JPS6283052A - Vertical type crusher - Google Patents

Vertical type crusher

Info

Publication number
JPS6283052A
JPS6283052A JP22198785A JP22198785A JPS6283052A JP S6283052 A JPS6283052 A JP S6283052A JP 22198785 A JP22198785 A JP 22198785A JP 22198785 A JP22198785 A JP 22198785A JP S6283052 A JPS6283052 A JP S6283052A
Authority
JP
Japan
Prior art keywords
hot air
rotary table
blade
angle
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22198785A
Other languages
Japanese (ja)
Other versions
JPH0257989B2 (en
Inventor
武谷 国男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP22198785A priority Critical patent/JPS6283052A/en
Publication of JPS6283052A publication Critical patent/JPS6283052A/en
Publication of JPH0257989B2 publication Critical patent/JPH0257989B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crushing And Grinding (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 不発明は回転テーブルとローラとの協働によりセメント
原料や石炭、化学品などを粉砕する竪型扮砕俄に関する
ものrろる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The invention relates to a vertical crusher for crushing raw materials for cement, coal, chemicals, etc. through the cooperation of a rotary table and rollers.

〔従来技術〕[Prior art]

セメント原料や石炭、化学品などの粒体を細かく粉砕し
粉体とする粉砕機の一種として回転テーブルとローラと
全備えた竪型粉砕機が広く用いられている。この種の粉
砕機は、円筒状ケーシングの下部において減速機付きモ
ータで駆動されて低速回転する円盤状の回転テーブルと
、その上面外周部を円周方向へ等分する箇所に油圧等で
圧接されて従動回転する複数個のa−ラとを備えている
Vertical crushers equipped with a rotary table and rollers are widely used as a type of crusher for finely crushing granules such as cement raw materials, coal, and chemicals into powder. This type of crusher consists of a disk-shaped rotary table that is driven by a motor with a reducer to rotate at low speed in the lower part of a cylindrical casing, and a part that divides the outer circumference of the upper surface into equal parts in the circumferential direction, which is pressed by hydraulic pressure or the like. It is equipped with a plurality of a-ra which are driven to rotate.

そして回転テーブルの中心部へ供給管で供給され定原料
としての粒体は、テーブルの回転によりテーブル半径方
向の遠心力金堂けてテーブル上を滑るときにテーブルに
、J:9回転方向の力を受け、テーブルとの間で滑って
テーブル回転数J:9いくらか遅い回転を行なう。以上
2つの力すなわち半径方向と回転方向の力とが合成され
、粉体はテーブル上を渦巻状の軌跡を描いて回転テーブ
ルの外周部へ移動する。この外周部にはローラが圧接さ
れて回転しているので、渦巻線を描いた粒体はローラと
回転テーブルとの間ヘローラ軸方向とめる角度をなす方
向A・ら進入して噛込まれ粉砕される。
The granules, which are supplied to the center of the rotary table through a supply pipe and serve as a constant raw material, are subjected to centrifugal force in the radial direction of the table due to the rotation of the table, and as they slide on the table, a force in the J:9 rotational direction is applied to the table. The table rotates at a somewhat slow rotation speed of J: 9 as it slides between the table and the table. The above two forces, ie, the radial and rotational forces, are combined, and the powder moves to the outer periphery of the rotary table while drawing a spiral trajectory on the table. Since the roller is in pressure contact with this outer periphery and is rotating, the granules with spiral lines enter between the roller and the rotary table in direction A, which forms an angle in the axial direction of the roller, and are bitten and pulverized. Ru.

一方、ケーシングの基部にはダクトV:よって熱風が導
かれており、この熱風が回転テーブルの外周面とケーシ
ングの内周面との間の環状空間部から吹き上がることに
より、微粉体は乾燥されなからケーシング内全土昇し、
熱風との混合体として排出口ρλら排出され次の工程へ
送られる。
On the other hand, hot air is guided through a duct V at the base of the casing, and the fine powder is dried by blowing up the hot air from the annular space between the outer circumferential surface of the rotary table and the inner circumferential surface of the casing. The whole inside of the casing rises,
It is discharged from the discharge port ρλ as a mixture with hot air and sent to the next process.

そして、上記環状空間部から熱風を吹き上げるための環
状9間部内の構造としては従来、熱風全竜巻状に旋回さ
せながら吹き上げるようにした旋回型と、熱風を土方甲
7L?部へ向って円錐状に吹き上げるようにした円錐型
とが採用されている。
Conventionally, the structure within the annular space for blowing hot air up from the annular space is a swirling type in which the hot air is blown up while swirling in a tornado shape, and a structure that blows up the hot air in a tornado-like manner. A conical type is used in which the air is blown up in a conical shape towards the area.

