JPS6283350A - Dielectric ceramic composition - Google Patents

Dielectric ceramic composition

Info

Publication number
JPS6283350A
JPS6283350A JP60219564A JP21956485A JPS6283350A JP S6283350 A JPS6283350 A JP S6283350A JP 60219564 A JP60219564 A JP 60219564A JP 21956485 A JP21956485 A JP 21956485A JP S6283350 A JPS6283350 A JP S6283350A
Authority
JP
Japan
Prior art keywords
composition
dielectric ceramic
ceramic composition
dielectric constant
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60219564A
Other languages
Japanese (ja)
Inventor
横谷 洋一郎
純一 加藤
宏 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60219564A priority Critical patent/JPS6283350A/en
Publication of JPS6283350A publication Critical patent/JPS6283350A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は1100℃以下の温度で焼成される高誘電率系
誘電体磁器組成物に関し、特に高温度下での抵抗率の大
きいものに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a high dielectric constant dielectric ceramic composition fired at a temperature of 1100° C. or lower, and particularly to one having a high resistivity at high temperatures.

従来の技術 近年セラミックコンデンサにおいては、素子の小型化、
大容量化への要求から、積層型セラミックコンデンサが
急速に普及しつつある。積層型セラミックコンデンサは
通常、内部電極とセラミックを一体焼成する工程によっ
て製造される。従来より、高誘電率系のセラミックコン
デンサ材料にはチタン酸バリウム系の材料が用いられて
きたが、焼成温度が1300℃程度と高いため、内部電
極材料としてはPt、Pdなどの高価な金属を用いる必
要があった。
Conventional technology In recent years, ceramic capacitors have become smaller and smaller.
Due to the demand for larger capacity, multilayer ceramic capacitors are rapidly becoming popular. Multilayer ceramic capacitors are usually manufactured by a process of integrally firing internal electrodes and ceramics. Conventionally, barium titanate-based materials have been used for high-permittivity ceramic capacitor materials, but because the firing temperature is as high as 1300°C, expensive metals such as Pt and Pd have been used as internal electrode materials. It was necessary to use it.

これに対し1100℃以下で焼成でき内部電極として前
者より安価なAg系材料を用いることができる鉛゛複合
ペロブスカイト系材料が開発されている。
In contrast, a lead-composite perovskite material has been developed that can be fired at 1100° C. or lower and allows the use of Ag-based materials, which are cheaper than the former, as internal electrodes.

例えばPbZr03とPb (Mgxts Nb*zs
 )03を含むものとしては、特開昭56−48004
号公報に記載の材料が知られている。また発明者らは、
すでにPbZr03 、Pb (Mg1zs Nt12
z、J)03 、Pb (N1tz2W1/2 ) O
s三成分からなる高誘電率系誘電体磁器組成物を提案し
ている。
For example, PbZr03 and Pb (Mgxts Nb*zs
)03 is included in JP-A-56-48004.
The material described in the publication is known. The inventors also
Already PbZr03, Pb (Mg1zs Nt12
z, J)03, Pb (N1tz2W1/2) O
We have proposed a high dielectric constant dielectric ceramic composition consisting of three components.

発明が解決しようとする問題点 PbZr03−Pb(Mg1/3Nbqts )OG系
固溶体は高い誘電率が得られるとともに、1100℃以
下の焼成温度でチ密な焼結体を得ることのできるものも
あるが、焼成時の鉛成分の蒸発により素子の抵抗値が低
下しやすく、特に高温下での抵抗値が低下しやすい傾向
を有していた。
Problems to be Solved by the Invention PbZr03-Pb (Mg1/3Nbqts) OG solid solutions have a high dielectric constant, and some can produce dense sintered bodies at sintering temperatures of 1100°C or lower. The resistance value of the element tends to decrease due to evaporation of the lead component during firing, and the resistance value tends to decrease particularly at high temperatures.

本発明ではかかる問題点に鑑みPbZr0s−Pb (
Mg1/3Nbqts ) 03系のもつ高い誘電率を
そこなわず、焼成温度を低下し、特に高温下での抵抗値
の高い誘電体磁器組成物を提供することを目的としてい
る。
In view of such problems, the present invention has developed PbZr0s-Pb (
The object of the present invention is to provide a dielectric ceramic composition that lowers the firing temperature without impairing the high dielectric constant of the Mg1/3Nbqts 03 series, and has a high resistance value especially at high temperatures.

問題点を解決するための手段 PbZrO3−Pb (Mgtz3Nb2z3 )03
系に第三成分としてPb (Zn*t2W1/2 ) 
03を加える。
Means to solve the problem PbZrO3-Pb (Mgtz3Nb2z3)03
Pb (Zn*t2W1/2) as a third component in the system
Add 03.

作用 Pb (Znxt2W1/2 ) 03を加えルコとニ
ヨリ、1100℃以下の焼成温度で積層コンデンサ素子
として高信頼性を得られるチ密な焼結体が得られ内部電
極としてAg系の材料を用いることが可能となり、かつ
高温度下において高い抵抗値を有する信頼性の高い素子
が得られる。
By adding Pb (Znxt2W1/2) 03, a dense sintered body that can provide high reliability as a multilayer capacitor element can be obtained at a firing temperature of 1100°C or less, and Ag-based materials can be used as internal electrodes. This makes it possible to obtain a highly reliable element having a high resistance value under high temperatures.

