JPS6282290A - Variable capacity type compressor - Google Patents

Variable capacity type compressor

Info

Publication number
JPS6282290A
JPS6282290A JP22407885A JP22407885A JPS6282290A JP S6282290 A JPS6282290 A JP S6282290A JP 22407885 A JP22407885 A JP 22407885A JP 22407885 A JP22407885 A JP 22407885A JP S6282290 A JPS6282290 A JP S6282290A
Authority
JP
Japan
Prior art keywords
spool valve
pressure
suction hole
compressor
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22407885A
Other languages
Japanese (ja)
Inventor
Takao Kasagi
笠木 孝雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP22407885A priority Critical patent/JPS6282290A/en
Publication of JPS6282290A publication Critical patent/JPS6282290A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To maintain compressor capacity at a constant level, by introducing the cooling medium pressure on the suction hole's downstream side into a pressure chamber on one side of a spool valve and the cooling medium pressure on the suction hole's upstream side into a pressure chamber on the other side of said spool valve, and opening or closing a bypass hole through controlling the spool valve based on the pressure difference. CONSTITUTION:Since the cooling medium pressure on the downstream side of a suction hole 204 is introduced into a pressure chamber 304 on one side of a spool valve 302 and the pressure on the upstream side of a suction hole 204 is introduced into a pressure chamber 305, a pressure drop produced in the cooling medium flowing through the suction hole 204 is applied between front and rear sides of the spool valve 302. Therefore, when a compressor is in a low revolving speed position, the pressure difference is not so large and the spool valve 302 is kept closing bypass holes 300, 301 by the energizing force of a spring 307. However, as the amount of the cooling medium increases resuting from high speed rotation, the pressure difference generated between the front and the rear sides of the suction hole 204 becomes large, resulting in a continuous displacement of the spool valve 302. Consequently, as number of revolution of the compressor becomes larger, the discharge amount increases or decreases, and retention of compressor capacity and power reduction are allowed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、可変容量型圧縮機に関し、例えば自動車用空
調装置の冷媒圧縮機として用いて有効である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a variable capacity compressor, and is effective for use as a refrigerant compressor in, for example, an automobile air conditioner.

〔従来の技術および発明が解決しようとする問題点〕[Problems to be solved by conventional technology and invention]

従来自動車空調装置用の冷媒圧縮機としては、バイパス
孔およびその開閉を行うスプール弁を備えたものが種々
提案されていた。例えば、特開昭58−128487号
公報記載のものでは、スプール弁が冷房負荷に応じて変
位するようになっていた。しかしながら、このものでは
圧縮機の急加速時には応答性よくスプール弁を変位させ
ることができず、圧縮機駆動に要するエンジン負荷が軽
減できないという問題があった。また、圧縮機急加速時
にバイパス孔を開くようにする技術は他にも提案されて
いたが、その場合圧縮機の急加速を感知するセンサー及
びそのセンサーからの電気信号に基づいてスプール弁を
駆動するアクチュエータ等構成が複雑となり、コスト高
となる欠点があった。
Conventionally, various refrigerant compressors for automobile air conditioners have been proposed that are equipped with a bypass hole and a spool valve for opening and closing the bypass hole. For example, in the one described in Japanese Patent Application Laid-Open No. 58-128487, the spool valve is displaced in accordance with the cooling load. However, this method has the problem that the spool valve cannot be displaced with good response when the compressor suddenly accelerates, and the engine load required to drive the compressor cannot be reduced. In addition, other technologies have been proposed that open the bypass hole when the compressor suddenly accelerates, but in that case, the spool valve is driven based on the sensor that detects the sudden acceleration of the compressor and the electrical signal from that sensor. This has the disadvantage that the configuration of the actuator, etc., is complicated and the cost is high.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記点に鑑みてなされたもので、簡単な構成
で且つ圧縮機急加速時には確実に圧縮機の容量を軽減で
きるようにすることを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a compressor with a simple configuration and to reliably reduce the capacity of the compressor when the compressor suddenly accelerates.

