JPS628218B2 - - Google Patents

Info

Publication number
JPS628218B2
JPS628218B2 JP9556182A JP9556182A JPS628218B2 JP S628218 B2 JPS628218 B2 JP S628218B2 JP 9556182 A JP9556182 A JP 9556182A JP 9556182 A JP9556182 A JP 9556182A JP S628218 B2 JPS628218 B2 JP S628218B2
Authority
JP
Japan
Prior art keywords
crushed material
processing container
crushed
electromagnetic
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9556182A
Other languages
Japanese (ja)
Other versions
JPS58214356A (en
Inventor
Kazuhiro Tsuruta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Co Ltd
Priority to JP9556182A priority Critical patent/JPS58214356A/en
Publication of JPS58214356A publication Critical patent/JPS58214356A/en
Publication of JPS628218B2 publication Critical patent/JPS628218B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Disintegrating Or Milling (AREA)

Description

【発明の詳細な説明】 この発明は例えばもみがら等のかさ密度の小さ
な砕料を粉砕処理するのに好適な電磁式粉砕処理
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electromagnetic pulverizing apparatus suitable for pulverizing pulverized material having a small bulk density, such as rice husk.

ライスセンタ等で発生する多量のもみがらは、
近年になりその活用法として、74μm程度にまで
微粉砕処理した上で樹脂系素材のフイラーに使用
する、あるいはコンポストの湿度調整材料として
の活用法が注目されつつあり、一部にはその専用
機も実用化されている。
A large amount of rice husks generated at rice centers, etc.
In recent years, it has been gaining attention as a way to utilize it, such as pulverizing it to about 74 μm and using it as a filler for resin-based materials, or as a humidity control material for compost, and some of them have specialized machines. has also been put into practical use.

かかるもみがら粉砕処理に使用されている従来
機は、第1図に示すごとき機械式の衝撃粉砕機で
あつて、ケーシング1の内部には回転駆動される
粉砕刃付きのランナ2を備えており、砕料入口3
から送り込まれたもみがらがケーシング内でラン
ナ2により細かく粉砕され、出口4を通じて砕製
物として取り出される。しかして、もみがらは殼
の表面が硬く、かつ全体としては繊維組成である
ために柔軟性にも富んでいて粉砕処理が仲々困難
であり、第1図の粉砕機では粉砕刃の摩耗が早く
進み、長期にわたり安定よく微細粒度の砕製物を
得ることができない難点がある。このために膨軟
化処理と称して、前般処理でもみがらに水分を加
え、加熱、圧縮した状態で粉砕機へ送り込む方法
も実施されているが、この方法では粉砕性能は高
くなるが粉砕後に改めて水分を除くための乾燥操
作が必要になる等、工程が複雑となる。このため
に先に述べた機械式粉砕機に代る粉砕性能、効率
の良いもみがら粉砕機の出現が望まれている。
The conventional machine used for such rice husk crushing processing is a mechanical impact crusher as shown in FIG. , crushed material inlet 3
The rice husks fed in from the casing are finely crushed by a runner 2 and taken out as a crushed product through an outlet 4. However, rice husk has a hard shell surface and is highly flexible due to its fibrous composition, making it difficult to crush.In the crusher shown in Figure 1, the crushing blades wear out quickly. The problem is that it is not possible to stably obtain a crushed product with a fine particle size over a long period of time. For this purpose, a method called swelling and softening treatment is also carried out, in which water is added to the rice hulls in the pre-processing process, and the rice hulls are heated and compressed before being sent to the pulverizer. The process becomes complicated, such as the need for a drying operation to remove moisture. For this reason, there is a desire for a rice husk crusher with good crushing performance and efficiency to replace the mechanical crusher mentioned above.

一方最近になり、移動磁界を使つてワーキング
ピースに電磁力を働かせて砕料を処理する新しい
電磁式粉砕機が開発されている。次にこの粉砕機
の構成、原理を第2図および第3図について述べ
る。図において、5は被処理物としての砕料6と
ともに強磁性材あるいは非磁性導電材で作られた
多数のワーキングピース7を収容した処理容器で
あり、この容器5を中央に挾んでその上下にはい
わゆるリニアモータとしてよく知られた移動磁界
発生装置8と9が対向配置されており、かつその
移動磁界φ,φは互に逆向きに定めてある。
On the other hand, recently, a new electromagnetic crusher has been developed that uses a moving magnetic field to apply electromagnetic force to a working piece to process crushed materials. Next, the structure and principle of this crusher will be described with reference to FIGS. 2 and 3. In the figure, reference numeral 5 denotes a processing container that accommodates a large number of working pieces 7 made of ferromagnetic or non-magnetic conductive material along with crushed material 6 as the object to be processed. Moving magnetic field generating devices 8 and 9, which are well known as so-called linear motors, are arranged facing each other, and their moving magnetic fields φ 1 and φ 2 are set in opposite directions.