実施例 出発原料には化学的に高純度なP b O1M g O
zN b 20 ! 、Z r O2、Z n OSW
 O3を用いた。
Starting materials for the examples include chemically highly pure P b O1M g O
zN b 20! , Z r O2, Z n OSW
O3 was used.

これらを純度補正をおこなったうえで所定量を秤量し、
メノウ製玉石を用い純水を溶媒としボールミルで17時
時間式混合した。これを吸引ろ過して水分の大半を分離
した後乾燥し、その後ライカイ機で充分解砕した後粉体
量の5wt%の水分を加え、成形圧力500kg/cm
2で直径60IIII11高さ約50+w++の円柱状
に成型した。これをアルミナルツボ中に入れ同質のフタ
をし、750℃〜880℃で2時間仮焼した。次に仮焼
物をアルミナ乳鉢で粗砕し、さらにメノウ製玉石を用い
純水を溶媒としてボールミル゛で17時間粉砕し、これ
を吸引ろ過し水分の大半を分離した後乾燥した。以上の
仮焼、粉砕、乾燥を数回くりかえした後この粉末にポリ
ビニルアルコール6 w t%水溶液を粉体量の6 w
 t%加え、32メツシユふるいを通して造粒し、成形
圧力1000kg/cm2で直径13醜、高さ約5mの
円柱状に成形した。成形物は空気中で700℃まで昇温
し1時間保持することによりポリビニルアルコール分を
バーンアウトし、冷却後これをマグネシャ磁器容器に移
し、同質のフタをし、空気中で所定温度まで400℃/
hrで昇温し2時間保持後400℃/ h rで降温し
た。
After correcting the purity of these, weigh the specified amount,
Mixing was carried out for 17 hours using a ball mill using agate boulders and pure water as a solvent. This was filtered by suction to remove most of the moisture, then dried, and then thoroughly crushed in a Raikai machine. After that, 5wt% of moisture was added to the powder amount, and the molding pressure was 500kg/cm.
2 into a cylindrical shape with a diameter of 60III11 and a height of about 50+w++. This was placed in an alumina crucible, covered with a homogeneous lid, and calcined at 750°C to 880°C for 2 hours. Next, the calcined product was roughly crushed in an alumina mortar, and further crushed for 17 hours in a ball mill using agate boulders and pure water as a solvent.The resulting mixture was filtered under suction to remove most of the moisture, and then dried. After repeating the above calcining, crushing, and drying several times, a 6 wt% aqueous solution of polyvinyl alcohol was added to the powder to give 6 wt% of the powder amount.
t% was added, and the mixture was granulated through a 32-mesh sieve, and molded into a cylindrical shape with a diameter of 13 cm and a height of about 5 m at a molding pressure of 1000 kg/cm2. The molded product was heated to 700°C in air and held for 1 hour to burn out the polyvinyl alcohol content. After cooling, it was transferred to a Magnesia porcelain container, covered with a similar lid, and heated in air to a specified temperature of 400°C. /
The temperature was raised at 400°C/hr, held for 2 hours, and then lowered at 400°C/hr.

焼成物は厚さ1mmの円板状に切断し、両面にCr −
Auを蒸着し、誘電率、tanδを1kHz、I V 
/ wの電界下で測定した。また抵抗率は、20℃およ
び85℃で1kV/+n+aの電圧を印加後1分値から
求めた。
The fired product was cut into a disk shape with a thickness of 1 mm, and both sides were coated with Cr −
Au was evaporated, the dielectric constant, tan δ was 1 kHz, I V
Measurements were made under an electric field of /w. Further, the resistivity was determined from the value 1 minute after applying a voltage of 1 kV/+n+a at 20° C. and 85° C.

なお焼成温度は焼成物の密度がもっとも大き(なる温度
とした。
The firing temperature was set at the temperature at which the density of the fired product was the highest.

表1に本発明の組成範囲および周辺組成の成分、焼成温
度、誘電率、tanδ、誘電率の温度変化率、抵抗率を
示す。
Table 1 shows the composition range of the present invention, peripheral composition components, firing temperature, dielectric constant, tan δ, temperature change rate of dielectric constant, and resistivity.

図は表1に示した各試料を、PbZr0+、Pb(Mg
1/3Nbqts ) 03 % Pb (Zntt*
 W1/2 )o3を端成分とする三角組成図中に示し
たもので、斜線の範囲が本発明の範囲を示す。
The figure shows each sample shown in Table 1, PbZr0+, Pb(Mg
1/3Nbqts) 03% Pb (Zntt*
It is shown in a triangular composition diagram with W1/2)o3 as an end member, and the shaded range indicates the range of the present invention.

発明の範囲外の組成物では、表1のNo、に*印をつけ
た試料を例として挙げたが最適焼成温度が1100℃を
越える、誘電率が4000以下となる、高温度下での抵
抗値が低(なる、の3点のいずれか、もしくはそれらの
重複した難点を有している。発明の範囲内の組成物では
前記3点の問題がいずれも克服されている。
For compositions outside the scope of the invention, samples marked with * in Table 1 are listed as examples, but the optimum firing temperature exceeds 1,100°C, the dielectric constant is 4,000 or less, and the resistance at high temperatures is shown. The composition within the scope of the invention overcomes all three problems.

発明の効果 本発明によれば、1100℃以下の温度で積層コンデン
サ素子として高信頼性を得るためのチ密な焼結体が得ら
れるので、内部電極としてAg系の材料を用いることが
可能になり、かつ誘電率が4000以上で高温度下での
抵抗率の高い優れた誘電体磁器組成物を実現できる。
Effects of the Invention According to the present invention, it is possible to obtain a dense sintered body for achieving high reliability as a multilayer capacitor element at a temperature of 1100°C or lower, making it possible to use Ag-based materials as internal electrodes. An excellent dielectric ceramic composition having a dielectric constant of 4000 or more and high resistivity at high temperatures can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明に係る磁器組成物の成分組成を示す三角組成
図である。
The figure is a triangular composition diagram showing the component composition of the porcelain composition according to the present invention.

Claims (1)

【特許請求の範囲】 Pb(Mg_1_/_3Nb_2_/_3)O_3、P
bZrO_3、Pb(Zn_1_/_2W_1_/_2
)O_3からなる三成分系磁器組成物を Pb(Mg_1_/_3Nb_2_/_3)_xZr_
y(Zn_1_/_2W_1_/_2)_zO_3 と表したときに(ただし、x+y+z=1.00)、P
b(Mg_1_/_3Nb_2_/_3)O_3、Pb
ZrO_3、Pb(Zn_1_/_2W_1_/_2)
O_3を頂点とする三角座標で示される三成分組成図に
おいて、下記の組成点A、B、C、D A:x=0.950y=0.025z=0.025B:
x=0.725y=0.250z=0.025C:x=
0.025y=0.825z=0.150D:x=0.
025y=0.400z=0.575を頂点とする四角
形の領域内の組成範囲にあることを特徴とする誘電体磁
器組成物。
[Claims] Pb(Mg_1_/_3Nb_2_/_3)O_3, P
bZrO_3, Pb(Zn_1_/_2W_1_/_2
) Pb(Mg_1_/_3Nb_2_/_3)_xZr_
When expressed as y(Zn_1_/_2W_1_/_2)_zO_3 (however, x+y+z=1.00), P
b(Mg_1_/_3Nb_2_/_3)O_3, Pb
ZrO_3, Pb (Zn_1_/_2W_1_/_2)
In the ternary composition diagram shown in triangular coordinates with O_3 as the vertex, the following composition points A, B, C, D A: x = 0.950 y = 0.025 z = 0.025 B:
x=0.725y=0.250z=0.025C:x=
0.025y=0.825z=0.150D:x=0.
A dielectric ceramic composition characterized by having a composition within a rectangular region having vertices of 025y=0.400z=0.575.
JP60219564A 1985-10-02 1985-10-02 Dielectric ceramic composition Pending JPS6283350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60219564A JPS6283350A (en) 1985-10-02 1985-10-02 Dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60219564A JPS6283350A (en) 1985-10-02 1985-10-02 Dielectric ceramic composition

Publications (1)

Publication Number Publication Date
JPS6283350A true JPS6283350A (en) 1987-04-16

Family

ID=16737485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60219564A Pending JPS6283350A (en) 1985-10-02 1985-10-02 Dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JPS6283350A (en)

Similar Documents

Publication Publication Date Title
JPS6283350A (en) Dielectric ceramic composition
JPS6278146A (en) Dielectric ceramic composition
JPS62123064A (en) Dielectric ceramic composition
JPS6283351A (en) Dielectric ceramic composition
JPS61174162A (en) Dielectric ceramic composition
JPH068207B2 (en) Dielectric porcelain composition
JPS62119802A (en) Dielectric porcelain compound
JPS6283365A (en) Dielectric ceramic composition
JPS6283353A (en) Dielectric ceramic composition
JPS61191558A (en) High permittivity dielectric ceramic composition
JPS6278155A (en) Dielectric ceramic composition
JPS6321249A (en) Dielectric ceramic composition
JPH0324426B2 (en)
JPS62123061A (en) Dielectric ceramic composition
JPS62119804A (en) Dielectric porcelain compound
JPS6283354A (en) Dielectric ceramic composition
JPS62117205A (en) Dielectric porcelain compound
JPH02309B2 (en)
JPS61155258A (en) High dielectric constant dielectric ceramic composition
JPS63166106A (en) Dielectric ceramic composition
JPS62123065A (en) Dielectric ceramic composition
JPH0329019B2 (en)
JPS62119803A (en) Dielectric porcelain compound
JPS63108611A (en) Dielectric ceramic composition
JPS61191560A (en) High permittivity dielectric ceramic composition