第7図は旋回型熱風吹上構造を採用した竪型粉砕機の概
略縦断面図、第8図は第7図のAA断面図でろって、O
れを同図に基いて説明すると、円筒状のケーシング1と
その下部内で回転する回転テーブル2との間には環状空
間部3が形成されており、この環状空間部3内には、複
数個のブレード4が環状空間部3を等間隔で遮断するよ
うにして配設されている。そして、各ブレード4は、回
転テーブル20回転方向に対して上端が先行する方向に
傾斜しており、この傾斜角でるるブレード角βば、被粉
砕物の粒度等にエフ300〜70° の間で選択される
Figure 7 is a schematic vertical cross-sectional view of a vertical crusher that adopts a rotating hot air blowing structure, and Figure 8 is a cross-sectional view taken along line AA in Figure 7.
To explain this based on the figure, an annular space 3 is formed between a cylindrical casing 1 and a rotary table 2 that rotates within the lower part of the casing 1. The blades 4 are arranged to block the annular space 3 at equal intervals. Each blade 4 is inclined in a direction in which the upper end is in front with respect to the rotating direction of the rotary table 20, and the blade angle β at this inclination angle is between 300° and 70° depending on the particle size of the material to be crushed. is selected.

この1うに構成されていることr(よシ、回転テーブル
2が回転して熱風が環状空間部3を吹き上がると、ブレ
ード4が部面していることにエフ、ブレード4を過ぎた
熱風は第7図に矢印Bで示す工うに旋回しながら粉砕物
を上昇させる。
(1) When the rotary table 2 rotates and the hot air blows up in the annular space 3, the blades 4 are partially exposed. The crushed material is raised while rotating in the direction indicated by arrow B in FIG.

次に、第9図は円堆型熱風吹上構造ケ採用し九竪型粉砕
機の概略縦断面図、第10図は第9図のCCvfr面因
で8つで、これを同図に基いて説明すると、中くびれ形
円筒状のケーシング5とその下部内で一転する回転テー
ブル6との間に形成された環状空間部T内には、複数個
のブレード8が環状空間部Tを等間隔で遮断する工うに
して配設されている。この場合、各ブレード8のブレー
ド角βは90°でろって1立しており、ブレード8の上
方には、環状に形成され友アーマリング9が設けられて
いる。
Next, Fig. 9 is a schematic longitudinal cross-sectional view of a nine-vertical crusher that adopts a round-shaped hot air blowing structure, and Fig. 10 shows the CCvfr surface of 8 in Fig. To explain, in an annular space T formed between a constricted cylindrical casing 5 and a rotary table 6 that rotates in its lower part, a plurality of blades 8 move the annular space T at equal intervals. It is installed in such a way that it can be shut off. In this case, the blade angle β of each blade 8 is 90°, which is a straight line, and a companion armor ring 9 formed in an annular shape is provided above the blade 8.

このように構成されていることにより、V4Wcするブ
レード8間を垂直方向に吹き上がる熱風は、アーマリン
グ9に衝突して変向され、第9図に矢印りで示される工
うな内外2つの円錐に挾まれて上昇し、粉砕物を上昇さ
せる。この円錐の内側は無風状態でるる。
With this configuration, the hot air blowing up vertically between the V4Wc blades 8 collides with the armor ring 9 and is deflected, forming two cones inside and outside the cone shown by arrows in FIG. It rises while being held in place, and lifts the crushed material. There is no wind inside this cone.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、この工りな従来の旋回型9円錐型の熱風
吹上構造においてに、次の工うな問題点が残されている
。すなわち、まず旋回型のものにおいては、回転テーブ
ル2上方での熱風の滞留時間が長く原料と熱風との熱交
換による乾燥が良好に行なわれるという長所″’!r’
ffする反面、熱風の流腺が直進でなく旋回流でるるた
めに絶えずベント圧損全消費し、必要風量全吹上げる几
めには大きな風量と風圧全4丁する送風設備が必要とな
って設備費や動力費が大幅に増大するという問題があっ
た。また、熱風が旋回すると、これとともに上昇旋回す
る粗大粒子が遠心力でケーシング1の内壁に沿う方向へ
飛ばされるので、回・iニf−プル2上へ落下還元され
ず、再粉砕の機会が減少して粉砕効率が低下するという
問題があった。
However, the following problems remain in this complicated conventional rotating nine-cone hot air blowing structure. That is, first of all, the advantage of the rotating type is that the residence time of the hot air above the rotary table 2 is long, and drying is performed well by heat exchange between the raw material and the hot air.
On the other hand, since the flow glands of hot air do not travel straight but in a swirling flow, the vent pressure loss is constantly consumed, and in order to blow up the required air volume, a large air volume and air blowing equipment with 4 units of wind pressure is required. There was a problem in that the costs and power costs increased significantly. In addition, when the hot air swirls, the coarse particles that are swirling upward are blown away by centrifugal force in the direction along the inner wall of the casing 1, so they do not fall onto the pull 2 and are returned to the ground, giving them a chance to be re-pulverized. There was a problem in that the grinding efficiency decreased as a result.

