JPS62840A - Analysis of phosphorus - Google Patents

Analysis of phosphorus

Info

Publication number
JPS62840A
JPS62840A JP13791985A JP13791985A JPS62840A JP S62840 A JPS62840 A JP S62840A JP 13791985 A JP13791985 A JP 13791985A JP 13791985 A JP13791985 A JP 13791985A JP S62840 A JPS62840 A JP S62840A
Authority
JP
Japan
Prior art keywords
phosphorus
sample
analyzed
nitric acid
evaporated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13791985A
Other languages
Japanese (ja)
Inventor
Yoshimi Yamaguchi
芳美 山口
Akira Okada
章 岡田
Takashi Anami
阿波 傑士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13791985A priority Critical patent/JPS62840A/en
Publication of JPS62840A publication Critical patent/JPS62840A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To quantitatively analyze phosphorus with high accuracy by adding nitric acid and perchloric acid having ultra-high purity to a sample to be analyzed, electrically heating the sample and introducing the evaporated phosphorus into the argon plasma generated by 10-40MHz high-frequency induction heating. CONSTITUTION:An org. material, more particularly bacteria which are the sample to be analyzed are sampled directly into a boat made of a high melting and nitric acid and perchloric acid having the high purity are added thereto. The sample is electrically heated in an inert gas and is thereby decomposed and incinerated; thereafter the sample is heated to 1,500-2,500 deg.C (more preferably 1,700-2,200 deg.C) to be evaporated. The evaporated matter is introduced into the argon plasma generated by 10-40MHz high-frequency induction heating. The phosphorus is quantitatively analyzed from the emission intensity of the excited light. The phosphorus is thereby quantitatively analyzed easily and quickly with the high sensitivity and high accuracy.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は有機物、特:;バクテリア中のリンの分析方法
シニ関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for analyzing phosphorus in organic substances, particularly bacteria.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

半導体製造上最も重要なものにプロセス上のクリーン度
の問題がある。これは周知の様にゴミによる製品の欠陥
である。これらの対策として部屋全体の清浄度を限りな
く向上することが望ましい。
The most important issue in semiconductor manufacturing is process cleanliness. As is well known, this is a product defect caused by dust. As a countermeasure for these problems, it is desirable to improve the cleanliness of the entire room as much as possible.

現在は種々の改善4二よりこの清浄度は向上して来てい
るが、更にレベルを上げるためζ二は各製造工。
Currently, this level of cleanliness has improved through various improvements 42, but in order to further raise the level, ζ2 has been improved at each manufacturing facility.

程のダスト発生防止及び部屋全体を完全無人化すること
が望ましい。しかし現在のところこれは極めて困難な点
が多い。
It is desirable to prevent the generation of dust and to make the entire room completely unmanned. However, this is currently extremely difficult.

現在最も進んでいる超々クリーンルームでは室内に存在
するバクテリアさえ問題となりつつある。
Even the bacteria present in the ultra-super clean rooms, which are currently the most advanced, are becoming a problem.

従って環境管理上室内のバクテリアの定量も重要な要素
であり、そのためには、バクテリアを短時間にかつ精度
良く定量し、データをフィードバックし環境管理するこ
とは極めて重要である。
Therefore, quantifying indoor bacteria is an important element in environmental management, and for this purpose, it is extremely important to quantify bacteria in a short time and with high precision, and to feed back the data for environmental management.

すなわち本発明は被分析試料であるバクテリアを直接、
高融点金属製ポート上に採取し高純度の硝酸と過塩素酸
を加え、不活性気体中で電気加熱し、分屏、灰化、蒸発
気化を連続して行ない、気化したリンをアルゴンプラズ
マ内に導入し、励起発光強度からリンを定量することが
特徴である。
In other words, the present invention directly analyzes the bacteria that is the sample to be analyzed.
The sample is collected on a high melting point metal port, high purity nitric acid and perchloric acid are added, electrically heated in an inert gas, separated, ashed, and evaporated in succession, and the vaporized phosphorus is placed in an argon plasma. The unique feature is that phosphorus is introduced into the system and phosphorus is quantified from the excitation emission intensity.

一般にリンの分析にはモリブデンブルー吸光光度法が利
用されていてバクテリア中のリンの分析もこの方法が利
用できる。この方法はリン酸イオンを含む試料浴液にモ
リブデン酸、アンモニクム液を加えて生成するリンモリ
ブデン酸を塩化スズ(I)、ヒドラシソ、ヒドロキノン
などで還元して生ずる青色の構造不明の物質を比色法で
定量するものである。
Generally, molybdenum blue spectrophotometry is used to analyze phosphorus, and this method can also be used to analyze phosphorus in bacteria. This method is a colorimetric measurement of a blue substance of unknown structure that is produced by reducing phosphomolybdic acid, which is produced by adding molybdic acid and ammonium solution to a sample bath containing phosphate ions, with tin(I) chloride, hydracide, hydroquinone, etc. It is determined by the method.