そのため、本発明ではスプール弁前後に圧縮機吸入側に
配設された絞りにより生ずる差圧を導入し、その差圧に
基づきスプール弁が移動するようにする。
Therefore, in the present invention, a pressure difference generated by a throttle provided on the suction side of the compressor is introduced before and after the spool valve, and the spool valve is moved based on the pressure difference.

〔作用〕[Effect]

圧縮機が高回転の場合には、圧縮機の圧力室には多量の
流体が吸入され、そのため吸入側の流体流速は速まる。
When the compressor rotates at high speed, a large amount of fluid is sucked into the pressure chamber of the compressor, so that the fluid flow rate on the suction side increases.

従って、吸入側に設けられた絞り部(例えば、吸入孔)
の前後に生じる差圧は大きくなる。この差圧がスプール
弁の前後に供給されるため、圧縮機の高回転時にはスプ
ール弁が変動することとなる。それにより、スプール弁
はバイパス孔を開き、圧縮機の容量は減少する。
Therefore, the throttle part provided on the suction side (e.g. suction hole)
The differential pressure that occurs before and after increases. Since this pressure difference is supplied before and after the spool valve, the spool valve will fluctuate when the compressor rotates at high speed. Thereby, the spool valve opens the bypass hole and the capacity of the compressor is reduced.

〔発明の効果〕 圧縮機の高回転時に、吐出容量を減少できるため、圧縮
機駆動に要する動力が減少できる。特にこの圧縮機の容
量が減少する高回転時はもともと動力が過剰である場合
が多く、従って圧縮機の容量を減少しても全体として圧
縮機の能力は充分な状態で保持される。
[Effects of the Invention] Since the discharge capacity can be reduced when the compressor rotates at high speed, the power required to drive the compressor can be reduced. Particularly at high rotation speeds when the capacity of the compressor decreases, the power is often excessive to begin with, so even if the capacity of the compressor is reduced, the capacity of the compressor as a whole is maintained in a sufficient state.

〔実施例〕〔Example〕

第1図及び第2図は本発明の一実施例を示し、図中10
0はシャフトで図示しない電磁クラッチを介し一自動車
走行用エンジンからの動力を受は回転する。101は、
シャフトと一体回転するロータで、このロータ101お
よびシャフト100は軸受102により回転自在に保持
されている。
FIGS. 1 and 2 show an embodiment of the present invention, in which 10
0 is a shaft which receives power from an automobile engine through an electromagnetic clutch (not shown) and rotates. 101 is
A rotor rotates integrally with a shaft, and the rotor 101 and shaft 100 are rotatably held by a bearing 102.

103はロータの外周側に配設された円筒状のハウジン
グ、104はそのハウジングの前方側に配置されたハウ
ジング側板、105はハウジング後方側に配置されたハ
ウジング側板である。ハウジング103とハウジング側
板104,105との間はOリング106によりシール
されている。107はフロントハウジングで、ハウジン
グ側板104の前方側にアスベスト製のガスケット10
8を介して固定されている。109はハウジング側板1
05の後方側に配置された吐出室ハウジングで同じくア
スベスト製のガスケット110を介して固定されている
。上述したフロントハウジング107、ハウジング側板
104、ハウジング103、ハウジング側板105及び
吐出室ハウジング109は固定ボルト111により連結
固定されている。113はハウジング103の外方に配
置された吐出室カバーである。
Reference numeral 103 denotes a cylindrical housing disposed on the outer peripheral side of the rotor, 104 a housing side plate disposed on the front side of the housing, and 105 a housing side plate disposed on the rear side of the housing. A seal is provided between the housing 103 and the housing side plates 104 and 105 by an O-ring 106. 107 is a front housing, and a gasket 10 made of asbestos is provided on the front side of the housing side plate 104.
It is fixed via 8. 109 is housing side plate 1
05 is fixed to the discharge chamber housing via a gasket 110 also made of asbestos. The aforementioned front housing 107, housing side plate 104, housing 103, housing side plate 105, and discharge chamber housing 109 are connected and fixed by fixing bolts 111. 113 is a discharge chamber cover disposed outside the housing 103.