次に、円錐型のものにおいては、吹上げ熱風が内外2つ
の円錐の稜線に沿って直進しながら単調に減速されるが
、円錐の頂部付近では通過断面積が縮少されることにエ
フ流速が増大するので、圧力損失が増大し、大きな送風
設備が必要となって設備費や動力費が増大するという問
題がめつ友。
Next, in the case of a conical type, the hot air blowing up is monotonically decelerated as it travels straight along the ridgelines of the two cones, the inner and outer sides. This increases pressure loss and requires large air blowing equipment, which increases equipment and power costs.

まt1黙風が旋回せず粗大粒子に遠心力が作用しないの
で、回転テーブルへの還元率が旋回型よりも高いが、そ
の反面、中間粒子が円錐の頂部方向へ高く舞い一ヒがっ
て排出されてしまい、回転テーブルへ還元しにくいとい
う問題がめった。
Since the silent wind does not rotate and centrifugal force does not act on the coarse particles, the return rate to the rotating table is higher than that of the rotating type, but on the other hand, the intermediate particles fly higher towards the top of the cone A frequent problem was that it was ejected and difficult to return to the rotary table.

〔問題点を解決するための手段〕[Means for solving problems]

このような問題点全解決するために本発明においては回
転テーブル周囲の熱風吹上げ通路内に並列する板状ブレ
ードを、粉砕機中心を通る放射線と熱風流線とのな丁角
度すなわちブレード偏角が20°ないし50°となるよ
うに傾斜させるとともに、熱風流線と水平面とのなす角
度丁なわち立上9角度が50°ないし80°となるよう
3次元型に形成した。
In order to solve all of these problems, in the present invention, plate-shaped blades arranged in parallel in the hot air blowing passage around the rotary table are arranged so that the angle between the radiation passing through the center of the crusher and the hot air flow line is the blade deflection angle. It was formed into a three-dimensional mold so that the angle between the hot air flow line and the horizontal plane, that is, the rising angle, was 50° to 80°.

〔作用〕[Effect]

このように構成することにより、吹上げ通路内全吹上が
る熱風はブレード面が形成するガス流線に沿って上昇し
、熱風により吹上げられる粉粒体は、ブレード通過後の
熱風流速の減少により粒子重力が熱風抗力に打ち勝って
粗大粒子から頭に落下するが、前記偏角の作用に工9テ
ーブル中央へ落下し、再度の粉砕機会が、従来型式の旋
回型および円錐型エエノも増大する。iた、徽粉粒子は
重力作用が小さいので、熱風で運搬されながら粉砕機上
部のセパレータに到達する。
With this configuration, the hot air that blows up completely in the blowing passage rises along the gas streamline formed by the blade surface, and the powder and granules that are blown up by the hot air are reduced due to the decrease in the hot air flow velocity after passing through the blade. Particle gravity overcomes the hot air drag and the coarse particles fall onto the head, but due to the effect of the deflection angle, they fall to the center of the machine table, increasing the chance of re-pulverization, even in the case of conventional swirl and conical types. In addition, since the gravitational force of the powder particles is small, they reach the separator at the top of the pulverizer while being carried by hot air.

〔突施例〕[Sudden example]

第」図ないし第3図は本発明に係る竪型粉砕機の笑施例
を示し、第1図はその縦断面図、第2図は熱風吹上げ通
路近傍の一部平面図、第3図は第2図のEE断面図でる
る。これらの図において、粉砕機11は、後述する回転
テーブル17等の粉砕郡全体を収納するケーシング12
を備えており、このケーシング12は、円筒状に形成さ
れて床面に固定され皮下部ケーシングと、中絞りされた
断面円形の鼓形筒状に形成されて中央部を土工に接合さ
れ几ケーシング本体14と、その上端に接合された上部
ケーシング15とで一体的に形成されている。下部ケー
シング13の中心部には、モータ付きの減速機16が配
設されていて、その上方へ向う出力軸には円盤状に形成
された(口)転テーブル1Tが軸層されており、減速@
16に駆動されて第1図の上から見た時計方向に回転し
ている。
Figures 1 to 3 show an embodiment of the vertical crusher according to the present invention, in which Figure 1 is a longitudinal sectional view thereof, Figure 2 is a partial plan view near the hot air blowing passage, and Figure 3 is a partial plan view of the vicinity of the hot air blowing passage. is a sectional view taken along line EE in FIG. In these figures, the crusher 11 includes a casing 12 that houses the entire crushing group including a rotary table 17, which will be described later.
The casing 12 includes a cylindrical casing fixed to the floor and a lower skin casing, and a hollow casing 12 formed into a drum-shaped cylinder with a circular cross section and whose central part is joined to the earthwork. It is integrally formed with a main body 14 and an upper casing 15 joined to the upper end thereof. A speed reducer 16 with a motor is disposed in the center of the lower casing 13, and a rotary table 1T formed in a disc shape is mounted on the output shaft facing upward, and a speed reducer 16 is installed in the center of the lower casing 13. @
16 and rotates clockwise when viewed from above in FIG.