しかし、この方法は発色が液の酸性度、試薬の種類や分
量、反応時間など:二左右されるばかりでなく温度の影
響も大きい。更には、ヒ酸イオンや多量の回答性ケイ酸
塩は同様な反応を示してリン酸イオンの定量を防害する
。従って、分析の際に反応温度、酸性度の調節が不可欠
であり分析の容易さ、分析時間、精度点からしても良好
であるとはいいがたい。
However, in this method, the color development not only depends on the acidity of the liquid, the type and amount of reagents, the reaction time, etc., but also has a large influence on temperature. Furthermore, arsenate ions and large amounts of reactive silicates exhibit similar reactions and prevent the determination of phosphate ions. Therefore, it is essential to adjust the reaction temperature and acidity during analysis, and it is difficult to say that this method is satisfactory in terms of ease of analysis, analysis time, and accuracy.

〔発明の目的〕[Purpose of the invention]

本発明者らは従来のリンの定量分析法特:ニパクテリア
中のリンの分析法の試料浴液調整及び測定に比較してよ
り量率で、かつ、精度が高いリンの定量分析方法につい
て櫨々検討の結果、本発明を完成するに至った。
The present inventors have developed a quantitative analysis method for phosphorus that has a higher quantitative ratio and higher accuracy than the conventional method for quantitative analysis of phosphorus. As a result of our studies, we have completed the present invention.

〔発明の概要〕[Summary of the invention]

不発明は、被分析試料である有機物、特にバクテリアを
直接高融点金属製ボートに採取し、高純度の硝酸と過塩
素酸を加え不活性気体中で電気加熱し、分解、灰化した
のち1500〜2500 C(好ましくは1700 C
〜220t) C)に加熱して蒸発気化させ10〜40
MHzの高周波誘導加熱で発生させたアルゴンプラズマ
内);導入し、励起発光強度からリンを定量する方法で
簡便かつ迅速、爽には高感度。
In the invention, organic matter, especially bacteria, to be analyzed is collected directly into a high-melting metal boat, and high-purity nitric acid and perchloric acid are added to it, electrically heated in an inert gas, decomposed, and incinerated. ~2500C (preferably 1700C
~220t) C) to evaporate and evaporate 10~40t)
Argon plasma generated by MHz high-frequency induction heating) is introduced, and phosphorus is quantified from the excitation emission intensity, which is simple, quick, and highly sensitive.

高精度で定量できる分析方法を提供するものである。The objective is to provide an analytical method that allows for highly accurate quantification.

本発明において、硝酸と過塩素酸を利用するのは過塩素
酸による酸化力を強くするためであり、史に危険性を防
止するために硝酸を併用することが好ましい。又、高融
点金属製ボート上で加熱する際1500 C以上である
とリンの発色強度が不飽和でデータの4m軸性がとぼし
く逆に2500 C以上の高温では金属ボート(タング
ステン製の場合)の使用限界に達するため、望ましくな
い。
In the present invention, nitric acid and perchloric acid are used in order to strengthen the oxidizing power of perchloric acid, and it is preferable to use nitric acid in combination to prevent danger. In addition, when heating on a high-melting point metal boat at temperatures above 1500 C, the coloring intensity of phosphorus becomes unsaturated and the 4m axiality of the data becomes poor. This is not desirable because it reaches its usage limit.

以下、実施例により本発明の詳細な説明する、〔発明の
実施例〕 実施例1 試料lOμgを石英ビーカーに採取し、これに硝酸3m
e、過塩素酸1 m13を加えて熱板上で加熱分解する
。この時の温度が150 t:’から160 t:’、
得られた浴液を100 ml)メスフラスコ1:純水で
メスアップした。この試料溶液をマイクロピペットで一
定量(20μme)分取し、直接、金属製(タングステ
ン製)ボート上に注入し、第1表に示すように100C
130秒で乾燥し、20oc、30秒で灰化したのち2
300 C16秒で加熱し、27.12MHzの高周波
誘導加熱で発生させたアルゴンプラズマ内に導入して、
励起発光強度からリンを定量した。
[Embodiments of the Invention] Example 1 10 μg of a sample was collected in a quartz beaker, and 3 m of nitric acid was added to it.
e. Add 1 ml of perchloric acid and heat decompose on a hot plate. The temperature at this time is from 150 t:' to 160 t:',
The obtained bath solution was made up to a volume of 100 ml in volumetric flask 1 with pure water. A certain amount (20 μm) of this sample solution was collected with a micropipette, directly injected onto a metal (tungsten) boat, and heated to 100C as shown in Table 1.
After drying for 130 seconds and ashing at 20oc for 30 seconds,
Heated at 300 C for 16 seconds and introduced into argon plasma generated by high frequency induction heating at 27.12 MHz.
Phosphorus was quantified from the excitation emission intensity.

実施例2 試料10μgを直接、金属製(タングステン製)ボート
に採取し、これ(=硝酸数滴、過塩素酸数滴を加えて、
以下実施例1と同様の条件、同様の操作で励起発光強度
からリンを定にした。
Example 2 10 μg of sample was collected directly into a metal (tungsten) boat, and a few drops of nitric acid and a few drops of perchloric acid were added thereto.
Thereafter, phosphorus was determined from the excitation emission intensity under the same conditions and with the same operations as in Example 1.

第1表 高周波誘導グツズ・7発光分光測定条件比較例 モリブデンブルー吸光光度法の操作を下記に記す。Table 1: Comparison example of high frequency induction goods and 7 emission spectroscopy measurement conditions The operation of the molybdenum blue spectrophotometry method is described below.

実施例と同様、試料10μgを石英ビーカーに採取し、
硝酸1 m4と過塩素酸1 m−eを加えて、熱板上で
加熱分解する。この液にモリブデン酸塩溶液と還元剤と
して硫酸ヒドラジン溶液を添加し。
As in the example, 10 μg of the sample was collected in a quartz beaker,
Add 1 m4 of nitric acid and 1 m-e of perchloric acid and heat decompose on a hot plate. A molybdate solution and a hydrazine sulfate solution as a reducing agent were added to this solution.

青色の液を得た。得られた試料を純水で調整し、沸騰浴
中で10分間加熱したのち、室温まで冷却し、比色針&
:て波長830 nmでの吸光光度を計った。
A blue liquid was obtained. The obtained sample was adjusted with pure water, heated in a boiling bath for 10 minutes, cooled to room temperature, and heated with a colorimetric needle &
: The absorbance was measured at a wavelength of 830 nm.

尚、実施例題:おいて、リンの高温気化の温度変化に対
する発光強度について行った例を第1図に示した。
FIG. 1 shows an example of the emission intensity with respect to temperature change during high-temperature vaporization of phosphorus.

これらの分析条件において得られた結果を第2表に示し
た。
The results obtained under these analytical conditions are shown in Table 2.

第2表゛ 上記結果から明らか(:本発明は1分析所要時間が短か
く、従来法のIA待時間分析ができ、しかも分析範囲が
広いことが示されている。
Table 2: It is clear from the above results that the present invention requires a short time for one analysis, can perform IA waiting time analysis using the conventional method, and has a wide analysis range.

〔発明の効果〕〔Effect of the invention〕

本発明:二よれは、蒸発気化−誘導プラズマ発光分光法
の高感度な点を十分活用できるため、従来定量不可能で
あった0、1 ppm以下のリンの分析が可能となった
。又、分析範囲が非常::広くなり。
The present invention: Since Futayore can fully utilize the high sensitivity of evaporation-induced plasma emission spectroscopy, it has become possible to analyze phosphorus below 0.1 ppm, which was previously impossible to quantify. Also, the analysis range becomes very wide.

かつ簡便に分析することができるようになった。And now it can be easily analyzed.

さらに、本発明のリンの分析試料として、バクテリアを
用いることにより、バクテリアを効率よく定量分析でき
るようになった。
Furthermore, by using bacteria as the phosphorus analysis sample of the present invention, it has become possible to efficiently quantitatively analyze bacteria.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1本発明で用いた測定条件の高温気化を決定す
るための温度変化に対する発光強度を示し゛た図である
FIG. 1 is a diagram showing the luminescence intensity with respect to temperature changes for determining high temperature vaporization under the measurement conditions used in the present invention.

Claims (1)

【特許請求の範囲】 1)被分析試料を高融点金属製ポート上に採取し、超高
純度の硝酸と過塩素酸を加え、不活性気体中で電気加熱
し、分解、灰化、蒸発気化を連続して行ない、気化した
リンを10〜40MHzの高周波誘導加熱で発生させた
アルゴンプラズマ内に導入し、励起発光強度から定量す
ることを特徴とするリンの分析方法。 2)蒸発気化させる温度が1500〜2500℃である
ことを特徴とする特許請求の範囲第1項のリンの分析方
法。 3)有機物、特にバクテリアを被分析試料とする特許請
求の範囲第1項に記載のリンの分析方法。
[Claims] 1) A sample to be analyzed is collected on a high melting point metal port, ultra-high purity nitric acid and perchloric acid are added, and electrically heated in an inert gas to decompose, ash, and evaporate. A method for analyzing phosphorus, characterized in that the vaporized phosphorus is introduced into an argon plasma generated by high-frequency induction heating at 10 to 40 MHz, and the phosphorus is quantified from the excitation emission intensity. 2) The phosphorus analysis method according to claim 1, wherein the evaporation temperature is 1500 to 2500°C. 3) The method for analyzing phosphorus according to claim 1, wherein the sample to be analyzed is organic matter, especially bacteria.
JP13791985A 1985-06-26 1985-06-26 Analysis of phosphorus Pending JPS62840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13791985A JPS62840A (en) 1985-06-26 1985-06-26 Analysis of phosphorus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13791985A JPS62840A (en) 1985-06-26 1985-06-26 Analysis of phosphorus

Publications (1)

Publication Number Publication Date
JPS62840A true JPS62840A (en) 1987-01-06

Family

ID=15209748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13791985A Pending JPS62840A (en) 1985-06-26 1985-06-26 Analysis of phosphorus

Country Status (1)

Country Link
JP (1) JPS62840A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101504794B1 (en) * 2010-01-26 2015-03-20 가부시기가이샤쯔바기모도체인 Link plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101504794B1 (en) * 2010-01-26 2015-03-20 가부시기가이샤쯔바기모도체인 Link plate

Similar Documents

Publication Publication Date Title
Aziz et al. Analysis of microamounts of biological samples by evaporation in a graphite furnace and inductively coupled plasma atomic emission spectroscopy
Baker et al. Atomic absorption and flame emission spectrometry
Koirtyohann et al. Furnace atomic absorption-a method approaching maturity
Arslan et al. Determination of calcium, magnesium and strontium in soils by flow injection flame atomic absorption spectrometry
Farah et al. Developments and applications of multielement graphite furnace atomic absorption spectrometry
Goforth et al. Laser-excited atomic fluorescence of atoms produced in a graphite furnace
Maria das Gracas et al. Comparison of decomposition procedures for analysis of titanium dioxide using inductively coupled plasma optical emission spectrometry
De Boer et al. A comparative examination of sample treatment procedures for ICAP-AES analysis of biological tissue
Capelo et al. Tandem focused ultrasound (TFU) combined with fast furnace analysis as an improved methodology for total mercury determination in human urine by electrothermal-atomic absorption spectrometry
Ma et al. Determination of trace impurities in high-purity zirconium dioxide by inductively coupled plasma atomic emission spectrometry using microwave-assisted digestion and wavelet transform-based correction procedure
JPS62840A (en) Analysis of phosphorus
Takeda et al. Determination of ultra-trace impurities in semiconductor-grade water and chemicals by inductively coupled plasma mass spectrometry following a concentration step by boiling with mannitol
Pergantis et al. Simplex optimization of conditions for the determination of arsenic in environmental samples by using electrothermal atomic absorption spectrometry
Dobrowolski et al. Direct solid vs. slurry analysis of tobacco leaves for some trace metals by graphite furnace AAS: A comparative study
Redfield et al. Identification and effect of pre-atomisation losses on the determination of aluminium by graphite furnace atomic absorption spectrometry
Fishman et al. A supplement to methods for the determination of inorganic substances in water and fluvial sediments
Sun et al. Evaluation of closed-vessel microwave digestion method for the determination of trace impurities in polymer-based photoresist by inductively coupled plasma mass spectrometry
Apostoli et al. Determination of vanadium in urine by electrothermal atomisation atomic absorption spectrometry with graphite tube pre-heating
Ajayi et al. Evaluation of automatic probe atomization for determination of elements in urine and whole blood by electrothermal atomic absorption spectrometry
Tianyou et al. Electrothermal vaporization-inductively coupled plasma-atomic emission spectrometry for the direct determination of trace amounts of impurities in slurries of silicon carbide
Fan et al. Low-temperature electrothermal vaporization of thenoyltrifluoroacetone complex of Sc (III) and Y (III) for sample introduction in an inductively coupled plasma atomic emission spectrometry, and their determination in biological samples
Shizhong Study on volatilization of ytterbium as 1-(2-pyridylazo)-2-naphthol chelate from electrothermal vaporizer for sample introduction in inductively coupled plasma atomic emission spectrometry
Sun et al. Combining electrothermal vaporization inductively coupled plasma mass spectrometry with in situ TMAH thermochemolysis for the direct determination of trace impurities in a polymer-based photoresist
MarchanteáGayˇn Determination of cadmium in human urine using electrothermal atomic absorption spectrometry with probe atomization and deuterium background correction
Wu et al. Electrothermal volatilization of aluminum as 1-phenyl-3-methyl-4-benzoylpyrazolone [5] chelate for gaseous sample introduction in ICP-AES