JPS6283926A - Transporting method for solid state particle - Google Patents

Transporting method for solid state particle

Info

Publication number
JPS6283926A
JPS6283926A JP22191485A JP22191485A JPS6283926A JP S6283926 A JPS6283926 A JP S6283926A JP 22191485 A JP22191485 A JP 22191485A JP 22191485 A JP22191485 A JP 22191485A JP S6283926 A JPS6283926 A JP S6283926A
Authority
JP
Japan
Prior art keywords
aqueous medium
slurry
gas
phase
solid state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22191485A
Other languages
Japanese (ja)
Other versions
JPH0620943B2 (en
Inventor
Yoneo Nishida
西田 米男
Kiyotaka Matsuo
清隆 松尾
Shigeru Matsui
滋 松井
Kiyoyuki Horii
清之 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Coal Mining Co Ltd
Original Assignee
Sumitomo Coal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Coal Mining Co Ltd filed Critical Sumitomo Coal Mining Co Ltd
Priority to JP22191485A priority Critical patent/JPH0620943B2/en
Publication of JPS6283926A publication Critical patent/JPS6283926A/en
Publication of JPH0620943B2 publication Critical patent/JPH0620943B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Transport Of Granular Materials (AREA)

Abstract

PURPOSE:To reduce energy consumption while to reduce abrasion of a conduit, when pressure feeding slurry of solid state particles and aqueous medium through the conduit in a spiral flow, by adding 1-7wt% of gas against the aqueous medium. CONSTITUTION:When pressure feeding slurry of solid state particles and aqueous medium through a conduit in spiral flow, 1-7wt% of gas against the aqueous medium is added. Consequently, the slurry phase and the gas phase will form respective spiral flows and travel through the conduit while twisting each other. Here, the slurry phase spiral flow will sustain over a longer distance when compared with the case where gas is not added. In other word, the slurry phase 1 in the conduit will travel in zigzag as a whole while performing spiral motion of individual water molecule and solid state particle in that phase and the gas phase 2 will travel in zigzag while entangling with the slurry phase 1 and collecting bubbles. Consequently, sedimentation of solid state particles can be prevented resulting in reduction of energy consumption and prevention of abrasion.

Description

【発明の詳細な説明】 発IIの[1的 産業にの利匠九μ この発明は固体粒子を管路輸送する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a method for transporting solid particles through pipes.

従来の技術 高速空気流を用いて’f: ′t11により固体粒子を
輸送する方法、即ち空気輸送法は既に知られている。
BACKGROUND OF THE INVENTION Methods for transporting solid particles by 'f:'t11 using high-velocity air streams, ie pneumatic transport methods, are already known.

この方法は細いノズルから圧縮空気を管内に吹き込み固
体粒子・を圧送するものであるが、管路内の空気は乱流
となり、固体粒イーも乱流状態で管路の内壁に衝突を繰
り返しながら高速で輸送されるので、エネルギー損失が
大きいばかりでなく、固体粒子の硬度が高い場合には管
路内壁が速やかに摩耗するという欠点がある。また大量
の圧縮空気を使用するのでエネルギー消費も大きい。
In this method, compressed air is blown into the pipe through a thin nozzle to forcefully transport the solid particles, but the air inside the pipe becomes a turbulent flow, and the solid particles repeatedly collide with the inner wall of the pipe in a turbulent state. Since the solid particles are transported at high speed, there is a disadvantage that not only is there a large energy loss, but also that the inner wall of the pipe is rapidly worn out if the solid particles have high hardness. Furthermore, since a large amount of compressed air is used, energy consumption is also large.

また固体粒子を水スラリーとして管路を輸送する方法も
あるが、この方法はエネルギー消費は少ないものの、固
体粒子の比正や粒径が大きい場合には管路の下部に沈降
・堆積して管路を閉塞し易い欠点がある。
There is also a method of transporting solid particles through a pipe as a water slurry, but although this method consumes less energy, if the solid particles have a large specificity or particle size, they will settle and accumulate at the bottom of the pipe. It has the disadvantage of easily clogging the tract.