18は下部ケーシング13C/)上端面外置部全円周方
向へ4等分する位置にそれぞt水平状に支持されたアー
ム軸でろって、各アーム軸18に軸層されたアーム19
には、頭載円錐状に形成された粉砕ローブ20がローラ
軸21全介して回転自任に支持されており、各粉砕ロー
ラ20に、回転テーブル1γの上端外周面r(周面を対
接させている。
Reference numeral 18 denotes an arm shaft supported horizontally at a position dividing the outer part of the upper end surface into four equal parts in the circumferential direction, and an arm 19 is layered on each arm shaft 18.
, a crushing lobe 20 formed in the shape of a conical head is rotatably supported through the entire roller shaft 21, and each crushing roller 20 is attached to the upper end outer circumferential surface r of the rotary table 1γ (the circumferential surfaces are in contact with each other). ing.

そして、各アーム19は、図示しない流体圧シリンダ等
と駆動連結されておplその駆動で揺動調節されること
にニジ、被粉砕物の供給粒径等にしたがった粉砕ローラ
20と回転テーブル17との間l!]が調節されるよう
に構成されている。
Each arm 19 is drivingly connected to a fluid pressure cylinder (not shown), etc., and is oscillated by the drive thereof, and a crushing roller 20 and a rotary table 17 according to the supply particle size of the material to be crushed, etc. Between me! ] is adjusted.

一方、回転テーブル17の中心部上方には、円筒状に形
成され之原料供l&管22が、ダクト23とステー24
とでよ下を支持されて垂直状に配設されており、ダクト
23内の搬送コンベア25で搬送された例えば石灰石等
の原料は、原料供給管22内全落下して回転テーブル1
1上へ供給されるように構成されている。
On the other hand, above the center of the rotary table 17, a cylindrical raw material supply pipe 22 is connected to a duct 23 and a stay 24.
The raw material such as limestone, which is conveyed by the conveyor 25 in the duct 23, falls completely inside the raw material supply pipe 22 and reaches the rotary table 1.
1.

さらに、回転テーブル1γの外周部下方には、内示しな
いダクトに工っで熱風発生装置との間全接続された環状
の熱風通路26が投けられており、1.7′!:、回転
テーブル1Tの外周面とケーシング本体14内局面との
間には、環状に形成され比熱風吹上げ通路27が、熱風
通路26とケーシング本体14の内室とを連通して形成
されている。この熱風吹上げ通路27の内周壁28と外
周壁29とは、断面を第3図に示すように傾斜されてい
て全体を頭載円錐状に形成されており、その稜線と水平
面とのな丁角度V丁なわち熱風流線と水平面とのなす立
上り角度Vが20°ないし50°となるように設定され
ている。さらに、熱風吹上げ通路27の内外両周壁2B
 、29間には、板状に形成された複数個のブレード3
0が、通路27を遮断して円周方向に等間隔で配設され
ている。そし、て各ブレード30は、第2図にそれぞれ
符号F、Flで示すブレード30の中心を通る放射線と
垂線とのな丁角度φ、アなわち粉砕機中心を通る放射線
と熱風流線とのなア角度φが20°ないし50゜となる
ように#4斜しており、この傾斜方向に、第2図に符号
Gで示ア回転テーブル17の回転力向に対して外周壁2
9側が先行テる方向に設定されている。
Further, below the outer periphery of the rotary table 1γ, a ring-shaped hot air passage 26 is installed in a duct (not shown) and is fully connected to the hot air generator. : Between the outer circumferential surface of the rotary table 1T and the inner surface of the casing body 14, an annular specific hot air blowing passage 27 is formed to communicate the hot air passage 26 and the inner chamber of the casing body 14. . The inner circumferential wall 28 and the outer circumferential wall 29 of this hot air blowing passage 27 have an inclined cross section as shown in FIG. The angle V, that is, the rising angle V between the hot air flow line and the horizontal plane is set to be 20° to 50°. Furthermore, both the inner and outer peripheral walls 2B of the hot air blowing passage 27
, 29 are provided with a plurality of plate-shaped blades 3.
0 are arranged at equal intervals in the circumferential direction, blocking the passage 27. Each blade 30 has an angle φ between a ray passing through the center of the blade 30 and a perpendicular line, respectively indicated by symbols F and Fl in FIG. #4 is inclined so that the angle φ is between 20° and 50°, and in the direction of this inclination, the outer peripheral wall 2, indicated by reference numeral G in FIG.
The direction is set such that the 9 side is in the lead direction.

31は原料@給筒22と同心状に嵌合きれた回転筒31
a とその下部に固定された逆円錐状の分級板31b 
とで一体形成されたセパレータでめって、上部ケーシン
グ15上端部の軸受32に回転自任に軸支されており、
ツー’J 33 、34間に張架されたベルト35と減
速機36とを介してモータ37で回転駆動されている。
31 is a rotary cylinder 31 that is fully fitted concentrically with the raw material @ supply cylinder 22
a and an inverted cone-shaped classification plate 31b fixed to its lower part.
The upper casing 15 is rotatably supported by a bearing 32 at the upper end of the upper casing 15 through a separator integrally formed with the upper casing 15.
It is rotationally driven by a motor 37 via a belt 35 stretched between the two'J 33 and 34 and a speed reducer 36.