フロントハウジング107には、シャフトシール112
が配置されており、これにより圧縮機内部の流体がシャ
ツl−100に沿って外部に流出するのが防止されてい
る。
The front housing 107 includes a shaft seal 112.
is arranged, thereby preventing the fluid inside the compressor from flowing out along the shirt 1-100.

ロータ101には、ベーン溝200が形成されており、
このベーン溝内にベーン201がその両端がハウジング
103内面と接するようにして配設されている。従って
、二つのベーン201の側面、ロータ101の外面、ハ
ウジング103の内面及びハウジング側板104,10
5により圧縮室202が形成される。この圧縮室202
はロータ101の回転に伴い、その容積が増減する。ハ
ウジング側板104のうち、圧縮室202が容積増加す
る位置には圧縮室202と吸入室203とを結ぶ吸入孔
204が形成されている。また、ハウジング103のう
ち圧縮室202の容積が最も減少した部位には圧縮室2
02内の冷媒を吐出室205に逃がす吐出孔206が設
けられている。
A vane groove 200 is formed in the rotor 101,
A vane 201 is disposed within this vane groove so that both ends thereof are in contact with the inner surface of the housing 103. Therefore, the side surfaces of the two vanes 201, the outer surface of the rotor 101, the inner surface of the housing 103, and the housing side plates 104, 10
5 forms a compression chamber 202. This compression chamber 202
As the rotor 101 rotates, its volume increases and decreases. A suction hole 204 connecting the compression chamber 202 and the suction chamber 203 is formed in the housing side plate 104 at a position where the compression chamber 202 increases in volume. Further, in the portion of the housing 103 where the volume of the compression chamber 202 has decreased the most, a compression chamber 2
A discharge hole 206 is provided for discharging the refrigerant in 02 to the discharge chamber 205.

207は吐出孔206を覆う吐出弁、208はこの吐出
弁207のストッパーである。吐出弁207およびスト
ッパー208はボルト209によりハウジング103に
固定されている。吐出孔205に吐出された冷媒は吐出
通路210を介して吐出室ハウジング側に流出する。
207 is a discharge valve that covers the discharge hole 206, and 208 is a stopper for this discharge valve 207. Discharge valve 207 and stopper 208 are fixed to housing 103 with bolts 209. The refrigerant discharged into the discharge hole 205 flows out to the discharge chamber housing side via the discharge passage 210.

300.301はハウジング側板104に設けられたバ
イパス孔で、圧縮室202と吸入室203とを連通ずる
ものである。ハウジング側板104内にはこのバイパス
孔300.301を開閉制御するスプール弁302が摺
動自在に配設されている。このスプール弁の一方側の第
1圧力室304には第1圧力導入孔303を介して圧縮
室内の圧力が導入される。なお、第1圧力導入孔303
は圧縮室のうち吸入孔204近傍に開口している。
300 and 301 are bypass holes provided in the housing side plate 104, which communicate the compression chamber 202 and the suction chamber 203. A spool valve 302 that controls opening and closing of the bypass holes 300 and 301 is slidably disposed within the housing side plate 104. The pressure inside the compression chamber is introduced into the first pressure chamber 304 on one side of the spool valve through the first pressure introduction hole 303. Note that the first pressure introduction hole 303
is opened near the suction hole 204 in the compression chamber.

一方、スプール弁302他方側の第2圧力室305には
第2圧力導入孔306を介して吸入室203内の圧力が
導入される。なお、スプール弁302はスプリング30
7により第1圧力室304側に付勢されている。
On the other hand, the pressure inside the suction chamber 203 is introduced into the second pressure chamber 305 on the other side of the spool valve 302 through the second pressure introduction hole 306. Note that the spool valve 302 is connected to the spring 30.
7 toward the first pressure chamber 304 side.