発明が解決しようとする問題点 本発明は従来の固体粒子輸送法の欠点を解消して、低エ
ネルギー消費で管路の摩耗が少ない固体粒子の輸送をす
ることができる方法を提供することを目的とする。
Problems to be Solved by the Invention An object of the present invention is to provide a method capable of transporting solid particles with low energy consumption and less wear on pipes by eliminating the drawbacks of conventional solid particle transport methods. shall be.

発明の佐輩 問罪点を解決するための手段 本発明による固体粒子の輸送方法は、固体粒子と水性媒
体とのスラリーを螺旋流の状態で管路を圧送する際に、
水性媒体の1〜7容量%のガスを添加することよりなる
Means for Solving Problems with the Invention The method for transporting solid particles according to the present invention includes the following steps when pumping a slurry of solid particles and an aqueous medium through a pipe in a spiral flow state:
It consists of adding 1-7% by volume of gas to the aqueous medium.

当初本発明者等は、固体粒子と木とのスラリーを管路を
圧送する際に5 スラリーに旋回J!I動を与えて螺旋
流(管路軸を中心として旋回しつつ管路の軸方向に進行
する流れ)の状態とし、その中の固体粒子も旋回連動さ
せて沈降を抑制する方法を試みたが、管路が短い時には
予期した効果を示しすものの、管路が長い場合には旋回
連動が次第に9A衰して結局固体粒子が沈降するのを避
けられなかった。
Initially, the inventors proposed that when a slurry of solid particles and wood was pumped through a pipe, the slurry would turn into a J! An attempt was made to create a helical flow (a flow that moves in the axial direction of the pipe while rotating around the pipe axis) by applying an I motion, and to suppress sedimentation by causing the solid particles in the flow to rotate as well. When the pipe line was short, the expected effect was shown, but when the pipe line was long, the rotational linkage gradually decreased by 9A, and eventually solid particles were unavoidable to settle.

ところが意外にも、固体粒子と水性媒体とのスラリーを
螺旋流の状態で管路を圧送する際に、水性媒体の1〜7
容量%のガスを添加すると、スラリー相とガス相とはそ
れぞれ別個に螺旋流を形成し、しかも両相が縄のように
相互にねじれ合った状態で管路内を進行し、スラリー相
の螺旋流はガスを加えない場合よりも長距離にわたって
持続することを見出した。
However, surprisingly, when pumping a slurry of solid particles and an aqueous medium through a pipe in a spiral flow state, 1 to 7 of the aqueous medium
% by volume of gas, the slurry phase and the gas phase form separate spiral flows, and both phases proceed through the pipe in a state that is twisted around each other like a rope, causing the slurry phase to form a spiral flow. We found that the flow persisted over longer distances than without the addition of gas.

この状態をモデル的に示したのが第1図で、管路中のス
ラリー相lは、その相の中で個々の水分子及び固体粒子
は螺旋連動をしながら、しかも全体として蛇行し、一方
ガス相2は気泡が集った状態でスラリー相lにからまる
ようにして回じ〈蛇行する。
Figure 1 shows this state as a model.In the slurry phase l in the pipe, the individual water molecules and solid particles in that phase are spirally interlocked, and the overall meandering, The gas phase 2 turns (meanders) in a state where the gas bubbles are gathered and become entangled with the slurry phase 1.

液体を管路輸送する場合、管路内に空気などのガスが混
入すると、通常はブロッキングとかキャビテーションな
どの好ましからざる現象を起こすので極力混入を避ける
のが常識であるが5液相が螺旋運動をしている時はL記
のように極めて特異な現象が起きる。
When transporting liquids through pipes, if air or other gas gets mixed into the pipe, it usually causes undesirable phenomena such as blocking or cavitation, so it is common sense to avoid mixing as much as possible. When doing so, extremely unique phenomena occur, as in Book L.

水性媒体に対するガスの添加率は1〜7容穢%の範囲と
する。l容量%より少ない時は効果が十分でなく、また
7容量%より多くなるとガスが管路の上部に層状に蓄積
停滞してdR/jc運動を行わなくなる。望ましくは2
〜5容量%とする。
The addition rate of gas to the aqueous medium is in the range of 1 to 7% by volume. When it is less than 1% by volume, the effect is not sufficient, and when it is more than 7% by volume, the gas accumulates in a layer at the top of the pipe and stagnates, and no dR/jc movement occurs. Preferably 2
~5% by volume.