38は上部ケーシング15に開口され友排気口でろって
ダクトによって図示しない集塵装置等に接続されている
Reference numeral 38 is opened in the upper casing 15 and is connected to a dust collector or the like (not shown) through a duct.

以上のように構成された粉砕機の動作を石灰石の粉砕を
例にとって説明する。減速機16とモータ37とを始動
して回転テーブル17とセパレータ31とを回転させ几
のち、搬送コンベア25により石灰石を搬送して原料供
給管22へ供給すると、この石灰石は回転テーブル1T
の中心部へ落下し、回転テーブル1γの回転と遠心力と
で渦巻状の軌跡全面き回転テーブル17の外周部へ向っ
て移動する。回転テーブル17の外周部では粉砕ローラ
20が回転しているので、移動した石灰石の大部分は粉
砕ローラ20と回転テーブル1γとの間に噛込まれ、圧
縮、衝撃、剪断作用にエリ粉砕されて微粉となる。この
微粉、および粉砕ローラ20に噛込まれずに回転テーブ
ル1γの周縁から外れ次組大粒子と中間粒子とは、熱風
吹上げ通路27へ落下するが、このとき、熱風発生装置
によりダクトを経て送られてきた熱風が熱風通路26〃
・ら熱風吹上げ通路へ吹上がるので、これら微粉や中間
粒子等(1熱風とともに粉砕機内部を上昇する。上昇し
た微粉や中間粒子は、セパレータ31の分級板31bに
衝突して分級され、微粉はセパレータ31金通過して排
気口38から排出され友のち、集塵様等を経て回収され
る。ま友、セパレータ31を通過しなかった中間粒子に
、回転テーブル17上に落下還元されて上記粉砕と分級
とを繰返す。
The operation of the crusher configured as described above will be explained by taking the crushing of limestone as an example. After starting the reducer 16 and motor 37 to rotate the rotary table 17 and separator 31, the limestone is conveyed by the conveyor 25 and supplied to the raw material supply pipe 22, and this limestone is transferred to the rotary table 1T.
It falls to the center of the rotary table 17, and moves toward the outer periphery of the rotary table 17 with a spiral trajectory over the entire surface due to the rotation of the rotary table 1γ and the centrifugal force. Since the crushing roller 20 is rotating on the outer periphery of the rotary table 17, most of the moved limestone is caught between the crushing roller 20 and the rotary table 1γ, and is crushed by compression, impact, and shearing action. It becomes a fine powder. This fine powder, as well as the next large particles and intermediate particles that come off the periphery of the rotary table 1γ without being bitten by the crushing roller 20, fall into the hot air blowing passage 27, but at this time, they are sent through a duct by a hot air generator. The hot air flowing through the hot air passage 26
・As the hot air is blown up into the hot air blowing passage, these fine powders and intermediate particles (1) rise inside the pulverizer together with the hot air.The rising fine powders and intermediate particles collide with the classification plate 31b of the separator 31, are classified, and become fine powder. The particles pass through the separator 31, are discharged from the exhaust port 38, and are later collected through dust collection, etc.Then, the intermediate particles that did not pass through the separator 31 fall onto the rotary table 17 and are reduced to the above-mentioned particles. The crushing and classification are repeated.

この工つな粉砕動作における熱風と粉砕物との吹き上げ
動作を第4図ないし第6図に正面図、平面図、斜視図で
それぞれ7バ丁熱風お工び粉粒体の上昇軌跡図に基いて
さらに詳しく説明する。各図における符号は次の通りで
るる。
Figures 4 to 6 show the blowing up of the hot air and the pulverized material during this effortless pulverization operation, which are shown in front, top, and perspective views, respectively, based on the upward locus of the 7-batch hot air pulverized powder and granules. I will explain this in more detail. The symbols in each figure are as follows.

Ro・・・熱風吹上げ通路27の内周壁28の半径 R1・・・ 同じく      外周壁29の半径 R2・・・ 同じく      中心の半径H1・・・
熱風吹上げ通路27下端からケーシング鼓状部上端まで
の高さ H!・・・ 同じく          セパレータ3
1中心部までの高さ Rt・・・上記高さH+ の箇所の半径Re・・・上記
高さR2の箇所の半径 φ ・・・ブレード偏角、すなわち粉砕機中心とブレー
ド30の中心を通る放射線と熱 風流線とのなす角度 V ・・・ブレード立上り角、丁なわち第3図における
内周壁2B、29の傾斜角度。
Ro...Radius R1 of the inner circumferential wall 28 of the hot air blowing passage 27...Same radius R2 of the outer circumferential wall 29...Same radius H1 of the center...
Height H from the lower end of the hot air blowing passage 27 to the upper end of the casing drum-shaped part! ... Similarly, separator 3
1 Height to the center Rt...Radius Re of the above height H+ point...Radius φ of the above height R2 point...Blade deflection angle, that is, passing through the center of the crusher and the center of the blade 30 Angle V between the radiation and the hot air flow line: Blade rising angle, ie, inclination angle of the inner peripheral walls 2B, 29 in FIG.