かかる構成により、移動磁界φ,φの作用
する磁場に置かれたワーキングピース7には磁
化、渦電流が生じ、移動磁界との相互作用に基づ
く電流力が働く。これによりワーキングピース7
は移動磁界方向への並進力、浮上力、および重心
のまわりに自転する磁気トルクを受け、更にはワ
ーキングピース同士の衝突、ワーキングピースと
容器壁との衝突が加わり、容器5の中で複雑かつ
激しいランダム運動を生起する。そしてこのラン
ダム運動によつて砕料6は衝撃粉砕、摩耗粉砕さ
れることになる。
With this configuration, magnetization and eddy current are generated in the working piece 7 placed in the magnetic field where the moving magnetic fields φ 1 and φ 2 act, and a current force acts on the working piece 7 based on the interaction with the moving magnetic field. This allows working piece 7
is subjected to a translational force in the direction of the moving magnetic field, a levitation force, and a magnetic torque rotating around the center of gravity.Furthermore, collisions between the working pieces and collisions between the working pieces and the container wall are added, and a complicated and complicated movement occurs inside the container 5. Causes intense random motion. Due to this random movement, the crushed material 6 is crushed by impact and by abrasion.

この電磁式粉砕機は第1図に示した在来の機械
式粉砕機と異なり、ワーキングピースのランダム
運動で粉砕を行うものであつて、粉砕刃の摩耗等
の問題がなく長期にわたつて安定した粉砕性能が
得られ、かつ粉砕処理時間も短かくて済む。発生
者の行つた実験によれば、この電磁式粉砕機を用
いてもみがらを粉砕処理したところ、第1図の粉
砕機と較べてその粉砕処理時間も短かくて済み、
かつ在来の機械式粉砕機に較べて粉砕限界の範囲
が広く微粉砕も可能であることが確められてい
る。
This electromagnetic crusher differs from the conventional mechanical crusher shown in Figure 1 in that it grinds by random movement of the working pieces, and is stable over a long period of time without problems such as wear of the crushing blades. This provides excellent pulverization performance, and the pulverization process time can be shortened. According to experiments conducted by the generator, when rice husks were crushed using this electromagnetic crusher, the crushing time was shorter than that of the crusher shown in Figure 1.
It has also been confirmed that the crushing limit range is wider than that of conventional mechanical crushers, and fine crushing is also possible.

しかして、かかる電磁式粉砕機を用いてもみが
らの粉砕処理を行う場合に、砕料6を処理容器5
の中に収容したまま最後まで粉砕を行うバツチ方
式では、次記のような運転効率および粉砕性能の
面での難点がある。それはもみがらのかさ密度が
0.12t/cm3と極めて小さく、運転開始当初に適正
な充填率でもみがらをワーキングピース7と一諸
に処理容器5へ収容して運転を開始すると、僅か
な時間で粗粉砕されたもみがらのかさは頭初の充
填量の1/2ないし1/4に減じるため、その後の微粉
砕までの運転は容器容器5の容積に比して砕料6
が少ない低充填率のままでの運転が強いられるこ
とになる。しかもこの間にも電磁式粉砕機はワー
キングピース駆動のために給電を行う必要があ
り、このために粉砕機の利用率が悪く、処理能力
を低くめる。また砕料6を所望の微細粒径になる
まで継続的に粉砕を行うと、砕料の一部は過粉砕
され、これによつて生じた超微粉が緩衝材となつ
て衝撃粉砕を阻害し、全体としての粉砕効率を急
速に低下させて粉砕エネルギーの損失増加の原因
となる。
Therefore, when pulverizing rice hulls using such an electromagnetic pulverizer, the pulverized material 6 is transferred to the processing container 5.
The batch method, in which the powder is pulverized until the end while it is housed in the container, has the following drawbacks in terms of operational efficiency and pulverization performance. It is the bulk density of rice husk
It is extremely small at 0.12t/ cm3 , and when rice husks are stored together with the working piece 7 in the processing container 5 at the appropriate filling rate at the beginning of operation and the operation is started, coarsely pulverized rice husks can be obtained in a short time. Since the bulk is reduced to 1/2 to 1/4 of the initial filling amount, the subsequent operation up to fine pulverization requires only 6 pieces of crushed material compared to the volume of the container 5.
This means that they will be forced to operate at a low filling rate. Moreover, during this time, it is necessary to supply power to the electromagnetic crusher to drive the working piece, which results in poor utilization of the crusher and lowers throughput. Furthermore, if the crushed material 6 is continuously crushed until it reaches the desired fine particle size, a part of the crushed material will be over-pulverized, and the resulting ultra-fine powder will act as a buffer material and inhibit impact crushing. , which rapidly reduces the overall grinding efficiency and causes increased loss of grinding energy.

この発明は上記の点にかんがみなされたもので
あり、その目的は前記の電磁式粉砕機を用いても
みがら等の砕料の粉砕処理を行う際の問題点を解
決し、砕料の処理能力、粉砕効率の向上を図つた
電磁式粉砕処理装置を提供することにある。
This invention has been made in consideration of the above points, and its purpose is to solve the problems encountered when pulverizing crushed materials such as rice husks using the electromagnetic crusher described above, and to improve the processing capacity of crushed materials. An object of the present invention is to provide an electromagnetic pulverization device that improves pulverization efficiency.

かかる目的はこの発明により、処理容器に砕料
入口および砕製物出口を設けて入口にはワーキン
グピースの飛び出しを防ぐスクリーンを、出口に
は分級機能をもつたふるいをそれぞれ装備すると
ともに、前記の砕料入口に連ねて気流搬送式砕料
供給路を接続し、該砕料供給路を通じて処理容器
に通風する搬送気流に乗せて砕料の供給および砕
製物の排出を連続的に行うようにしたことにより
達成される。
According to the present invention, the processing container is equipped with a crushed material inlet and a crushed material outlet, the inlet is equipped with a screen to prevent the working pieces from flying out, and the outlet is equipped with a sieve having a classification function. A pneumatic conveyance-type crushed material supply path is connected to the crushed material inlet, and the crushed material is continuously supplied and discharged on the conveying airflow that ventilates into the processing container through the crushed material supply path. achieved by doing.

以下この発明の実施例を図面に基づき説明す
る。
Embodiments of the present invention will be described below based on the drawings.

第4図において、10は第3図に示した電磁式
粉砕機であり、その処理容器5の対向し合う左右
端面を開口してその一方を砕料入口11、他方を
砕製物出口12となすとともに、入口11にはワ
ーキングピース7の飛び出しを防ぐスクリーン1
3が、出口12にはそのメツシユ目を所望の粒径
に応じて選定した分級機能をもつふるい14がそ
れぞれ装備されている。更に砕料入口11に連ね
て砕料ホツパ15との間には気流搬送式の砕料供
給路16が配管されている。この供給路16の入
口側にはホツパ15と並べてフアン17が設置し
てあり、フアン17の運転により空気が供給路1
6を通じて処理容器5へ送風される。
In FIG. 4, reference numeral 10 is the electromagnetic crusher shown in FIG. 3, and the opposing left and right end surfaces of the processing container 5 are opened, and one of them is used as a crushed material inlet 11 and the other as a crushed material outlet 12. At the same time, a screen 1 is installed at the entrance 11 to prevent the working piece 7 from flying out.
3, each outlet 12 is equipped with a sieve 14 having a classification function whose mesh is selected according to the desired particle size. Furthermore, an air flow conveyance type crushed material supply path 16 is connected to the crushed material inlet 11 and connected to the crushed material hopper 15 . A fan 17 is installed on the inlet side of the supply path 16 in parallel with the hopper 15, and the operation of the fan 17 supplies air to the supply path 16.
Air is blown to the processing container 5 through the processing container 6 .