管路内で固体粒子と水性媒体とのスラリーを螺旋流の状
態にする方法としては、第2図及びそのA−B線断面図
である第3図に示すように、管路3の内径より大きい内
径の円筒部を有するサイクロンタイプのフィーダー4に
、その円筒の切線方向に取り付けたノズル5からスラリ
ーを送入することにより生じた旋回流をフィーダー4の
コーン部41でし、ぼって管路に送入するとか、水のみ
をノズル5からフィーダーに切線方向から送入して旋回
流を形成させ、固体粒子はフィーダーの中心軸方向から
挿入した固体粒子供給管6から別途送入して水の旋回流
に混入して管路に送入するとかの強制的に螺旋流を形成
させる方法、あるいは特開昭60−58723 r管路
に安定な螺旋気流を生成させる為の装置」に記載された
ような装置を応用して自発的に螺旋流を形成させる方法
などが採用できる。
As shown in Fig. 2 and Fig. 3, which is a cross-sectional view taken along the line A-B, the method of making the slurry of solid particles and aqueous medium into a spiral flow state in the pipe is to Slurry is fed into a cyclone-type feeder 4 having a cylindrical portion with a large inner diameter through a nozzle 5 attached in the tangential direction of the cylinder, and the swirling flow is generated by the cone portion 41 of the feeder 4 and then flows up the pipe. Alternatively, only water is fed from the nozzle 5 to the feeder from the tangential direction to form a swirling flow, and solid particles are fed separately from the solid particle supply pipe 6 inserted from the central axis direction of the feeder. A method of forcibly forming a spiral air flow by mixing it with the swirling flow of air and feeding it into a pipe, or a method described in Japanese Patent Application Laid-open No. 60-58723 "A device for generating a stable spiral air flow in a pipe". Methods such as applying a device like this to spontaneously form a spiral flow can be adopted.

ガスは水に最初から混入してフィーダーに供給してもよ
いし、ノズル5とは別にガスノズル7を設けて、93m
方向からフィーダーに送入してもよい、ガスとしては通
常空気を使用する。
The gas may be mixed with water from the beginning and supplied to the feeder, or a gas nozzle 7 may be provided separately from the nozzle 5, and a 93 m
The gas may be introduced into the feeder from any direction, and air is usually used as the gas.

固体粒子が安定に輸送される距離は、固体粒子の大きさ
、比重等により異なるが、固体粒子の大きさが小さい程
、また固体粒子と水性媒体との比重差が少ない程輸送距
離は延びる。
The distance over which solid particles are stably transported varies depending on the size, specific gravity, etc. of the solid particles, but the smaller the size of the solid particles and the smaller the difference in specific gravity between the solid particles and the aqueous medium, the longer the transport distance becomes.

例えば石炭粒を輸送する場合、小ざな石炭粒を輸送する
場合は水性媒体として水を使用してもよいが、大きな石
炭粒を輸送したい場合には水に石炭の微粉を混入【7て
比重を高めたものを水性媒体として使用して大きな石炭
粒との比重差を少なくするようにすれば、より長距離を
安定に輸送できる。
For example, when transporting coal grains, water may be used as the aqueous medium when transporting small coal grains, but when transporting large coal grains, fine coal powder is mixed with water [7] By using a raised aqueous medium as an aqueous medium to reduce the difference in specific gravity with large coal grains, it can be stably transported over longer distances.

実施例及び比較例 第2図に示したような装置(フィーダーの円筒部の内径
180mm、透明プラスチックチューブ製の管路内径3
8 m m 、長さ20m)を設置し、ノズル5から毎
分2.8文の水を送入すると共に[管路内の氷の流速(
水の流量/管路断面積):2.47m/秒]、木の流降
の2%′の空気をガスノズル7から供給し、固体粒子供
給管6から平均粒径8 m mの石炭粒を供給して、管
路内の木、空気及び石炭粒の挙動を観察した。
Examples and Comparative Examples A device as shown in Fig. 2 (the inner diameter of the cylindrical part of the feeder is 180 mm, the inner diameter of the conduit made of a transparent plastic tube is 3
8 mm, length 20 m) was installed, and 2.8 m/min of water was sent from nozzle 5, and the flow rate of ice in the pipe (
Water flow rate/pipe cross-sectional area): 2.47 m/sec], air at 2% of the wood flow rate was supplied from the gas nozzle 7, and coal particles with an average particle size of 8 mm were fed from the solid particle supply pipe 6. The behavior of wood, air, and coal particles in the pipeline was observed.