次に、上記構成圧力室の作用を説明する。Next, the operation of the above-mentioned constituent pressure chambers will be explained.

図示しない電磁クラッチを介して、動力を受はシャフト
100が回転するとそれに伴いロータ12の容積が増大
する位置では、吸入室203内の冷媒を吸入孔204よ
り圧縮室202内へ導入す慢 る。圧縮室202に導入された冷媒は圧労室202の容
積減少に伴い圧縮され、高圧となった冷媒は吐出孔20
6より吐出室205、次いで吐出室ハウジング109側
へ吐出される。
As the shaft 100 rotates, the refrigerant in the suction chamber 203 is introduced into the compression chamber 202 through the suction hole 204 at a position where the volume of the rotor 12 increases as the shaft 100 rotates. The refrigerant introduced into the compression chamber 202 is compressed as the volume of the compression chamber 202 decreases, and the high-pressure refrigerant flows through the discharge hole 20.
6 to the discharge chamber 205 and then to the discharge chamber housing 109 side.

バイパス孔300,301は圧縮室202と吸入室20
3とを連通ずるため、このバイパス孔300.301が
開いている状態では、圧縮室202が容積減少しても圧
縮は行われず、圧縮室202がバイパス孔300,30
1を越えた状態で初めて圧縮が開始される。従って、バ
イパス孔300.301が開いている状態では圧縮機の
吐出容量は減少する。特に、スプール弁302は連続的
に変位するためこのスプール弁302の変位に応じてバ
イパス孔300,301の開閉度合が連続的に変位し、
従って、圧縮機の吐出容量も連続的に増減することとな
る。図ではバイパス孔300゜301は離れているが、
発明者らの実験によればこの構成でも吐出容量は連続的
に変動することが認められている。
The bypass holes 300 and 301 are connected to the compression chamber 202 and the suction chamber 20.
In order to communicate with
Compression starts only when the value exceeds 1. Therefore, when the bypass holes 300 and 301 are open, the discharge capacity of the compressor decreases. In particular, since the spool valve 302 is continuously displaced, the degree of opening and closing of the bypass holes 300 and 301 is continuously displaced in accordance with the displacement of the spool valve 302.
Therefore, the discharge capacity of the compressor also increases and decreases continuously. In the figure, the bypass holes 300° and 301 are far apart,
According to experiments conducted by the inventors, it has been recognized that the discharge capacity fluctuates continuously even with this configuration.

スプール弁の一方側の第1圧力室304には吸入孔20
4下流側の冷媒圧力が導入され1.逆に第2圧力室30
5内には吸入孔204上流側の圧力が導入されるため、
スプール弁302の前後には冷媒流れが吸入孔204を
通過する際に生じる圧力降下が加わることになる。その
ため、冷媒流量の比較的少ない状態、すなわち、圧縮機
の低回転位置ではその差圧はあまり大きくなく、スプー
ル弁302はスプリング307の付勢力によりバイパス
孔300,301を閉じる状態で保持されている。
A suction hole 20 is provided in the first pressure chamber 304 on one side of the spool valve.
4.Refrigerant pressure on the downstream side is introduced.1. Conversely, the second pressure chamber 30
Since the pressure on the upstream side of the suction hole 204 is introduced into the inside of the
A pressure drop that occurs when the refrigerant flow passes through the suction hole 204 is applied before and after the spool valve 302 . Therefore, in a state where the refrigerant flow rate is relatively low, that is, at a low rotational position of the compressor, the differential pressure is not so large, and the spool valve 302 is held in a state in which the bypass holes 300 and 301 are closed by the biasing force of the spring 307. .

ところが、冷媒流量が増加するにつれ、吸入孔204前
後に生じる差圧も大きくなり、その差圧に基づきスプー
ル弁302は連続的に変位する。
However, as the refrigerant flow rate increases, the pressure difference generated before and after the suction hole 204 also increases, and the spool valve 302 is continuously displaced based on the pressure difference.