γ ・・・流体拡が9角、すなわちブレード30両端部
における熱風吹上げ方向のなす 角度(片側)。
γ...Fluid spread at 9 angles, that is, the angle formed by the blowing direction of hot air at both ends of the blade 30 (on one side).

φl・・・ブレードひね9角 以上のような符号を付し之各図において明ら〃1な裏う
に、本装置においては、ブレード偏角φを20°〜50
°に設定し、ブレード立上り角Pi50’〜80’に設
定し九ので、回転テーブル17の周縁から、熱風吹上げ
通路27へ落下する粉粒体に対しては次のような風力が
作用する。すなわち、熱風吹上げ通路2γの内周壁21
’!、29がブレード立上り角πを有する工うに頌科し
ていることに工9、熱風は旋回することなく直進し、第
4図に示すように内周壁28の延長面である円錐面と外
聞壁29の延長面でるる円錐面とで囲まれ次空間部内を
上昇するが、さらにブレード30がブレード偏角φを有
する工うに傾斜していることにより、ブレード30に沿
って案内され比熱風は、第5図に平面図を示す工うに拡
がり1t4rをもって斜め上方へ直進することになり、
熱風で囲まれた空間部は上記のような円錐形でVユなく
、第6図に示す工うな単葉双曲面形になる。この粕来、
熱風とこれで吹上けられる粉粒体とは、セパレータ31
0分級板31aへ向って直進するとともに、粒子を運搬
する熱風流速は上昇するにしたがってその流速が初速よ
り急激に単調減速される。したがって熱風とともに上昇
する粉粒体の軌跡は、大粒子のものほど早く回転テーブ
ル17上へ還元するとともに、最終的にはセパレータ3
1へ到達する入射粒子径が小さくなる。また、従来の円
錐型のように熱風の流速が円錐頂部において増速される
ことがなく、さらに粒子同志の衝突や壁面への粒子の衝
突が少ないので、圧力損失が少ない。
φl... Blade deflection angle φ is 9 degrees or more.As is clearly indicated in each figure, in this device, the blade deflection angle φ is 20° to 50°.
Since the blade rising angle Pi is set to 50' to 80', the following wind force acts on the powder falling from the periphery of the rotary table 17 to the hot air blowing passage 27. That is, the inner peripheral wall 21 of the hot air blowing passage 2γ
'! , 29 is a model with a blade rising angle π. The hot air travels straight without turning, and as shown in FIG. The specific hot air is surrounded by the conical surface and the extended surface of the blade 29 and rises in the space, but since the blade 30 is tilted with a blade deflection angle φ, the specific hot air is guided along the blade 30. The plan view is shown in Figure 5, and the plan is to spread out 1t4r and go straight upward diagonally.
The space surrounded by the hot air does not have a conical shape as described above, but instead has a monoplane hyperboloid shape as shown in FIG. This Kasurai,
The hot air and the powder blown up by it are separated by the separator 31.
As the hot air flows straight toward the 0-class plate 31a, the flow speed of the hot air transporting the particles increases, and as the flow speed increases, the flow speed is rapidly monotonically decelerated from the initial speed. Therefore, the trajectory of the powder and granules rising with the hot air is that the larger the particles, the faster they return to the rotary table 17, and eventually reach the separator 3.
The incident particle diameter reaching 1 becomes smaller. In addition, the flow velocity of the hot air is not increased at the top of the cone unlike in the conventional conical type, and there are fewer collisions of particles with each other and collisions of particles with the wall surface, so there is less pressure loss.

ここでブレード偏角φを20ないし50°に設定した理
由について説明する。風fkf数種類変えて実験した場
合、φ=20°〜50°の場合が、例えばφ=90°と
した従来の旋回屋のものに比べて被粉砕物のテーブルへ
の還元率が良く、ローラ部への還元状態がきわめて良好
で、ブレード圧損お工び落下限界風量も考慮して総合的
に判断してもφ=20°〜50°の場合がよい結果を示
し次ので本発明でばφ=20°〜50°とじ几。なおφ
の値に小さくシ、φl:20°とするとブレード本来の
役目が果せなくなる。
Here, the reason why the blade deflection angle φ is set to 20 to 50 degrees will be explained. When we experimented with several different types of wind fkf, we found that when φ = 20° to 50°, the return rate of the material to be crushed to the table was better when φ = 90° than in a conventional turning machine where φ = 90°, and the roller part The reduction state to 20°~50° binding. Note that φ
If the value of φl is set to 20°, the blade will no longer be able to fulfill its original role.

