JPS6281820A - Distress communication method by geostationary satellite - Google Patents

Distress communication method by geostationary satellite

Info

Publication number
JPS6281820A
JPS6281820A JP22152485A JP22152485A JPS6281820A JP S6281820 A JPS6281820 A JP S6281820A JP 22152485 A JP22152485 A JP 22152485A JP 22152485 A JP22152485 A JP 22152485A JP S6281820 A JPS6281820 A JP S6281820A
Authority
JP
Japan
Prior art keywords
antenna
distress
signal
geostationary satellite
power level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22152485A
Other languages
Japanese (ja)
Inventor
Osamu Sugimoto
修 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22152485A priority Critical patent/JPS6281820A/en
Publication of JPS6281820A publication Critical patent/JPS6281820A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect a distressed position by utilizing a geostationary satellite by obtaining information of said position from a reception power level of a distress signal radio wave at each multi-beam antenna even when no distressed position information is sent from a transmitter of a wrecked ship. CONSTITUTION:When a wrecked ship exists in a beam irradiation area of an antenna beam 13-i and when a distress signal from a transmitter of the wrecked ship is found out, the distress signal radio wave is caught by the antenna beam 13-i, the signal passes through a feed horn 17-i, received and detected by a receiver 18-i and converted into a reception power level signal and inputted to a signal processing circuit 19. The signal processing circuit 19 applies A/D conversion signal to each reception power level signal and sends the result to an earth station 9 in a signal format corresponding to each antenna beam. Since the sending point of the distress signal exists in the beam irradia tion area of the antenna beam having the maximum reception power level, the earth station finds out the distressed position.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、船舶や航空機等が遭難した場合に遭難者が
遭難信号を発信して遭難位置を救難機関に知らせるのを
人工衛星を利用して行う遭難通信方法に関するものであ
る。
[Detailed Description of the Invention] [Field of Industrial Application] This invention utilizes artificial satellites to enable people in distress to transmit distress signals and inform rescue agencies of their location in the event that a ship or aircraft is in distress. This relates to a distress communication method.

〔従来の技術〕[Conventional technology]

静止衛星を使戸して船舶等の遭難を通信する方法は、ア
ンテナカバレッジを非常に広くとることができ1周回衛
星方式のように衛星の待ち時間がなく遭難を即時に仰ら
せることができる。
The method of using geostationary satellites to communicate distress of ships, etc. can provide a very wide antenna coverage, and can immediately report distress without the waiting time for a satellite as in the single-orbiting satellite system.

第4図は、従来の静止衛星を利用した遭難通信方法の原
理図を示したものである。なお、第4図では船舶の場合
を例にとり説明する。
FIG. 4 shows a principle diagram of a conventional distress communication method using a geostationary satellite. In addition, in FIG. 4, the case of a ship will be explained as an example.

第4図において、(1)は地球、(2)は遭難船、(3
)は遭難送信機、(41はこの遭難送信機(3)から発
信される遭難信号の電波、(5)は上記地球+11の静
止衛星軌道上に位置する静止衛星、(6)はこの静止衛
星に搭載され、上記遭難信号の電波(4)を捕えるアン
テナ。
In Figure 4, (1) is the Earth, (2) is the ship in distress, and (3 is
) is a distress transmitter, (41 is a radio wave of a distress signal transmitted from this distress transmitter (3), (5) is a geostationary satellite located in the geostationary satellite orbit of the earth + 11 above, and (6) is this geostationary satellite. An antenna installed on the ship that captures the radio waves (4) of the above-mentioned distress signal.

(7)はこのアンテナ(61のビームでビーム照射域を
広げるためビーム幅が広い2例えばグローバルビームの
ようなアンテナビーム、(8)はそのビーム照射域、(
9)は地球局、顛は地球局との通信用のアンテナ、a1
+は上記静止衛星(5)から地球局への下り信号電波を
示す。
(7) is the beam of this antenna (61) which has a wide beam width to widen the beam irradiation area 2, such as the global beam, (8) is its beam irradiation area, (
9) is the earth station, 雛 is the antenna for communication with the earth station, a1
+ indicates a downlink signal radio wave from the geostationary satellite (5) to the earth station.

従来の静止衛星による遭難通信方法は上記のように構成
され、静止衛星(5)を刺片するとアンテナカバレッジ
を広くとれるので、アンテナf61U、  ビーム照射
域(8)を大きく広げるためにビーム幅を広ケタグロー
バルビームのようなアンテナビーム(7)を甲いている
。船舶が遭難した場合、 11Jlii船(2)の識別
符号、遭難時刻、遭難位置などの情報を遭難送信機(3
)から2!!難信号電波(4)にのせて送信する。
The conventional distress communication method using a geostationary satellite is configured as described above, and since antenna coverage can be widened by stabilizing the geostationary satellite (5), antenna f61U is used to widen the beam width to greatly expand the beam irradiation area (8). It has an antenna beam (7) similar to the digit global beam. When a ship is in distress, information such as the identification code of the 11Jlii ship (2), the time of the shipwreck, and the position of the ship is sent to the distress transmitter (3).
) to 2! ! Transmit on poor signal radio waves (4).

遭難送信機(3)がビーム照射域18)内にあるとき、
静止衛星(5)はアンテナ(6)のアンテナビーム(7
1によって遭難信号電波(4)を受信し、静止衛星(5
)の中継器で周波数変換、増1陽を行ってアンテナα1
から下り信号電波allにより地球局(9)に向けて再
送信される。
When the distress transmitter (3) is within the beam irradiation area 18),
The geostationary satellite (5) is connected to the antenna beam (7) of the antenna (6).
1 receives the distress signal radio wave (4) and sends it to the geostationary satellite (5).
) repeater performs frequency conversion and multiplication to antenna α1.
It is then retransmitted to the earth station (9) using the downlink signal radio wave ALL.

地上局(9)は、受信した下り信号を復調、符号解読後
、得られた遭難位置情報を救難機関に連絡して救助甲の
船舶や航空a!などが遭難現場に向かうことになる。
The ground station (9) demodulates and decodes the received downlink signal, and then communicates the obtained distress location information to the rescue organization and sends it to rescue ships and aircraft a! and others will head to the scene of the disaster.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の静止衛星による遭難通信方法では、
ビーム照射域(81内にある遭難送信機(3)からの送
信を常時監視できるが2位置情報を持たないSOS信号
だけではそれが衛星のアンテナカバレッジ内のどこから
送信されたかわがらないために遭難船(2)の位置情報
を入れた遭難信号を、遭難送信機(3)から送信する必
要がある。そのため、遭難送信機(3)に測位装置を内
蔵させるか、あるいは。
In the conventional distress communication method using geostationary satellites as described above,
Transmissions from the distress transmitter (3) within the beam irradiation area (81) can be monitored at all times, but 2 SOS signals without location information do not know where within the satellite's antenna coverage the signal was sent from, which can cause distress. It is necessary to transmit a distress signal containing the position information of the ship (2) from the distress transmitter (3).For this reason, the distress transmitter (3) must have a built-in positioning device, or.

船上の航法装置から求めた位置を常に遭難送信機(3)
に入力しておく必要があり、装置が複雑になるという欠
点を有していた。また、そのために、現在航空機や小型
船舶に一般に広(@LqられているSOS信号の発信の
みを行う遭難送信機に対しては刺片できないという欠点
を有して込た。
Distress transmitter (3) always transmits the position determined from the ship's navigation equipment.
This has the disadvantage that the device needs to be inputted in advance, making the device complicated. In addition, for this reason, it has the disadvantage that it cannot be used to pierce distress transmitters that only transmit SOS signals, which are currently widely used in aircraft and small ships.

この発明は、かかる欠点を解決するためになされたもの
で、遭難送信機から遭難位置情報を送らなくても静止衛
星を利用して、遭難位置を知ることができる遭難通信方
法を提供することを目的とする0 〔問題点を解決するための手段〕 この発明に係る静止衛星による遭難通信方法は。
The present invention has been made in order to solve these drawbacks, and aims to provide a distress communication method that allows the location of a distress situation to be known by using a geostationary satellite without transmitting distress location information from a distress transmitter. Objective 0 [Means for solving the problems] A distress communication method using a geostationary satellite according to the present invention.

従来のグローバルビームアンテナに代えて、空間的に固
定されたビーム禍が十分に狭い複数のアンテナビームで
所定のアンテナカバレッジ内を隈なぐ覆うマルチビーム
アンテナを静止衛星に搭載し。
Instead of the conventional global beam antenna, a multi-beam antenna is mounted on a geostationary satellite that covers the entire predetermined antenna coverage area with multiple antenna beams that are spatially fixed and have sufficiently narrow beam damage.

各アンテナビーム毎の遭難信号電波の受信電力レベルの
情報から遭難位置の情報を得ることができるものである
Information on the distress position can be obtained from information on the received power level of the distress signal radio waves for each antenna beam.

〔作用〕[Effect]

静止衛星は地球の赤道面上の静止衛星軌道上(高度的3
6,000 Km )に位置し、地球の自転と同周期で
同方向に公転するので、地上から静止衛星をみると空の
一点に静止しているようにみえる。
A geostationary satellite is in a geostationary satellite orbit above the earth's equatorial plane (altitude 3
It is located at an altitude of 6,000 km) and revolves in the same direction at the same period as the Earth's rotation, so when viewed from the ground, it appears to be stationary at a single point in the sky.

従って、地上と静止衛星の相対位置関係は一定に保たれ
るので、静止衛星に搭載これたアンテナのビームの方向
を常に地球上の特定方向に向くように指向制御すれば、
アンテナビームは空間的に固定されることになる。
Therefore, since the relative positional relationship between the ground and the geostationary satellite remains constant, if the direction of the beam of the antenna mounted on the geostationary satellite is always directed to a specific direction on the earth,
The antenna beam will be spatially fixed.

一方、アンテナビームのビーム1陽を狭くするとビーム
照射域の面積は小さくなり、アンテナ利得が高くなる。
On the other hand, if the beam width of the antenna beam is narrowed, the area of the beam irradiation area becomes smaller and the antenna gain becomes higher.

周矧のように1例えば、開口面アンテナでは、ビーム幅
は、アンテナの開口寸法を大きくするか、あるいは使甲
周波数を高くすることによって狭くすることができる。
For example, in an aperture antenna, the beam width can be narrowed by increasing the aperture size of the antenna or by increasing the operating frequency.

アンテナビーム幅を十分に狭くしたものを一般にペンシ
ルピームト呼ハれている。ペンシルビームは、ビーム催
内では高利得であるが、ビーム部外では利得は急峻に低
下する。所定のアンテナカバレッジをそれぞれ方向の異
なる複数のペンシルピームチ覆うと。
An antenna with a sufficiently narrow beam width is generally called a pencil beam. A pencil beam has a high gain inside the beam, but the gain drops sharply outside the beam. A given antenna coverage is covered by multiple pencil beams, each with a different direction.

アンテナカバレッジのエリアは各アンテナビームのビー
ム照射域の単位で細分化される。今、複数のペンシルビ
ームラ用いたマルチビームアンテナのあるひとつのアン
テナビーム照射域内で遭難送信機から遭難信号が発信さ
れると、そのアンテナビームでは大きな受信電力レベル
を得るが、それ以外のアンテナビームでの受信電力レベ
ルハ非常に小さくなる。従って、各アンテナビーム毎の
遭難信号電波に対する受信電力レベルをモニタすること
によって、受信電力レベルが最大のアンテナビーム照射
域内に遭難信号の発信点があることがわかる。
The antenna coverage area is subdivided in units of beam irradiation area of each antenna beam. Now, when a distress signal is transmitted from a distress transmitter within the irradiation area of one antenna beam with a multi-beam antenna using multiple pencil beams, that antenna beam receives a high received power level, but the other antenna beams receive a high received power level. The received power level becomes very small. Therefore, by monitoring the received power level for the distress signal radio waves for each antenna beam, it can be determined that the distress signal transmission point is within the antenna beam irradiation area where the received power level is maximum.

なお、この発明においては、静止衛星を利用しているこ
とにより、従来方式と同様に、広いアンテナカバレッジ
が得られ、かつ、即時性も保たれる。
In addition, in this invention, by using a geostationary satellite, a wide antenna coverage can be obtained and immediacy can be maintained, as in the conventional system.

〔実施例〕〔Example〕

WL1図は、この発明による静止衛星による417m通
信方法の原理図である。図において、 11+、 +5
1゜(9)、α(1,QBは第4図に示したものと同様
である。
Figure WL1 is a principle diagram of a 417m communication method using a geostationary satellite according to the present invention. In the figure, 11+, +5
1°(9), α(1, QB are the same as those shown in FIG. 4).

αaは静止衛星(5)に搭載されたマルチビームアンチ
f、a3Uマルチビームアンテナαりのアンテナビーム
で1例えばペンシルビームのようにビーム1−の狭い複
数のアンテナビーム、 (141は上記各々のアンテナ
ビームα3の地球表面上のビーム照射域、a9はマルチ
ビームアンテナα2の全体のアンテナカバレッジを示す
αa is the antenna beam of the multi-beam anti-f, a3U multi-beam antenna α mounted on the geostationary satellite (5), and 1 is a plurality of narrow antenna beams such as a pencil beam (141 is each of the above antennas) The beam irradiation area of the beam α3 on the earth's surface, a9, indicates the entire antenna coverage of the multi-beam antenna α2.

第2図は、静止衛星(5)に搭載これた遭難通信用装置
の一実施例を示す構成ブロック図である。図中、  H
,Ql)は、第1図に示したものと同じである・aOハ
上記マルチビームアンテナ(7)の反射m、αηは同シ
くマルチビームアンテナαaのフィードホーンである。
FIG. 2 is a block diagram showing an embodiment of a distress communication device mounted on a geostationary satellite (5). In the figure, H
, Ql) are the same as those shown in FIG. 1.aOc The reflection m and αη of the multi-beam antenna (7) are the feed horns of the multi-beam antenna αa.

各フィードホーンαηは、第1図に示すアンテナビーム
αaと1対1に対応している。対応関係を添字にて示す
。錦は上記フィードホーン+IT)の出力端に接続され
た受信機であり、遭難信号電波を受信検波して、受信電
力レベル信号を出力する。
Each feed horn αη has a one-to-one correspondence with the antenna beam αa shown in FIG. The correspondence relationship is indicated by a subscript. Nishiki is a receiver connected to the output end of the feed horn + IT), which receives and detects the distress signal radio wave and outputs a received power level signal.

(11は各アンテナビームに対応する受信電力レベル信
号の出力を地上に伝送するために適当な信号フォーマッ
トに変換する信号処理回路、(イ)は信号処理後の出力
信号を地上に送信する送信機である。
(11 is a signal processing circuit that converts the output of the received power level signal corresponding to each antenna beam into an appropriate signal format for transmission to the ground, and (a) is a transmitter that transmits the output signal after signal processing to the ground. It is.

上記のように構成された静止衛星による遭難通信方法に
おいては、所定のアンテナカバレッジはビーム幅の十分
に狭い複数のアンテナビームのビーム照射域によって細
分化されている。
In the distress communication method using a geostationary satellite configured as described above, a predetermined antenna coverage is subdivided into beam irradiation areas of a plurality of antenna beams having sufficiently narrow beam widths.

第3図は、この発明の実施例の動作説明図である。図に
示すように、fllえばアンテナビーム(13−1)の
ビーム照射域(14−1)内に遭難船(21があり、遭
難送信機(3)から遭難信号が発信されると遭難信号電
波(4)は、アンテナビーム(13−i)で捕えられ、
フィードホーン(17−1)を通り、受信機(18−i
)で受信検波され、受信レベルを示す検波出力を受信電
力レベル信号に変換し信号処理回路α1に入力すれる。
FIG. 3 is an explanatory diagram of the operation of the embodiment of the present invention. As shown in the figure, if there is a ship in distress (21) within the beam irradiation area (14-1) of the antenna beam (13-1), and a distress signal is transmitted from the distress transmitter (3), the distress signal radio wave will be transmitted. (4) is captured by antenna beam (13-i),
Pass through the feed horn (17-1) and connect to the receiver (18-i).
), and the detection output indicating the reception level is converted into a reception power level signal and input to the signal processing circuit α1.

受信機(18−1)以外の受信機の検波出力は、遭難信
号の発信点がそれらアンテナビームのビーム照射域から
外れているため遭難信号が受信されずに雑音レベルにあ
るか。
Is the detection output of the receivers other than the receiver (18-1) at a noise level because the distress signal is not received because the transmission point of the distress signal is outside the beam irradiation area of those antenna beams?

あるいは隣接アンテナビームで受信されたとしても極め
て低い受信レベルとなる。信号処理回路a9では、受信
機(18−1)〜(18−N)からの各受信電力レベル
信号をアナログ/ディジタル変換して。
Alternatively, even if it is received using an adjacent antenna beam, the reception level will be extremely low. The signal processing circuit a9 performs analog/digital conversion on each received power level signal from the receivers (18-1) to (18-N).

各アンテナビームに対応した受信電力レベルの情報を示
すように信号処理を行って適当な信号フォーマットに直
して出力する。信号処理回路−の出力信号は、送信機(
イ)で変調され、アンテナα1から地球局(9)に送信
される。地球局(91で受信された下り信号電波αBは
、復調、復号されて、各アンテナビーム毎の受信電力レ
ベルの情報が得られる。受信電力レベルの最大のアンテ
ナビーム(13−1)のビーム照射域(14−1)内に
遭難信号の発信地点があるので、遭難位置の情報を知る
ことができる。
The signal is processed to indicate information on the received power level corresponding to each antenna beam, converted into an appropriate signal format, and output. The output signal of the signal processing circuit is transmitted to the transmitter (
(a) and is transmitted from the antenna α1 to the earth station (9). The downlink signal radio wave αB received by the earth station (91) is demodulated and decoded to obtain information on the received power level for each antenna beam.Beam irradiation of the antenna beam (13-1) with the highest received power level Since there is a distress signal transmission point within the area (14-1), information on the distress location can be obtained.

なお、上記実施例では2反射鏡アンテナを甲いたマルチ
ビームアンテナについて示1−たが、レンズアンテナな
ど他の方式のマルチビームアンテナについても適用でき
る。
In the above embodiment, a multi-beam antenna with a two-reflector antenna was shown, but the present invention can also be applied to other types of multi-beam antennas such as a lens antenna.

ところで、上記説明では、この発明を遭難船に刺片する
場合について述べたが、その他、航空機や陸上における
遭難時の遭難通信にも利用できることはいうまでもない
Incidentally, in the above explanation, the present invention was described in the case of attaching a piece to a ship in distress, but it goes without saying that it can also be used for distress communication in the event of a distress on an aircraft or on land.

〔発明の効果〕〔Effect of the invention〕

この発明は以上に説明したとおり、複数のビーム幅が十
分に狭いアンテナビームで所定のアンテナカバレッジを
覆うマルチビームアンテナを静止衛星に搭載し、各アン
テナビームでの遭難信号電波の受信電力レベルの情報を
地球局へ送信する方向により、遭難者側から遭難位置情
報を送信しなくとも簡易な遭難送信機で遭難信号電波が
発信されていれば、遭難地点の位置情報を即時性を保ち
容易に知ることができるという効果がある。
As explained above, this invention includes a multi-beam antenna mounted on a geostationary satellite that covers a predetermined antenna coverage with multiple antenna beams with sufficiently narrow beam widths, and information on the received power level of distress signal radio waves in each antenna beam. Depending on the direction in which the distress signal is transmitted to the earth station, if the distress signal radio waves are transmitted by a simple distress transmitter, the location information of the distress point can be easily known without having to transmit the distress location information from the victim's side. It has the effect of being able to

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す静止衛星による遭難
通信方法の原理図、第2図はこの発明の一実施例を示す
静止衛星に搭載される遭難通信装置の構成ブロック図、
第3図はこの発明の動作説明図、第4図は従来の静止衛
星による遭難通信方法の原理図である。 図において、(1)は地球、(3)は遭難送信機、(4
)は遭難信号電波、(5)は静止衛星、(9)は地球局
、 Qlは地球局通信片のアンテナ、01)は下り信号
電波、σ2はマルチビームアンテナ、αjはマルチビー
ムアンテナのアンテナビーム、α4はビーム照射域、(
lりはアンテナカバレッジ、αηはフィードホーン、a
gta受信機、α9は信号処理回路、■は送信機である
。 なふ・9図中同一群号は同一または相当部分を示す。
FIG. 1 is a principle diagram of a distress communication method using a geostationary satellite showing an embodiment of the present invention, and FIG. 2 is a block diagram of the configuration of a distress communication device mounted on a geostationary satellite showing an embodiment of the present invention.
FIG. 3 is an explanatory diagram of the operation of the present invention, and FIG. 4 is a principle diagram of a conventional distress communication method using a geostationary satellite. In the figure, (1) is the Earth, (3) is the distress transmitter, and (4)
) is the distress signal radio wave, (5) is the geostationary satellite, (9) is the earth station, Ql is the antenna of the earth station communication piece, 01) is the downlink signal radio wave, σ2 is the multi-beam antenna, and αj is the antenna beam of the multi-beam antenna. , α4 is the beam irradiation area, (
l is the antenna coverage, αη is the feedhorn, a
gta receiver, α9 is a signal processing circuit, and ■ is a transmitter. Nafu・9 The same group numbers in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 地球の静止衛星軌道上に位置する静止衛星に、同一周波
数において複数の出力端に対応してそれぞれ方向が異な
り、かつビーム幅が十分に狭い複数のアンテナビームを
有するマルチビームアンテナを搭載し、上記マルチビー
ムアンテナの空間的に固定された複数のアンテナビーム
の地球面上の各々のビーム照射域によつて所定のアンテ
ナカバレッジを覆い、上記所定のアンテナカバレッジ内
にある遭難送信機から発信される遭難信号の電波を上記
マルチビームアンテナで受信し、各アンテナビーム毎の
遭難信号電波の受信電力レベルの情報を静止衛星から地
球局に送信し、地上において各アンテナビームに対応し
た遭難信号電波の受信電力レベルの情報から遭難地点の
位置情報を得ることを特徴とする静止衛星による遭難通
信方法。
A multi-beam antenna is mounted on a geostationary satellite located in a geostationary satellite orbit of the earth, and has a plurality of antenna beams at the same frequency corresponding to a plurality of output terminals, each in a different direction and having a sufficiently narrow beam width, and Distress transmitted from a distress transmitter that covers a predetermined antenna coverage by each beam irradiation area on the earth's surface of a plurality of spatially fixed antenna beams of a multi-beam antenna, and is within the predetermined antenna coverage. The signal radio waves are received by the above multi-beam antenna, information on the received power level of the distress signal radio waves for each antenna beam is transmitted from the geostationary satellite to the earth station, and the received power level of the distress signal radio waves corresponding to each antenna beam is determined on the ground. A distress communication method using a geostationary satellite characterized by obtaining location information of a distress point from level information.
JP22152485A 1985-10-04 1985-10-04 Distress communication method by geostationary satellite Pending JPS6281820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22152485A JPS6281820A (en) 1985-10-04 1985-10-04 Distress communication method by geostationary satellite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22152485A JPS6281820A (en) 1985-10-04 1985-10-04 Distress communication method by geostationary satellite

Publications (1)

Publication Number Publication Date
JPS6281820A true JPS6281820A (en) 1987-04-15

Family

ID=16768060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22152485A Pending JPS6281820A (en) 1985-10-04 1985-10-04 Distress communication method by geostationary satellite

Country Status (1)

Country Link
JP (1) JPS6281820A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203720A (en) * 1991-03-08 1993-08-10 Mitsubishi Electric Corp Distress rescue system
JP2013525753A (en) * 2010-04-08 2013-06-20 ザ・ボーイング・カンパニー Spot beam overlap using geolocation information

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58169071A (en) * 1982-03-31 1983-10-05 Tech Res & Dev Inst Of Japan Def Agency Bearing detection system
JPS5992369A (en) * 1982-11-19 1984-05-28 Nec Corp Direction finder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58169071A (en) * 1982-03-31 1983-10-05 Tech Res & Dev Inst Of Japan Def Agency Bearing detection system
JPS5992369A (en) * 1982-11-19 1984-05-28 Nec Corp Direction finder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203720A (en) * 1991-03-08 1993-08-10 Mitsubishi Electric Corp Distress rescue system
JP2013525753A (en) * 2010-04-08 2013-06-20 ザ・ボーイング・カンパニー Spot beam overlap using geolocation information

Similar Documents

Publication Publication Date Title
JP2904241B2 (en) Transmission method of differential data signal
EP0133378B1 (en) Distress radiolocation method and system
US5554993A (en) Global position determining system and method
CA1249033A (en) Satellite-based position determination and message transfer system with monitoring of link quality
CA2908089C (en) Space based network for detection and monitoring of global maritime shipping using automatic identification system
US4975707A (en) Multiple satellite locating system
US5404135A (en) Sea navigation control process
EP0250211A3 (en) Codeless gps sonde
KR101131944B1 (en) Vessel traffic system
Qiao et al. Zhang
US9491786B1 (en) Systems and methods for space-based digital selective calling
JPS6281820A (en) Distress communication method by geostationary satellite
JPS61195374A (en) Disaster signalling system by geostationary satellite
CA2314960A1 (en) Apparatus and method for reusing satellite broadcast spectrum for terrestrially broadcast signals
JP3058060B2 (en) Radar transponder
RU93057066A (en) METHOD FOR DETERMINING LOCATION OF VEHICLE AND DEVICE IMPLEMENTING THIS METHOD
JPH05232222A (en) Sea rescue system
JP2001004744A (en) Lifesaving apparatus
JP2569576B2 (en) Intermittent drive transmitter
US3048839A (en) Survivor locator system
GB2271237A (en) Emergency locator transmitter
JPS56108981A (en) Tracking system of communication satellite
GB2261344A (en) Radar transponder
JPH07270526A (en) Equipment for sending distress message
JPS63743B2 (en)