次に上記装置の粉砕動作について述べる。電磁
式粉砕機10およびフアン17を運転した状態
で、ホツパ15へもみがら等の破料6を投入すれ
ば、まず点線矢印Aで示す搬送気流に乗つて砕料
6が実線矢印Bのように処理容器5へ強制的に送
り込まれ、ここでワーキングピース7のランダム
運動により粉砕が行われる。そして粗粉砕から微
粉砕へ進み、砕料6の一部が所望の粒径にまで微
粉砕されると、この微粉は搬送気流Aに乗り、分
級ふるい14を透過して矢印Cのように処理容器
5の外方へ浮遊排出され、かくして砕製物18が
得られることになる。しかも上記の粉砕動作は連
続的に進行する。
Next, the crushing operation of the above device will be described. When the electromagnetic crusher 10 and the fan 17 are in operation, if the broken material 6 such as rice husks is fed into the hopper 15, the broken material 6 will first be carried by the conveying airflow shown by the dotted arrow A, and the broken material 6 will move as shown by the solid arrow B. It is forcibly fed into the processing container 5, where it is pulverized by the random movement of the working piece 7. Then, the process progresses from coarse pulverization to fine pulverization, and when a part of the pulverized material 6 is pulverized to the desired particle size, this fine powder rides on the conveying airflow A, passes through the classification sieve 14, and is processed as shown by arrow C. It is floated and discharged to the outside of the container 5, and thus a crushed product 18 is obtained. Moreover, the above-mentioned crushing operation proceeds continuously.

ここで搬送気流の押込風圧、風量を適正に定め
ることにより、処理容器内で行われる粉砕動作の
進行に伴つてかさ密度の小さなもみがら等の砕料
6のかさが減少しても、このかさの減少に見う分
の砕料6が新たに処理容器5へ送り込まれて補充
されるので、常に処理容器内の砕料充填率を適正
に保つて運転効率の良い運転が行える。しかも微
粉砕された微粉はいち早くふるい14を透過して
外方へ排出されるので過粉砕される度合が少な
く、したがつて均一な粒径の砕製物18が得られ
るし、しかも処理容器内での超微粉の混在割合が
少なくなるので粉砕の継続に支障を及ぼす恐れも
なく高い粉砕効率が維持できることになる。また
当然のことながら過粉砕に消費される粉砕エネル
ギー、したがつて移動磁界発生装置8,9での消
費電力の節電化も図れる。
By appropriately determining the pushing air pressure and air volume of the conveying airflow, even if the bulk of the crushed material 6, such as rice husks with a small bulk density, decreases as the crushing operation in the processing container progresses, this bulk can be reduced. Since the amount of crushed material 6 corresponding to the decrease in the amount of crushed material 6 is newly fed into the processing container 5 and replenished, the crushed material filling rate in the processing container can always be kept at an appropriate level and operation with good operational efficiency can be performed. In addition, the finely ground powder quickly passes through the sieve 14 and is discharged to the outside, so there is less chance of over-grinding, and therefore a crushed product 18 with a uniform particle size can be obtained. Since the proportion of ultrafine powder mixed in is reduced, high pulverization efficiency can be maintained without the risk of hindrance to the continuation of pulverization. Naturally, it is also possible to save the crushing energy consumed in excessive crushing, and hence the power consumption in the moving magnetic field generators 8 and 9.

以上述べたようにこの発明によれば、高運転効
率、高粉砕効率のもとで砕料の連続粉砕処理が行
え、総合的に見て運転効率、省エネルギー効果が
高く、しかも均一な粒径の砕製物が得られる性能
の優れた電磁式粉砕処理装置を提供することがで
きる。
As described above, according to the present invention, it is possible to perform continuous pulverization of granules with high operating efficiency and high pulverizing efficiency, and overall, the operating efficiency and energy saving effects are high, and moreover, particle size is uniform. It is possible to provide an electromagnetic crushing device with excellent performance for obtaining crushed products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の機械式粉砕機の構成断面図、第
2図は電磁式粉砕機の構成原理図、第3図は第2
図の矢視−断面図、第4図はこの発明の実施
例の略示構成図である。 5:処理容器、6:砕料、7:ワーキングピー
ス、8,9:移動磁界発生装置、10:電磁式粉
砕機、11:砕料入口、12:砕製物出口、1
3:スクリーン、14:ふるい、15:砕料投入
ホツパ、16:気流搬送式砕料供給路、17:フ
アン、18:砕製物。
Figure 1 is a sectional view of the configuration of a conventional mechanical crusher, Figure 2 is a diagram of the configuration principle of an electromagnetic crusher, and Figure 3 is a cross-sectional view of the configuration of a conventional mechanical crusher.
FIG. 4 is a cross-sectional view taken in the direction of arrows in the figure, and is a schematic configuration diagram of an embodiment of the present invention. 5: Processing container, 6: Crushed material, 7: Working piece, 8, 9: Moving magnetic field generator, 10: Electromagnetic crusher, 11: Crushed material inlet, 12: Crushed material outlet, 1
3: Screen, 14: Sieve, 15: Crushed material input hopper, 16: Air flow conveyance type crushed material supply path, 17: Fan, 18: Crushed material.

Claims (1)

【特許請求の範囲】[Claims] 1 磁性材あるいは非磁性導電材で作られた多数
のワーキングピースが収容された処理容器内へ砕
料を送り込み、この処理容器へ外部から移動磁界
を作用させることにより、移動磁界との相互作用
に基づく電磁力でワーキングピースにランダム運
動を生起させて砕料を粉砕処理する電磁式粉砕処
理装置において、処理容器に砕料入口および砕製
物出口を設けて入口にはワーキングピースの飛び
出しを防ぐスクリーンを、出口には分級機能をも
つたふるいをそれぞれ装備するとともに、前記の
砕料入口に連ねて気流搬送式砕料供給路を接続
し、該砕料供給路を通じて処理容器に通風する搬
送気流に乗せて砕料の供給および砕製物の排出を
連続的に行うようにしたことを特徴とする電磁式
粉砕処理装置。
1. Particles are fed into a processing container containing a large number of working pieces made of magnetic or non-magnetic conductive materials, and a moving magnetic field is applied to the processing container from the outside to prevent interaction with the moving magnetic field. In an electromagnetic crushing device that uses electromagnetic force to generate random motion in a working piece to crush crushed material, the processing container is provided with a crushed material inlet and a crushed material outlet, and a screen is installed at the inlet to prevent the working piece from flying out. Each outlet is equipped with a sieve with a classification function, and an air flow conveyance type crushed material supply path is connected to the crushed material inlet, and the conveying airflow is passed through the crushed material supply path to the processing container. 1. An electromagnetic pulverization processing device, characterized in that the pulverized material is continuously supplied and the pulverized material is discharged.
JP9556182A 1982-06-03 1982-06-03 Electromagnetic type crushing processing device Granted JPS58214356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9556182A JPS58214356A (en) 1982-06-03 1982-06-03 Electromagnetic type crushing processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9556182A JPS58214356A (en) 1982-06-03 1982-06-03 Electromagnetic type crushing processing device

Publications (2)

Publication Number Publication Date
JPS58214356A JPS58214356A (en) 1983-12-13
JPS628218B2 true JPS628218B2 (en) 1987-02-21

Family

ID=14140996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9556182A Granted JPS58214356A (en) 1982-06-03 1982-06-03 Electromagnetic type crushing processing device

Country Status (1)

Country Link
JP (1) JPS58214356A (en)

Also Published As

Publication number Publication date
JPS58214356A (en) 1983-12-13

Similar Documents

Publication Publication Date Title
JP3613474B2 (en) Granular raw material classifier and pulverizing system incorporating it
JPH07256125A (en) Circulating grinding equipment
JP2920876B2 (en) Apparatus and method for crushing cement clinker by vertical roller mill
JPH04338244A (en) Device and method for grinding by vertical roller mill
JPS628218B2 (en)
JPS58210866A (en) Electromagnetic type crushing treating device treating material to be crushed of small bulk density
US2824700A (en) Method of reducing materials
JP2985341B2 (en) Granulation equipment for metal powder production
JPH0210787B2 (en)
JPS5955359A (en) Crushing system of grain hull
JPS58210865A (en) Electromagnetic type crushing treating device treating material to be crushed of small bulk density
JPS61500836A (en) Material crushing equipment
JPH05253506A (en) Vertical type crushing device
JPS5939352A (en) Dry system tower type crusher for ore, etc.
JPH0244853Y2 (en)
JPH0910623A (en) Lumpy material pulverizer and method thereof
JPH05337395A (en) Grinding equipment
JPH05247863A (en) Treating method of wall paper
CN2127039Y (en) Machinery feeling type air flow grinder
JP2541079B2 (en) Air swept type ultrafine powder crushing classifier
JPS5952543A (en) Electromagnetic crushing apparatus
JPS60168545A (en) Crusher for obtaining ultra-fine powder
JPH0251675B2 (en)
JPS61197053A (en) Pressure collapsing type crushing and drying apparatus
JPS5966362A (en) Ultra-finely crushing machine