次にブレード立上り角グ全50°〜85° に設定した
理由について説明する。被粉砕物に石灰石を用い、石灰
石の重量と風量を数穏類変えて行なつ之実験において、
グ全50’〜85°とした場合、いずれもgr中70°
を中心にして被粉砕物の空中での滞流時間がF=90’
のものに比べて比較的に短かく、また、ブレード部での
圧損もv〈50゜お工びり〉85°のものに比べて小さ
かつ九〇また、圧損だけでなく被粉砕物の還元率や被粉
砕物金持上げるのに必要な落下限界風量全考慮して総合
的に判断しても、γキ70°を中心にF=50’〜85
°の場合が良い結果を示し友ので、本発明ではFを50
’〜85°とした。そして、不発明ではφ、V両方の駆
足に、【る相乗効果により良い結果が得られ、従来のも
のに比べてブレード部での圧力損失が約10〜b 験的に確認され几。
Next, the reason why the blade rising angle is set to 50° to 85° will be explained. In an experiment in which limestone was used as the material to be crushed and the weight of the limestone and air volume were varied several times,
When the total angle is 50' to 85°, both are 70° in gr.
The residence time of the material to be crushed in the air is F = 90'
It is relatively short compared to the blade part, and the pressure loss at the blade part is smaller than that of the 85° blade. Even if we take into consideration all the falling critical air volume required to lift the material to be crushed, F = 50' to 85 with γ angle of 70°
Since the case of F shows good results, in the present invention, F is set to 50
' to 85°. In addition, with the invention, good results were obtained due to the synergistic effect of both φ and V, and it was experimentally confirmed that the pressure loss at the blade part was about 10~b compared to the conventional one.

なお、上記φとVの値は粉砕原料の種類や、供給粒子径
、Iti品粒度、粉砕機の能力(粉砕り。
The above values of φ and V depend on the type of pulverized raw material, the supplied particle size, the particle size of the Iti product, and the capacity of the pulverizer (pulverization).

粉砕機の風食等に1って最適の組合わせが採用される。The most suitable combination is adopted for wind erosion of the crusher.

具体的には粒子密度、供給粒子径、セパレータ入射粒子
径、粉砕機のサイズ、風fc % kフンピユータに入
力し、φ、Vf2パラメータとして粉砕機内粒子飛跡の
シミレーション’に!施し最適組合わせを決定する。
Specifically, input the particle density, supply particle diameter, separator incident particle diameter, crusher size, wind fc% into the computer, and use it as the φ and Vf2 parameters to simulate the particle trajectory inside the crusher! Determine the optimal combination of almsgiving.

〔発明の効果〕〔Effect of the invention〕

以上の説明にニジ明らたなように、本発明に工れは竪型
粉砕機において、回転テーブル周囲の熱風吹上げ通路内
に並列する板状プ17−ドを、粉砕機中心を通る放射線
と熱風流線とのなす角度が20゜ないし50°となるよ
うに傾斜させるとともに、熱風流線と水平面とのなす角
度が20’ないし50’となるように形成し之ことによ
って熱風流線の方向を3次元型に構成することにエフ、
吹上げ通路内を吹上がる熱風ならびにこれとともに上昇
する粉粒体は、急激に単調減速されながら直進するので
、粉粒体の軌跡が理想的となって大粒子の回転テーブル
への回収率と微小粒子のセパレータへの入射率とが、従
来の旋回型1円錐型の熱風吹上構造?!l−Mする粉砕
機に比較して大幅に改善され、また、熱風と粉粒体の旋
回や上昇位置での増速が排除され圧力損失が減少する。
As is clear from the above description, the present invention has a feature that, in a vertical crusher, the plate-like blades 17-- which are arranged in parallel in the hot air blowing passage around the rotary table, are arranged so that the radiation passing through the center of the crusher is The hot air streamlines are tilted so that the angle between them is 20° to 50°, and the angle between the hot air streamlines and the horizontal plane is 20' to 50'. F, in configuring the directions into a three-dimensional type.
The hot air blowing up in the blowing passage and the powder and granules rising along with it move straight while being rapidly monotonically decelerated, so the trajectory of the powder and granules is ideal, and the collection rate of large particles to the rotary table and fine particles are improved. Is the incidence rate of particles into the separator different from that of the conventional swirling one-cone hot air blow-up structure? ! This is a significant improvement over the 1-M crusher, and pressure loss is reduced by eliminating swirling of the hot air and granular material and speed increase at the elevated position.

ま友、テーブル還元率の改善による粉砕効率の向上が期
待でき、送風設備の小形化が可能になる。
It is expected that the grinding efficiency will be improved by improving the table reduction rate, and it will be possible to downsize the air blowing equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第6図は本発明に係る竪型粉砕機の笑施例
を示し、第1図はその縦断面図、第2図は熱風吹上げ通
路近傍の一部平面図、第3図は第2図のEE断面図、第
4図は熱風と粉粒体との上昇軌跡の正面図、第5図は同
じく平面図、第6図は同じく斜視図、第7図は従来にお
ける旋回型熱風吹止構造を採用した竪型粉砕機の概略縦
断面図、第8図は第7図のAA断面図、第9図は従来に
おける円錐型熱風吹上構造全採用した竪型粉砕機の概略
縦断面図、第10図は第9図のCC平面図である。 11・・・・竪型粉砕機、12・・・・ケーシング、1
7・・・・回転テーブル、27・・・・熱風吹よけ通路
、28・・・・内周壁、29・・・・外周壁、30・・
・・ブレード、φ・・・・ブレードの中心全通る放射組
と垂線とのなす角度、V・・・・熱風吹上げ通路の内外
内周壁の稜線と水平面とのな丁角度。
1 to 6 show an embodiment of the vertical crusher according to the present invention, FIG. 1 is a longitudinal sectional view thereof, FIG. 2 is a partial plan view near the hot air blowing passage, and FIG. 3 is a partial plan view of the vicinity of the hot air blowing passage. is an EE sectional view of Fig. 2, Fig. 4 is a front view of the ascending locus of hot air and powder, Fig. 5 is a plan view, Fig. 6 is a perspective view, and Fig. 7 is a conventional rotating type. A schematic vertical cross-sectional view of a vertical crusher that adopts a hot air blow-up structure, Figure 8 is a cross-sectional view taken along the line AA in Figure 7, and Figure 9 is a schematic longitudinal cross-section of a vertical crusher that employs a conventional conical hot air blow-up structure. 10 is a CC plan view of FIG. 9. 11... Vertical crusher, 12... Casing, 1
7...Rotary table, 27...Hot air blowing passage, 28...Inner peripheral wall, 29...Outer peripheral wall, 30...
...Blade, φ...The angle between the radial set passing through the center of the blade and the perpendicular line, V...The angle between the ridgeline of the inner and outer circumferential walls of the hot air blowing passage and the horizontal plane.

Claims (1)

【特許請求の範囲】[Claims] ケーシング内壁と回転テーブル外周部との間に形成され
た環状の熱風吹上げ通路内に並列してこの通路を円周方
向に遮断する複数個の板状プレートを備えた竪型粉砕機
において、前記ブレードを、粉砕機中心を通る放射線と
熱風流線とのなす角度が20°ないし50°となるよう
に傾斜させるとともに、前記熱風流線と水平面とのなす
立上り角度が50°ないし80°となるように形成した
ことを特徴とする竪型粉砕機。
In a vertical crusher comprising a plurality of plate-like plates arranged in parallel in an annular hot air blowing passage formed between the inner wall of the casing and the outer peripheral part of the rotary table and blocking this passage in the circumferential direction, The blades are tilted so that the angle between the radiation passing through the center of the crusher and the hot air streamline is 20° to 50°, and the rising angle between the hot air streamline and the horizontal plane is 50° to 80°. A vertical crusher characterized by being formed as follows.
JP22198785A 1985-10-07 1985-10-07 Vertical type crusher Granted JPS6283052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22198785A JPS6283052A (en) 1985-10-07 1985-10-07 Vertical type crusher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22198785A JPS6283052A (en) 1985-10-07 1985-10-07 Vertical type crusher

Publications (2)

Publication Number Publication Date
JPS6283052A true JPS6283052A (en) 1987-04-16
JPH0257989B2 JPH0257989B2 (en) 1990-12-06

Family

ID=16775300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22198785A Granted JPS6283052A (en) 1985-10-07 1985-10-07 Vertical type crusher

Country Status (1)

Country Link
JP (1) JPS6283052A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012217920A (en) * 2011-04-08 2012-11-12 Ihi Corp Vertical mill

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3005444U (en) * 1994-06-21 1994-12-20 モリト株式会社 Simple portable document case

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012217920A (en) * 2011-04-08 2012-11-12 Ihi Corp Vertical mill

Also Published As

Publication number Publication date
JPH0257989B2 (en) 1990-12-06

Similar Documents

Publication Publication Date Title
CN105536957B (en) A kind of impeller and connected superfine pulverizer, System of Ultra Thin Power Rubbing
CN108883437A (en) Sorting machine
JP2792576B2 (en) Vertical crusher
JP5927992B2 (en) Biomass mill
JPS6283052A (en) Vertical type crusher
JP2002119920A (en) Air flow type classifier
KR101513054B1 (en) Two stage vertical centrifugal classifier
JP2742066B2 (en) Rotary classifier fine crusher
JP2868099B2 (en) Vertical crusher
JP2012217920A (en) Vertical mill
JPS6211902B2 (en)
JPH01242157A (en) Vertical crusher
JPH11276920A (en) Method and device for pulverizing and classifying granular raw material by vertical mill
JPH0535025B2 (en)
JPS59367A (en) Wind classifying apparatus
CN201735428U (en) Dust-free environment-friendly Raymond mill
JPS6327984B2 (en)
JP2681839B2 (en) Vertical crusher
JPS62241561A (en) Centrifugal fluidizing crusher
JPS594476A (en) Wind classifying apparatus
JPH0212145B2 (en)
JPS5815019B2 (en) vertical mill
JPH0128826Y2 (en)
JPH0634937B2 (en) Vertical crusher
JP2739750B2 (en) Vertical crusher