比較例として空気を供給せず、水と石炭のみを供給した
場合についても観察した。
As a comparative example, a case where only water and coal were supplied without air was also observed.

蛇行の波長(山と山との間隔)は、入口より遠ざかるに
つれて次第に薩くなる傾向、即ち旋回運動のM衰傾向が
認められたが、その減衰の程度は空気を添加した場合の
方が少なかった。
The meandering wavelength (the distance between the ridges) tended to gradually decrease as it moved away from the entrance, that is, there was a tendency for the M-decay of the swirling motion, but the degree of attenuation was smaller when air was added. Ta.

水と石炭のみの場合は管路人11から8m付近から石炭
の一部が沈降し始めたのに対して、空気を混入した場合
は石炭の全量が管路出口まで輸送された。
In the case of only water and coal, a portion of the coal began to settle from around 8 m from pipe man 11, whereas in the case of mixing air, the entire amount of coal was transported to the pipe exit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理をモデル的に説明するための図、
第2図及び第3図は本発明の実験装置を説IJJするた
めの図である。
FIG. 1 is a diagram for explaining the principle of the present invention in a model manner,
FIGS. 2 and 3 are diagrams for explaining the experimental apparatus of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 固体粒子と水性媒体とのスラリーを螺旋流の状態で管路
を圧送する際に、水性媒体の1〜7容量%のガスを添加
することよりなる固体粒子の輸送方法。
A method for transporting solid particles, which comprises adding gas in an amount of 1 to 7% by volume of the aqueous medium when pumping a slurry of solid particles and an aqueous medium through a pipe in a spiral flow state.
JP22191485A 1985-10-07 1985-10-07 Transport method of solid particles Expired - Fee Related JPH0620943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22191485A JPH0620943B2 (en) 1985-10-07 1985-10-07 Transport method of solid particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22191485A JPH0620943B2 (en) 1985-10-07 1985-10-07 Transport method of solid particles

Publications (2)

Publication Number Publication Date
JPS6283926A true JPS6283926A (en) 1987-04-17
JPH0620943B2 JPH0620943B2 (en) 1994-03-23

Family

ID=16774135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22191485A Expired - Fee Related JPH0620943B2 (en) 1985-10-07 1985-10-07 Transport method of solid particles

Country Status (1)

Country Link
JP (1) JPH0620943B2 (en)

Also Published As

Publication number Publication date
JPH0620943B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
US20220299049A1 (en) Material flow amplifier
JPS6258100A (en) Device for producing spiral flow in conduit
EP0080508A1 (en) Short radius, low wear elbow.
US2219011A (en) Apparatus for grinding
US4768314A (en) Apparatus for generating an abrasive fluid jet
JPS6283926A (en) Transporting method for solid state particle
US20230302465A1 (en) Apparatus for separating components of a suspension
JPS6118631A (en) Hydraulic power transport method of solid and device for said method
JP3342886B2 (en) Coanda bend tube
JPH0573650B2 (en)
JPS60213623A (en) Air conveying method of granules
US1450290A (en) Oversize return for mills
RU2189931C2 (en) Method of transportation of high concentration loose materials in gas mixture
JPH0331116A (en) Subsidiary air feed method for pneumatic granule transport pipe
JPH11241700A (en) Spiral flow generating device
JPH02229906A (en) Method and equipment for flow transportation of object to be conveyed
SU816913A1 (en) Transport pipeline knee
CN208320961U (en) A kind of no sieve rotating separation horizontal sand mill
JP2582098B2 (en) Coanda spiral high concentration transport device
JPS60143841A (en) Method of crushing solid grain
JPS60122629A (en) Transport device for solid particles using spiral air stream
JPS6093033A (en) Solid particles supply device to spiral air stream zone
JPS6048825A (en) Transportation of granular material through reinforced spiral air current
JPS6097119A (en) Fluid carrying method of solid material
CN112173722A (en) Fluid conveying device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees