JPS6282053A - Thermal head - Google Patents

Thermal head

Info

Publication number
JPS6282053A
JPS6282053A JP22224885A JP22224885A JPS6282053A JP S6282053 A JPS6282053 A JP S6282053A JP 22224885 A JP22224885 A JP 22224885A JP 22224885 A JP22224885 A JP 22224885A JP S6282053 A JPS6282053 A JP S6282053A
Authority
JP
Japan
Prior art keywords
heat generating
glaze layer
heat
scanning direction
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22224885A
Other languages
Japanese (ja)
Inventor
Hiroyuki Shimooosawa
下大沢 博之
Hiroshi Saegusa
洋 三枝
Tatsuyuki Tomioka
富岡 辰行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic System Solutions Japan Co Ltd
Panasonic Holdings Corp
Original Assignee
Matsushita Graphic Communication Systems Inc
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Graphic Communication Systems Inc, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Graphic Communication Systems Inc
Priority to JP22224885A priority Critical patent/JPS6282053A/en
Publication of JPS6282053A publication Critical patent/JPS6282053A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/335Structure of thermal heads

Landscapes

  • Electronic Switches (AREA)
  • Facsimile Heads (AREA)

Abstract

PURPOSE:To enable high speed recording imparting good image quality by reducing the heat accumulation quantity in the glaze layer provided beneath the under the heat generating resistor and enhancing the heat response of the heat generaiting resistor, by respectively setting the thickness of the glaze layer of a thermal head and the length of the heat generating part of the heat generating resistor in a sub-scanning direction to specific range values. CONSTITUTION:A glaze layer 2 is provided on a base plate 1 and a large number of heat generating resistors 3 are arranged on said glaze layer 2 in a main scanning direction so as to correspond to the number of picture elements of one line. A lead layer 4 supplies power to the heat generating resistors 3 and an abrasion resistant layer 5 is provided on the upper layers of the heat generating resistors 3. In order to prevent the heat capacity of the glaze layer 2 from becoming excessively large and the heat response of the heat generating resistors 3 becoming inferior and blotting from being generated in a recording dot to deteriorate image quality, the thickness of the glaze layer is set to 10-20mum. Further, in order to prevent the deterioration of image quality, the length of the heat generating part of each heat generating resistor in a sub-scanning direction is set to 100-130mum.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はファクシミリ等に用いるサーマルヘッドに係わ
シ、特に高速記録時の画質向上に適するサーマルヘッド
の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a thermal head used for facsimile and the like, and particularly to a structure of a thermal head suitable for improving image quality during high-speed recording.

従来の技術 従来のサーマルへ1ドは、第3図に子中ように、基板1
上にグレーズ層2が設けられ、このグレーズ層の表面に
主走査方向に1ライン分の記録画素数に対応する発熱抵
抗体3が配設され、これら発熱抵抗体3には各々に電力
を供給するリード層4が設けられており、その上層に発
熱抵抗体3の酸化と摩耗を防ぐ耐摩耗層5を配設して構
成されている。
2. Description of the Related Art A conventional thermal conductor has a substrate 1 as shown in FIG.
A glaze layer 2 is provided on top, and heating resistors 3 corresponding to the number of recording pixels for one line in the main scanning direction are arranged on the surface of this glaze layer, and power is supplied to each of these heating resistors 3. A lead layer 4 is provided, and a wear-resistant layer 5 for preventing oxidation and wear of the heating resistor 3 is disposed on top of the lead layer 4.

また、第4図に示すようにグレーズ層2が発熱抵抗体3
の下にだけ部分的に設けられたものもある。
Further, as shown in FIG. 4, the glaze layer 2 is connected to the heating resistor 3.
Some are partially installed only under the .

発熱抵抗体3の発熱部寸1去は、用途により各々異なる
が、通常のファクシミリの場合には、解像度が主走査方
向に8本/mrx、副走査方向に7.7木々肩が必要と
なる。これを単純に計算すると主走査方向は125μm
、副走査方向は130μmになるが、通常ファクタS 
IJ用サーマルヘッドの発熱抵抗体は、主走亘方向が1
00〜110μmで、副走査方向は17C1〜200μ
mとなっている。これは、主走査方向については1列に
配設された発熱抵抗体3を各々分離する必要があるため
、その間に隙間を設けなければならず、そのため発熱抵
抗体3の主走査方向の寸法は125μmより若干短い1
00〜110μmとなっていた。
The dimensions of the heating part of the heating resistor 3 vary depending on the application, but in the case of a normal facsimile, a resolution of 8 lines/mrx in the main scanning direction and 7.7 lines/mrx in the sub-scanning direction is required. . If you simply calculate this, the main scanning direction is 125μm.
, the sub-scanning direction is 130 μm, but the normal factor S
The heating resistor of the thermal head for IJ has a main running direction of 1.
00~110μm, sub-scanning direction is 17C1~200μm
m. This is because, in the main scanning direction, it is necessary to separate the heating resistors 3 arranged in one row, so a gap must be provided between them. Therefore, the dimensions of the heating resistors 3 in the main scanning direction are Slightly shorter than 125μm1
It was 00 to 110 μm.

副走査方向については、第5図〈IL)に示すように発
熱抵抗体の発熱部3aは通常矩形状をしているが、第5
図(b)に示すように、その記録Y゛ソトbは角のとれ
たものになる。ここで発熱抵抗体3の発熱部32Lの副
走査方向長りを理論上の必要長さ130、αmにすると
、第5図(C)にしめすように、記録ドツト間の角部の
ところに隙間が生じて画質を低下させてしまう。そのた
め、従来は第5図(d)に示すように記録ドツトをある
程度重ね、隙間を埋める対策を取−〕でおシ、この場合
の副走査方向の寸法は170〜200μmであった。
Regarding the sub-scanning direction, as shown in FIG. 5 (IL), the heating portion 3a of the heating resistor is usually rectangular;
As shown in Figure (b), the recorded Y'sotob becomes rounded. If the length of the heating portion 32L of the heating resistor 3 in the sub-scanning direction is set to the theoretically required length of 130, αm, there will be a gap at the corner between the recording dots, as shown in FIG. 5(C). occurs, degrading the image quality. Therefore, conventional measures have been taken to fill in the gaps by overlapping recording dots to some extent as shown in FIG. 5(d), and in this case the dimension in the sub-scanning direction was 170 to 200 μm.

一方、グレーズ層も画質に影響を与える。グレーズ層が
厚過ぎると蓄熱が激しく発熱抵抗体の熱応答性が低下し
、尾引き、にじみ等の画質低下を招く。しかし、逆にグ
レーズ層は薄くなるほど発色時の電力効率が悪化する傾
向にある。現在フ7り/ミリでは、記録時間がsms/
1ine程度であシ、グレーズ層厚として60〜80μ
mが用いられていた。
On the other hand, the glaze layer also affects image quality. If the glaze layer is too thick, heat will be accumulated intensely and the thermal response of the heating resistor will be reduced, leading to deterioration in image quality such as trailing and blurring. However, conversely, as the glaze layer becomes thinner, the power efficiency during color development tends to deteriorate. Currently, the recording time is sms/mm.
Approximately 1ine, glaze layer thickness is 60~80μ
m was used.

発明が解決しようとする問題点 しかし、上述のサーマルヘッドは、2ms、4insで
の記録若しくはより高速な記録を行うと、画質劣化が著
しいという問題点のあることが判明した。
Problems to be Solved by the Invention However, it has been found that the above-mentioned thermal head has a problem in that image quality deteriorates significantly when recording is performed at 2ms, 4ins, or at a higher speed.

本発明者は上述の問題点の生じる理由を種々検討した結
果、以下の事項を見出した。即ち、記録速度を速くする
と発熱抵抗体への印加パルス周期が速くなり、グレーズ
層厚60〜8Qμmのサーマルヘッドで2ms/l工n
e記録を行うと、発熱体の熱応答が印加パルス周期に追
従できなくなυ、記録ドツトかにじんでしまう。また、
蓄熱も激しくなシ、過去の記録状態を参照し印加電力の
制御を行う、いわゆる熱履歴制量も複雑になる。しかし
、熱履歴制量が複雑になるということはそれだけ制卸時
間を要することになシ、本来は逆に高速記録になるほど
この制m時間の短縮が求められるので、この点も新たな
問題となる。
The inventors of the present invention have investigated various reasons for the above-mentioned problems and have found the following. In other words, when the recording speed is increased, the period of pulses applied to the heating resistor becomes faster, and a thermal head with a glaze layer thickness of 60 to 8 Qμm can generate a recording speed of 2ms/l process n.
When e-recording is performed, the thermal response of the heating element cannot follow the applied pulse cycle, and the recorded dots smear. Also,
Heat accumulation is also intense, and so-called thermal history control, which controls applied power by referring to past recorded conditions, becomes complicated. However, the more complex the thermal history control is, the more time it takes to control it; on the contrary, the higher the speed of recording, the more it is necessary to shorten the control time, so this point also poses a new problem. Become.

また、感熱記録紙が実際に発色する時間、いわゆる発色
有効時間は一定であシ、1ラインの記録時間に対する発
色有効時間の割合は、s ms/1ine記録では小さ
いが、2 mg/1ine 記録若しくはそれより高速
になるとこの割合が大きぐなシ、このため記録ドツトが
副走査方向に伸びそれが画質劣化を招いていた。
In addition, the time for the thermal recording paper to actually develop color, the so-called effective color development time, is constant, and the ratio of the effective color development time to the recording time of one line is small for sms/1ine recording, but for 2 mg/1ine recording or When the speed is higher than that, this ratio becomes large, and as a result, the recording dots extend in the sub-scanning direction, which causes deterioration in image quality.

本発明は上述の問題点に鑑みて為されたもので、画質が
劣化することなく、2ms/1ine記録若しくはそれ
よシ高速で記録が行なえるサーマルヘッドを提供するこ
とを目的とする。
The present invention has been made in view of the above-mentioned problems, and it is an object of the present invention to provide a thermal head that can perform recording at 2 ms/1ine recording speed or higher speed without deteriorating image quality.

問題点を解決するための手段 本発明は上述の問題点を解決するため、基板上に設けら
れたグレーズ層と、このグレーズ層上に主走査方向に並
べられ、1ライン分の記録画素数に対応して設けられた
多数の発熱抵抗体と、この発熱抵抗体に電力を供給する
リード層と、前記発熱抵抗体の上層に設けられた耐摩耗
層とを有し、前記グレーズ層は厚さが10μm以上、2
0μm以下であり、前記発熱抵抗体は副走査方向の発熱
部長さが100μm以上、130μm以下とじたサーマ
ルヘッドを提供するものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention includes a glaze layer provided on a substrate, a glaze layer arranged on the glaze layer in the main scanning direction, and a number of recording pixels for one line. The glaze layer has a large number of corresponding heating resistors, a lead layer for supplying power to the heating resistors, and a wear-resistant layer provided on the heating resistor. is 10 μm or more, 2
0 μm or less, and the heat generating resistor provides a thermal head in which the heat generating portion in the sub-scanning direction is 100 μm or more and 130 μm or less.

作用 本発明は上述の構成によって、発熱抵抗体下面のグレー
ズ層での蓄熱量が減少し発熱抵抗体の熱応答性が向上し
、記録ドツトににじみがなく、また、発熱抵抗体の発熱
部サイズも適値になるため画質の良い高速記録が可能と
なる。すなわち、副走査方向の解像度が乙7本/羽で記
録時間が2ms/1工ne以下で記録することができる
According to the above-described structure, the present invention reduces the amount of heat stored in the glaze layer on the lower surface of the heating resistor, improves the thermal responsiveness of the heating resistor, prevents smearing of recorded dots, and reduces the size of the heating portion of the heating resistor. Since the value is also set to an appropriate value, high-speed recording with good image quality is possible. That is, it is possible to record with a resolution of 7 lines/feather in the sub-scanning direction and a recording time of 2 ms/1 inch or less.