すなわち、スプール弁302前後に加わる差圧がスプリ
ング307の設定圧より大きくなれば、スプール弁30
2はスプリング307の付勢力に反し第3図中上方側に
変位する。
That is, if the differential pressure applied before and after the spool valve 302 becomes larger than the set pressure of the spring 307, the spool valve 30
2 is displaced upward in FIG. 3 against the biasing force of the spring 307.

第4図は、この状態を示したもので、実線Aはバイパス
孔300,301をもたない圧縮機の特性を示し、破線
Bは上記構成の圧縮機の特性を示す。図中C点よりバイ
パス孔301が開口しだし、D点ではバイパス孔300
が完全に開口している。
FIG. 4 shows this state, where the solid line A shows the characteristics of a compressor without bypass holes 300 and 301, and the broken line B shows the characteristics of the compressor with the above configuration. The bypass hole 301 begins to open from point C in the figure, and the bypass hole 301 begins to open at point D.
is completely open.

したがって、この間lでは冷媒流量の増大すなわち、圧
縮機回転数の増大に伴い、圧縮機の吐出容量が増減し全
体として圧縮機の能力は一定に保たれている。この結果
、図に示されるように圧縮機駆動に要する消費労力も大
幅に減少している。これは、特に自動車の急加速時等に
エンジンに加えられる負荷が減少すること意味し、その
結果自動車エンジンの燃費の向上も図られる。
Therefore, during this time, as the refrigerant flow rate increases, that is, as the compressor rotational speed increases, the discharge capacity of the compressor increases and decreases, and the overall capacity of the compressor is kept constant. As a result, as shown in the figure, the amount of effort required to drive the compressor has been significantly reduced. This means that the load applied to the engine is reduced, especially when the vehicle accelerates rapidly, and as a result, the fuel efficiency of the vehicle engine is improved.

なお、上述の例では冷媒流量の増大を図る手段として吸
入孔204前後の差圧を用いたが、吸入孔204以外に
も圧縮機上流側に設けられた絞り師部後の差圧を用いる
ことも可能である。例えば、フロントハウジング107
に形成された吸入ポート400前後の差圧を第1.第2
圧力室304゜305内に導くようにしてもよい。
In addition, in the above example, the pressure difference before and after the suction hole 204 was used as a means to increase the refrigerant flow rate, but the pressure difference after the throttle phloem provided on the upstream side of the compressor can also be used in addition to the suction hole 204. is also possible. For example, the front housing 107
The differential pressure before and after the suction port 400 formed in the first. Second
It may also be guided into pressure chambers 304 and 305.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明圧縮機の一例を示す断面図で第2図中
I−1線に沿う断面形状を示す。第2図は、第1図図示
圧縮機のn−n線に沿う断面図である。第3図fat、
 (b)はスプール弁の作動状態を示す断面図、第4図
は第1図圧縮機の特性を示すグラフである。 100・・・シャフト、101・・・ロータ、103・
・・ハウジング、201・・・ベーン、204・・・吸
入孔。 206・・・吐出孔、300,301・・・バイパス孔
。 302・・・スプール弁。 代理人弁理士  岡 部   隆 第1図 寸 り
FIG. 1 is a cross-sectional view showing an example of the compressor of the present invention, and shows a cross-sectional shape taken along line I-1 in FIG. FIG. 2 is a sectional view of the compressor shown in FIG. 1 taken along line nn. Figure 3 fat,
(b) is a sectional view showing the operating state of the spool valve, and FIG. 4 is a graph showing the characteristics of the compressor shown in FIG. 1. 100... shaft, 101... rotor, 103...
...Housing, 201... Vane, 204... Suction hole. 206...Discharge hole, 300, 301...Bypass hole. 302...Spool valve. Representative Patent Attorney Takashi Okabe 1st Dimensions

Claims (2)

【特許請求の範囲】[Claims] (1)外部より駆動力を受けて回転するシャフトと、前
記シャフトと一体回転するロータと、前記ロータを包囲
するハウジングと、前記ロータに摺動自在に配設された
ベーンと、前記ロータ・前記ハウジング・前記ベーンに
より形成される圧力室に流体を供給する吸入孔と、前記
圧力室より流体を吐出する吐出孔と、前記ハウジングに
設けられ前記圧力室を前記吸入孔より上流側に連通する
バイパス孔と、このバイパス孔の開閉を行うスプール弁
とを備え、前記スプール弁は前記圧力室に流入される流
体の圧力差に応じて移動する可変容量型圧縮機。
(1) A shaft that rotates by receiving a driving force from the outside, a rotor that rotates integrally with the shaft, a housing that surrounds the rotor, a vane that is slidably disposed on the rotor, and the rotor and the rotor. Housing: a suction hole that supplies fluid to a pressure chamber formed by the vane, a discharge hole that discharges fluid from the pressure chamber, and a bypass that is provided in the housing and communicates the pressure chamber upstream from the suction hole. A variable displacement compressor comprising a hole and a spool valve that opens and closes the bypass hole, the spool valve moving according to a pressure difference between fluids flowing into the pressure chamber.
(2)前記スプール弁の一方側には前記吸入孔下流の流
体圧力が導入され、前記スプール弁の他方側には前記吸
入孔上流の流体圧力が導入され、前記スプール弁は前記
吸入孔前後の差圧に応じて移動する特許請求の範囲第1
項記載の可変容量型圧縮機。
(2) The fluid pressure downstream of the suction hole is introduced into one side of the spool valve, the fluid pressure upstream of the suction hole is introduced into the other side of the spool valve, and the spool valve is connected to the front and rear of the suction hole. Claim 1 which moves according to differential pressure
Variable capacity compressor as described in section.
JP22407885A 1985-10-07 1985-10-07 Variable capacity type compressor Pending JPS6282290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22407885A JPS6282290A (en) 1985-10-07 1985-10-07 Variable capacity type compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22407885A JPS6282290A (en) 1985-10-07 1985-10-07 Variable capacity type compressor

Publications (1)

Publication Number Publication Date
JPS6282290A true JPS6282290A (en) 1987-04-15

Family

ID=16808211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22407885A Pending JPS6282290A (en) 1985-10-07 1985-10-07 Variable capacity type compressor

Country Status (1)

Country Link
JP (1) JPS6282290A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100632243B1 (en) 2005-01-28 2006-10-12 민병일 Swing Type Oil Free Compressor having Compact Cylinder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100632243B1 (en) 2005-01-28 2006-10-12 민병일 Swing Type Oil Free Compressor having Compact Cylinder

Similar Documents

Publication Publication Date Title
US4566863A (en) Rotary compressor operable under a partial delivery capacity
JPH0756274B2 (en) Scroll compressor
JPH08312582A (en) Reversal preventing device for compressor
US4447196A (en) Rotary vane compressor with valve control of undervane pressure
US4441863A (en) Variable discharge rotary compressor
KR930009734B1 (en) Rotary compressor
JPH0581759B2 (en)
US4315719A (en) Non-lubricated rotary pump with discharge through end heads
JPS6282290A (en) Variable capacity type compressor
US4389170A (en) Rotary vane pump with passage to the rotor and housing interface
US5125804A (en) Variable-delivery vane-type rotary compressor
US4636148A (en) Vane type compressor with volume control
JPH024796B2 (en)
JP2001165081A (en) Compressor and refrigerating or cooling device having refrigerating cycle with the compressor
JPS6291680A (en) Variable delivery type scroll compressor
JPS6330517B2 (en)
JP2912720B2 (en) Vane rotary type variable displacement compressor
JPH0117672Y2 (en)
JPS58222994A (en) Variable capacity compressor
JPH0224335Y2 (en)
JPH0377394B2 (en)
JPH0312237B2 (en)
WO1988004732A1 (en) Apparatus for supporting rotational sleeve of rotary compressor by fluid
JPH0353034Y2 (en)
JPS5999089A (en) Variable capacity type compressor