
Masahiro Abe
阿部 正広
Teruo Fujibayashi
晃夫 藤林
Shuzo Fukuda
福田 脩三
Hisashi Sakurai
桜井 寿
Takao Noguchi
孝男 野口
Shiro Fujii
史朗 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP60226278A priority Critical patent/JPS6285136A/en
Publication of JPS6285136A publication Critical patent/JPS6285136A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To improve the energy utilizing efficiency, by applying three or more latent-and-actual heat accumulating type regenerators, increasing the number of heat accumulating regenerators in an excessed gas condition, while increasing the number of radiating regenerators in a high power load condition, in a generator utilizing the heat of burning gas. CONSTITUTION:Plural latent-and-actual heat accomulating type regenerators of four sets, for example, are prepared, and a low pressure coke furnace gas is burned in a combustor 11 in an ordinary condition, feeding the resultant high temperature gas to two regenerators 14 to store the heat. At the same time, a high pressure air is fed from a high pressure blower 15 to the other two regenerators 14 where the heat is already stored to collect the heat, and the resultant high temperature and high pressure air is led to a gas turbine 12 to generate power. When the above accomulation and radiation are completed, the accumulation and the radiation are converted to continue the power generation. On the other hand, when the gas is excessive and the power load is low at night, for example, the excessive gas is burned to increase the combustion amount to accumulate the heat in three regenerators 14 while the heat is radiated from one regenerator 14, to reduce the power generation amount.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、とくに製鉄所のコークス炉ガス等の副生ガ
スを燃焼して自家発電するシステムに好適な発電方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a power generation method particularly suitable for a system for in-house power generation by burning by-product gas such as coke oven gas in a steel plant.

[従来技術及びその問題点〕 製鉄所では、コークス炉ガス等の副生ガスを燃焼して自
家発電を行っているが、使用電力が変動することが知ら
れている。従来、昼間のエネルギ高負荷と夜間のエネル
ギ低負荷の負荷変動に対しては、大型のガスホルダーを
設置し副生ガスを夜間に貯え、昼間に使用している。し
かし、この方法では%昼夜間のエネルギー使用量のアン
バランスを一部しか吸収できない。このため夜間には一
部ガスを放散している。全て吸収するには巨大なガスホ
ルダーを必要とし、これは設備費や設置占有面積などを
考慮すれば非現実的である。
[Prior art and its problems] In steel works, by-product gas such as coke oven gas is burned to generate in-house power, but it is known that the power used fluctuates. Conventionally, in response to load fluctuations such as high energy loads during the day and low energy loads at night, large gas holders have been installed to store by-product gas at night and use it during the day. However, this method can only partially compensate for the imbalance in energy usage between day and night. For this reason, some gas is released at night. A huge gas holder would be required to absorb all of the gas, which is unrealistic considering equipment costs and installation space.

[発明の目的コ この発明は上記事情に鑑みてなされたもので、その目的
とする所は、夜間のガス余剰時、電力低負荷時には燃焼
ガスの燃焼量を増やし、しかも発電量を減らし、昼間の
ガス必要時、電力高負荷時には、燃焼ガスの燃焼量を減
らし、しかも発電量を増やすという昼夜間のエネルギ負
荷変動に対応しうる発電方法を得んとするものである。
[Purpose of the Invention] This invention was made in view of the above circumstances, and its purpose is to increase the amount of combustion gas burned when there is a surplus of gas at night or when the electric power load is low, and to reduce the amount of power generation. The purpose of this project is to develop a power generation method that can cope with day and night energy load fluctuations by reducing the amount of combustion gas and increasing the amount of power generated when gas is needed or when electricity is under high load.

[発明の構成、作用及び効果] この発明はガスを燃焼させ、その熱を利用して発電する
方法において、3ヶ以上の潜顕然蓄熱型蓄熱器を用い、
燃焼ガスを上記蓄熱器の一部へ導いて蓄熱する一方、高
圧の空気(あるいはガス)を蓄熱された別の蓄熱器に通
し放熱させて高温としガスタービン発電機に導いて発電
する発電方法で、夜間のガス余剰時、電力低負荷時には
ガス燃焼mを増加させ、蓄熱する蓄熱器の数を増やし、
放熱する蓄熱器の数を減らして発電量を減少させる一方
、昼間の電力高負荷時にはガス燃焼量を減らし蓄熱する
蓄熱器の数を減らし放熱する蓄熱器の数を増やして発l
l量を増加させるものである。
[Structure, operation, and effects of the invention] This invention is a method of burning gas and using the heat to generate electricity, using three or more latent and obvious heat storage type heat storage devices,
A power generation method in which combustion gas is guided to a part of the heat storage device to store heat, while high-pressure air (or gas) is passed through another heat storage device where the heat is radiated to a high temperature, and then guided to a gas turbine generator to generate electricity. , when there is a surplus of gas at night or when the power load is low, the gas combustion m is increased and the number of heat storage devices is increased.
While reducing the amount of power generation by reducing the number of heat storage units that radiate heat, during the daytime when the power load is high, the amount of gas burned is reduced, the number of heat storage units that store heat is reduced, and the number of heat storage units that radiate heat is increased.
1 amount.

以上のようにこの発明は、潜顕熱蓄熱型蓄熱器を用いて
蓄熱と放熱を同時に行ないながら発電する際、夜と昼と
で蓄熱と放熱の比率を逆転させ、蓄熱と放熱とを切り換
えることによってガス燃焼量と発1!量を制御すること
を特徴とする発電方法である。
As described above, when generating power while simultaneously storing and dissipating heat using a latent sensible heat storage type heat storage device, the present invention reverses the ratio of heat storage and heat dissipation between night and day and switches between heat storage and heat dissipation. Depending on the gas combustion amount and emission 1! This is a power generation method characterized by controlling the amount.

[実施例] 以下図示する実施例を参照して本方法を説明する。[Example] The method will be explained below with reference to the illustrated embodiments.

この発電システムは、4ケの潜顕熱蓄熱熱型蓄熱器14
を有している。低圧のコークス炉ガスを燃焼器11で燃
燻し、燃焼によって生じた高温ガスを2ケの蓄熱器14
へ導いて蓄熱する。−刃高圧の空気を高圧ブロアー15
から既に蓄熱された別の2ケの蓄熱器14へ導き、蓄熱
器14から熱を受は加熱して高温空気としガスタービン
発電機12へ導き発電させる。以上のように通常は2ケ
の蓄熱器を蓄熱、残りの2ケを放電して使用し、蓄熱・
放熱が完了したら蓄熱と放熱を切り換えて発電を連続し
て行なわせている。
This power generation system consists of 4 latent sensible heat storage type heat storage devices 14
have. Low-pressure coke oven gas is burned and smoked in a combustor 11, and the high-temperature gas generated by the combustion is transferred to two heat storage units 14.
and store heat. - High pressure blower 15 for high pressure air
The heat from the heat storage device 14 is then heated and turned into high-temperature air, which is then guided to the gas turbine generator 12 to generate electricity. As mentioned above, two heat storage devices are normally used to store heat and the remaining two are used to discharge heat.
Once heat dissipation is complete, the system switches between heat storage and heat dissipation to continue generating electricity.

この発電システムにおいて昼夜間の負荷変動が生じた時
例えば夜間のガス余剰時、電力低負荷時には、第1図(
a )に示すように余剰ガスを燃焼させ、ガス燃焼量を
増やし、蓄熱する蓄熱器を3ケ(例えばNQ 1〜Nα
3)とし蓄熱量を増加させる。
In this power generation system, when load fluctuations occur between day and night, for example, when there is a surplus of gas at night or when the power load is low, the
As shown in a), three heat storage units (for example, NQ 1 to Nα) are installed to burn excess gas, increase the amount of gas combustion, and store heat.
3) Increase the amount of heat storage.

一方放熱する蓄熱器は1ケ(NQ4)とし放熱量を減ら
して発電層を減少させる。逆に昼間の電力高負荷時には
蓄熱と放熱を切り換えて第1図(b)に示すように蓄熱
する蓄熱器を1ケ(Nα1)に放熱する蓄熱器を3ケ(
ぬ2〜NQ4)にし燃焼量を減少させかつ発電量を増加
させる。
On the other hand, the number of heat storage units that radiate heat is set to one (NQ4) to reduce the amount of heat radiated and the number of power generation layers. Conversely, during high power loads during the day, heat storage and heat radiation are switched, and as shown in Figure 1(b), one heat storage device (Nα1) stores heat and three heat storage devices (Nα1) radiate heat.
2 to NQ4) to reduce the amount of combustion and increase the amount of power generation.

以上の方法によってガスの余剰、不足に対応して燃焼ガ
ス量を増減させ、かつ発N愚を減増させる発電が可能と
なる。
By the above method, it is possible to increase or decrease the amount of combustion gas in response to a surplus or shortage of gas, and to generate electricity by decreasing or increasing the amount of nitrogen generated.

ここで前記蓄熱器14は、第2図に示すように、熱風炉
を利用したものが好適である。蓄熱器17は第3図に拡
大して示すように蓄熱材充填部18内に多数のガス流通
用バイブ群19を配設している。充填部18に充填され
る物質としては1300℃以下で固液変化する物質、例
えばNaFなどが好適である。そして蓄熱時には、高温
の燃焼ガスが充填材に熱を与えるため、充填材が融解す
る。逆に放熱時には充填材から空気に熱を与えて凝固す
る。
Here, as shown in FIG. 2, the heat storage device 14 preferably utilizes a hot air stove. As shown in an enlarged view in FIG. 3, the heat storage device 17 has a large number of gas circulation vibe groups 19 disposed within a heat storage material filling section 18. The substance to be filled in the filling portion 18 is preferably a substance that changes into solid-liquid at 1300° C. or lower, such as NaF. During heat storage, the high-temperature combustion gas imparts heat to the filler, causing the filler to melt. Conversely, during heat dissipation, the filler applies heat to the air and solidifies it.

図中には示されていないがガスタービンからの排ガスは
高温の空気であるからこの空気を蓄熱中の燃焼用空気と
して用いるとエネルギーロスが減り有効である。
Although not shown in the figure, since the exhaust gas from the gas turbine is high-temperature air, using this air as combustion air during heat storage is effective in reducing energy loss.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a )は本発明に係るガス余剰時の発電方法の
一例を示す説明図、第1図(b)は電力高負荷時の発電
方法を示し、第2図は本発明で使用する蓄熱器の一例を
示す説明図、第3図は第2図のA部拡大図である。 11・・・燃焼器、12・・・ガスタービン発電層、1
3・・・空気予熱器、14・・・潜顕然蓄熱型蓄熱器、
15・・・高圧ブロア、17・・・蓄熱器、18・・・
蓄熱材充填部、19・・・ガス流通用バイブ群。 出願人代理人 弁理士 鈴江武彦 第1図(a) 第1図(b)  +++−−高万り気傳℃流イし□泊)
EM−光色力゛マ力h−1仁 第2図 第3図
FIG. 1(a) is an explanatory diagram showing an example of the power generation method when there is a surplus of gas according to the present invention, FIG. 1(b) shows the power generation method during high power load, and FIG. An explanatory diagram showing an example of a heat storage device, FIG. 3 is an enlarged view of section A in FIG. 2. 11... Combustor, 12... Gas turbine power generation layer, 1
3...Air preheater, 14...Latent and obvious heat storage type heat storage device,
15... High pressure blower, 17... Heat storage device, 18...
Heat storage material filling section, 19...Gas distribution vibe group. Applicant's representative Patent attorney Takehiko Suzue Figure 1 (a) Figure 1 (b)
EM-photochromic power h-1 nin Fig. 2 Fig. 3

Claims (1)

【特許請求の範囲】[Claims] ガスを燃焼してその熱で発電する方法において3ケ以上
の潜顕熱蓄熱型蓄熱器を用い、燃焼ガスによる蓄熱器へ
の蓄熱と別途の高圧ガスによる蓄熱器の放熱を同時に行
ないガス余剰時には蓄熱する蓄熱器の数を増やし、電力
高負荷時には放熱する蓄熱器の数を増やしてガス燃焼量
と発電量を制御することを特徴とする発電方法。
In the method of burning gas and generating electricity using the heat, three or more latent sensible heat storage type heat storage devices are used, and the combustion gas is used to store heat in the heat storage device, and a separate high-pressure gas is used to radiate heat from the heat storage device at the same time. A power generation method characterized by increasing the number of heat accumulators that store heat and increasing the number of heat accumulators that radiate heat during high power loads to control the amount of gas combustion and the amount of power generation.
JP60226278A 1985-10-11 1985-10-11 Electric power generating method Pending JPS6285136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60226278A JPS6285136A (en) 1985-10-11 1985-10-11 Electric power generating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60226278A JPS6285136A (en) 1985-10-11 1985-10-11 Electric power generating method

Publications (1)

Publication Number Publication Date
JPS6285136A true JPS6285136A (en) 1987-04-18

Family

ID=16842701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60226278A Pending JPS6285136A (en) 1985-10-11 1985-10-11 Electric power generating method

Country Status (1)

Country Link
JP (1) JPS6285136A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10039246A1 (en) * 2000-08-11 2002-02-28 Atz Evus Process for converting thermal energy into mechanical work
KR200458586Y1 (en) * 2009-06-17 2012-02-15 정석동 A portable vacuum cleaner
US11085705B2 (en) 2017-03-23 2021-08-10 1414 Degrees Limited Energy storage and retrieval system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10039246A1 (en) * 2000-08-11 2002-02-28 Atz Evus Process for converting thermal energy into mechanical work
DE10039246C2 (en) * 2000-08-11 2002-06-13 Atz Evus Process for converting thermal energy into mechanical work
KR200458586Y1 (en) * 2009-06-17 2012-02-15 정석동 A portable vacuum cleaner
US11085705B2 (en) 2017-03-23 2021-08-10 1414 Degrees Limited Energy storage and retrieval system

Similar Documents

Publication Publication Date Title
CN101023314B (en) Method and apparatus for storing heat energy
US7723858B2 (en) Power plant having a heat storage medium and a method of operation thereof
AU2009266152B2 (en) Photovoltaic system
CN1330013C (en) Electricity generating system by temperature difference
WO1999026839A3 (en) Cyclical thermal management system
JPS6357856A (en) Heating device for stirling engine
CN105515028A (en) System and method for power station and compressed air combination energy storage power generation
Buscheck Hybrid-energy technology enabled by heat storage and oxy-combustion for power and industrial-heat applications with near-zero or negative CO2 emissions
Allani et al. CO2 mitigation through the use of hybrid solar-combined cycles
US20200088473A1 (en) Thermal Energy Storage Apparatus
BR7705726A (en) FAST TRANSFER CIRCUIT FOR DISCONNECTING A LOAD FROM A POWER SUPPLY, FAST TRANSFER SYSTEM FOR DISCONNECTING AN ENERGY CHARGING POWER SUPPLY, AND TRANSFER CIRCUIT FOR SUPPLYING A LAMP POWER
JPS6285136A (en) Electric power generating method
EP2989405A1 (en) Packed rock bed thermal energy storage facility
CN110854937A (en) Thermal power frequency modulation method of coupling heat storage device
US7352578B2 (en) Fuel cell system with inverter and phase change material
JP2526387B2 (en) Solid electrolyte fuel cell power generator
JPS63208627A (en) Air storage type gas turbine device
CN110401410B (en) Comprehensive energy system based on molten salt device
CN108701499A (en) Ignition system for lighting combustion mixture
CN207880863U (en) A kind of oxygen-enriched combusting depth peak regulation and energy-saving and emission-reduction integrated system
EP0799981A3 (en) Gas turbine heat and power plant
Hao et al. A Multi-Objective Optimization Planning of Park-level Integrated Energy System Based on Two-tier Planning Model
CN211151553U (en) Peak-regulating frequency-modulating system
US20220115977A1 (en) Device, plant and method for the storage and transfer of thermal energy of solar origin
Guo et al. Integrated Energy Supply Configuration for Stand-Alone Island Based on Two-Layer Optimization Algorithm