実施列 以下、本発明の実施列を図面を参照して説明する。第1
図は本発明の一実施例によるサーマルヘッドの概略構成
を示すもので、(a)は発熱抵抗体の発熱部3aの形状
5寸法を示す図、(b)はサーマルヘッド断面図である
。1は基板、2は基板上に設けられたグレーズ層、3ば
このグレーズ層上に主走査方向に並べられ、1ライン分
の記録画素数に対応して設けられた多数の発熱抵抗体、
4はこの発熱抵抗体に電力を供給するリード層、5は前
記発熱抵抗体の上層に設けられた耐摩耗層である。
Embodiment The embodiment of the present invention will be described below with reference to the drawings. 1st
The figures schematically show the configuration of a thermal head according to an embodiment of the present invention, in which (a) is a diagram showing the shape and dimensions of a heat generating portion 3a of a heating resistor, and (b) is a sectional view of the thermal head. 1 is a substrate; 2 is a glaze layer provided on the substrate; 3 is a large number of heating resistors arranged in the main scanning direction on the glaze layer and provided corresponding to the number of recording pixels for one line;
Reference numeral 4 designates a lead layer for supplying power to the heat generating resistor, and reference numeral 5 designates a wear-resistant layer provided on the upper layer of the heat generating resistor.

これらの各層の材料1寸法7物性等を次のように設定し
た実施例につき、記録試験を行った。
A recording test was conducted with respect to an example in which the materials, dimensions, physical properties, etc. of each of these layers were set as follows.

ここで基板には、アルミナ等のセラミックが好適である
。グレーズ層としては、絶縁性、断熱性耐熱性を有する
もので、通常、ガラスが使用される。発熱抵抗体はサー
メット系抵抗材料或いは5i−Ta等が使用される。リ
ード層は金属層で構成され、通常Guが使用される。更
に、耐摩耗層としては、SiCを主成分とする1iil
t摩耗材料を使用した。
Here, a ceramic such as alumina is suitable for the substrate. The glaze layer has insulation, heat insulation, and heat resistance properties, and glass is usually used. For the heating resistor, a cermet-based resistance material, 5i-Ta, or the like is used. The lead layer is composed of a metal layer, and Gu is usually used. Furthermore, as a wear-resistant layer, 1iIl whose main component is SiC is used.
t wear material was used.

(1)基板 材質    人1□03 厚み    0.64m肩 熱伝導率  0.04C乙1/α・東 ・°C(2) 
 グレーズ層 材質    ガラス 組成    5i02   53% Ba0   21% CaO14% 人1205       6 % その他    6% 厚み    15μm 熱伝4率  0.002 cal/n −5eC,6c
、(3)発熱抵抗体 材質    サーメット系抵抗材料 厚み    0.1μm 全熱部寸法 100μm(主走査方向)130μm(W
’J走査方向) (4)  リード層 材質    Cu 厚み    0.6μm (@ 耐摩耗層 材質    SiCを主成分とする耐摩耗材料 厚み    4μm また、比較のため、グレーズ層全上記実施り1jと同じ
材質で厚みを60μmとし、発熱抵抗体を同じ材質で構
成しその全熱部寸法を1ooμm(主走査方向)X17
0μm(副走査方向)とした従来のサーマルヘッドによ
る記録試験を行った。
(1) Substrate material Person 1□03 Thickness 0.64m Shoulder thermal conductivity 0.04C Otsu1/α・East ・°C (2)
Glaze layer material Glass composition 5i02 53% Ba0 21% CaO14% Human 1205 6% Others 6% Thickness 15μm Heat transfer coefficient 0.002 cal/n -5eC, 6c
, (3) Heating resistor material Cermet-based resistor material Thickness 0.1 μm Total heating part dimensions 100 μm (main scanning direction) 130 μm (W
'J scanning direction) (4) Lead layer material: Cu Thickness: 0.6 μm (@ Wear-resistant layer material: Wear-resistant material mainly composed of SiC Thickness: 4 μm For comparison, all glaze layers were made of the same material as in Example 1j above. The thickness is 60 μm, the heating resistor is made of the same material, and the total heating part dimensions are 10 μm (main scanning direction) x 17
A recording test was conducted using a conventional thermal head with a diameter of 0 μm (in the sub-scanning direction).

記録を、2ms/1ine及び1ms/1ineの速度
で行った時の画質を比較検討したところ、本実施列のサ
ーマルヘッドによる画質は、従来のものに比べ、いずれ
の場合も優nたものであった。加えて、本実施列による
サーマルヘッドでは熱履歴制御全行わなくとも充分な画
質が得られた。
When we compared the image quality when recording was performed at a speed of 2ms/1ine and 1ms/1ine, we found that the image quality with the thermal head of this embodiment was superior to that of the conventional one in both cases. Ta. In addition, with the thermal head according to this embodiment, sufficient image quality was obtained without performing any thermal history control.

以上の実施列は、グレーズ層2を基板全面に設けたもの
であるが、本発明はこの構造に限らず、第2図に示すよ
うにグレーズ層2を発熱抵抗体3の下部だけに設けても
よい。この場合のグレーズ層厚とは、基板1からグレー
ズ層2の頂点までの距離を示す。
In the above embodiments, the glaze layer 2 is provided on the entire surface of the substrate, but the present invention is not limited to this structure, and the glaze layer 2 is provided only on the lower part of the heating resistor 3 as shown in FIG. Good too. The glaze layer thickness in this case indicates the distance from the substrate 1 to the top of the glaze layer 2.

ここで゛、グレーズ層の厚みを10μmよシ薄ぐすると
、熱絶縁性が不足し発色時の電力効率が著しく低下し、
発色しにくぐな)、列えばグレーズ層厚0μmの場合に
はほとんど発色しなくなる。
Here, if the thickness of the glaze layer is reduced to 10 μm, the thermal insulation will be insufficient and the power efficiency during coloring will be significantly reduced.
However, if the glaze layer thickness is 0 μm, almost no color will develop.

また、10μmより薄いグレーズ層を一様に作るのは製
造上困難である。逆にグレーズ層の厚みを20μmよシ
も大きくするとグレーズ層の熱容量が犬きくなシ過ぎ発
熱抵抗体の熱応答性が悪くなり、記録ドツトににじみが
生じ画質が劣化する。
Furthermore, it is difficult to uniformly form a glaze layer thinner than 10 μm in terms of manufacturing. On the other hand, if the thickness of the glaze layer is increased to 20 μm, the heat capacity of the glaze layer becomes too small and the thermal response of the heating resistor deteriorates, causing bleeding in the recorded dots and deteriorating the image quality.

このため、本発明ではグレーズ層厚を10−.20μm
に選定している。また、発熱抵抗体の発熱部の副走査方
向の寸法が100μmよりも短いと、記録ドツト間に隙
間ができてしまい、逆に130ttrnよりも長いと、
記録ドツトが長く伸び過ぎて白点を記録する場合に副走
査方向に隣接する記録ドツトで白点が潰れてしまい、い
ずれの場合にも画質が劣化する。このため、本発明では
発熱抵抗体の発熱部の副走査方向長を、joo〜130
μmに選定しでいる。
Therefore, in the present invention, the glaze layer thickness is set to 10-. 20μm
has been selected. Furthermore, if the dimension of the heating part of the heating resistor in the sub-scanning direction is shorter than 100 μm, gaps will be created between recording dots, and conversely, if it is longer than 130 ttrn,
When a recording dot extends too long to record a white spot, the white spot is crushed by adjacent recording dots in the sub-scanning direction, and in either case, the image quality deteriorates. Therefore, in the present invention, the length of the heat generating part of the heat generating resistor in the sub-scanning direction is set to 130 to 130 mm.
It has been selected to be μm.

発明の効果 以上の説明から明らかなように、本発明はサーマルヘッ
ドのグレーズ層を10μm以上、2011m以下とし、
発熱抵抗体の発熱部の副走査方向の長さを100μm以
上、130μm以下とすることにより、副走査方向の解
像度が乙7*/門で記録時間が2ms/linθ以下で
記録を行う場合でも良好な画質が得られるという効果を
有するものである。
Effects of the Invention As is clear from the above explanation, the present invention has a thermal head with a glaze layer of 10 μm or more and 2011 m or less,
By setting the length of the heating part of the heating resistor in the sub-scanning direction to 100 μm or more and 130 μm or less, it is possible to perform recording even when the resolution in the sub-scanning direction is Otsu 7*/gate and the recording time is 2 ms/linθ or less. This has the effect that high image quality can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のサーマルヘッドを示すもの
で、(a)は発熱抵抗体の発熱部の平面図、(b)は概
略値1面図、第2図は本発明の他の実施例を示す概略便
j面図、第3図、第4図は従来のサーマルヘッドの漿略
使1面図、第5図は第3図のサーマルヘッドをでおける
発熱抵抗体の発熱部の平面図及びその記録ドツトの平面
図である。 1 ・基板、2 ・・・グレーズ層、3 ・・発熱抵抗
体、4・・−・リード層、5 ・・・耐摩耗層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図       7−8脹 2−一・ グt−ズ層 J−一一威体 第2図 第3図 第5図 悼)(b) (C)(ダ)
FIG. 1 shows a thermal head according to an embodiment of the present invention, in which (a) is a plan view of the heat generating part of the heating resistor, (b) is a schematic view from one side, and FIG. 3 and 4 are schematic side views showing the embodiment of the conventional thermal head, and FIG. FIG. 3 is a plan view of the recording dots of FIG. DESCRIPTION OF SYMBOLS 1 - Substrate, 2... Glaze layer, 3... Heating resistor, 4... Lead layer, 5... Wear-resistant layer. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 7-8 Figure 2-1 Goods layer J-11 Body Figure 2 Figure 3 Figure 5) (b) (C) (da)

Claims (1)

【特許請求の範囲】[Claims] 基板上に設けられたグレーズ層と、このグレーズ層上に
主走査方向に並べられ、1ライン分の記録画素数に対応
して設けられた多数の発熱抵抗体と、この発熱抵抗体に
電力を供給するリード層と、前記発熱抵抗体の上層に設
けられた耐摩耗層とを有し、前記グレーズ層は厚さが1
0μm以上、20μm以下であり、前記発熱抵抗体は副
走査方向の発熱部長さが100μm以上、130μm以
下に構成したことを特徴とするサーマルヘッド。
A glaze layer provided on the substrate, a large number of heating resistors arranged in the main scanning direction on the glaze layer corresponding to the number of recording pixels for one line, and power to the heating resistors. The glaze layer has a lead layer for supplying the lead layer and a wear-resistant layer provided on the upper layer of the heating resistor, and the glaze layer has a thickness of 1.
0 μm or more and 20 μm or less, and the heating resistor has a heat generating portion in the sub-scanning direction of 100 μm or more and 130 μm or less.
JP22224885A 1985-10-04 1985-10-04 Thermal head Pending JPS6282053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22224885A JPS6282053A (en) 1985-10-04 1985-10-04 Thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22224885A JPS6282053A (en) 1985-10-04 1985-10-04 Thermal head

Publications (1)

Publication Number Publication Date
JPS6282053A true JPS6282053A (en) 1987-04-15

Family

ID=16779420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22224885A Pending JPS6282053A (en) 1985-10-04 1985-10-04 Thermal head

Country Status (1)

Country Link
JP (1) JPS6282053A (en)

Similar Documents

Publication Publication Date Title
EP0395978A1 (en) Thick film type thermal head
JP4367771B2 (en) Thermal head
JPS6282053A (en) Thermal head
JP3411133B2 (en) Thermal head
JP3548571B2 (en) Thermal head
KR0167868B1 (en) Thermal head and termal transfer apparatus
JPS58163679A (en) Thermal head
JPH0518144Y2 (en)
JP2542711B2 (en) Method of manufacturing thick film thermal head
JP2837963B2 (en) Thermal head
JP2537559B2 (en) Thick film thermal head
JP3477194B2 (en) Thermal head
JPH0679896A (en) Thermal printing head
JPH068501A (en) Thermal printing head
JPS6246656A (en) Thermal head
JPH06127007A (en) Thermal head
JPH052510B2 (en)
JPS61139453A (en) Thermal head
JPH065892Y2 (en) Thermal head
JPH01123756A (en) Thick film type thermal head
JPS6154956A (en) Thermal head
JPS6273601A (en) Thermal head
JPH02145355A (en) Thermal head
JPS62164541A (en) Dot printer head
JPH07148956A (en) Structure of line thermal printing head