JPS6281799A - Radio wave absorber - Google Patents

Radio wave absorber

Info

Publication number
JPS6281799A
JPS6281799A JP60221154A JP22115485A JPS6281799A JP S6281799 A JPS6281799 A JP S6281799A JP 60221154 A JP60221154 A JP 60221154A JP 22115485 A JP22115485 A JP 22115485A JP S6281799 A JPS6281799 A JP S6281799A
Authority
JP
Japan
Prior art keywords
radio wave
wave absorber
particles
carbon powder
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60221154A
Other languages
Japanese (ja)
Other versions
JPH028479B2 (en
Inventor
光弘 小野
宮道 一夫
西島 隆之
大熊 研
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Boseki Co Ltd
Paramount Glass Manufacturing Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Paramount Glass Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd, Paramount Glass Manufacturing Co Ltd filed Critical Nitto Boseki Co Ltd
Priority to JP60221154A priority Critical patent/JPS6281799A/en
Publication of JPS6281799A publication Critical patent/JPS6281799A/en
Publication of JPH028479B2 publication Critical patent/JPH028479B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は電波吸収体に関し、詳しくは電波暗室を構成す
るため、室内面の天井、1W、床面を被覆する不燃性電
波吸収体を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a radio wave absorber, and more specifically, it provides a nonflammable radio wave absorber that covers the ceiling, 1W, and floor of a room in order to construct an anechoic chamber. It is something to do.

口、従来の技術 電波暗室を構成するために用いられる従来の電波吸収体
どしては、カーボン粉末を被着した予備発泡ポリスチロ
ールを発泡成形した材料、発泡ポリウレタンにカーボン
粉末を含浸寸前せしめた材料、繊維質ウェブに7J−ボ
ン粉末混合発泡ポリウレタンを組合せた材料、獣毛、化
学繊維などの集積マツ1−にカーボン粉末含有導電性ゴ
ムを含浸したヘアロック材料などが一般に用いられてい
る。
Conventional technology Conventional radio wave absorbers used to construct radio anechoic chambers include foam-molded materials made of pre-foamed polystyrene coated with carbon powder, and foamed polyurethane impregnated with carbon powder. Commonly used materials include a material in which a fibrous web is combined with foamed polyurethane mixed with 7J-bon powder, and a hair lock material in which an integrated pine material such as animal hair or chemical fiber is impregnated with conductive rubber containing carbon powder.

ハ1発明が解決しようとする問題点 従来の電波吸収体は上記のように、カーボン粉末含4T
抵抗皮膜を空間的に分散分布して保持するため、プラス
チックフオームや有1 m ’dtウェブをその担体と
して用いているため、建築材r1として要求される耐熱
性に劣り、火災などの防災面に、6いて不満足なもので
あった。
C1 Problems to be solved by the invention As mentioned above, the conventional radio wave absorber contains 4T carbon powder.
In order to hold the resistive film in a spatially dispersed manner, plastic foam or a 1 m' dt web is used as a carrier, so it is inferior to the heat resistance required for building materials R1, and is not suitable for disaster prevention such as fire. ,6 was unsatisfactory.

二8問題点を解決するだめの手段 本発明考らは上記の問題点を解決するため、さきにカー
ボン粉末含有抵抗皮nAの担体としてカラスウールマッ
トを用いた電波吸収体に関する発明を特願昭60−29
389号により提出したが、本発明は連通気孔性の鉱物
質多泡体粒子を担体として利用することにより、略同様
の目的を達成することに成功したちのである。
28 Means for Solving the Problems In order to solve the above problems, the present invention first proposed an invention relating to a radio wave absorber using a crow wool mat as a carrier for a resistance coating nA containing carbon powder. 60-29
No. 389, the present invention has succeeded in achieving substantially the same objective by utilizing open-pored mineral foam particles as a carrier.

すなわち、本発明は表面並びに内部連通孔面に、カーボ
ン粉末含有抵抗皮膜が被着された連通気孔性の鉱物質多
泡イホ粒子を多数集積して、その粒子相互間を前記皮膜
により結合して、所定形状に成形した電波吸収体である
That is, the present invention accumulates a large number of interconnected porous mineral microporous particles having a carbon powder-containing resistance film adhered to their surfaces and inner communicating pore surfaces, and connects the particles with each other by the film. , a radio wave absorber molded into a predetermined shape.

連通気孔性の鉱物質多泡体粒子としては、通常、コンク
リート、モルタルなどを軽は化するために用いられる人
工軽母骨材であって、内部に無数の連通気孔を有した鉱
物粒子、例えばパーライト。
The open-pored mineral foam particles are usually artificial light matrix aggregates used to lighten concrete, mortar, etc., and are mineral particles that have numerous open pores inside, such as mineral particles. Perlite.

バーミキライト、梵泡相面岩粒子1発泡ガラス粒子など
が適当であるが、ガラスピーズ、シラスバルーンは連通
気孔を有していないので、不適当である。
Vermicilite, Brahma phase stone particles 1 foamed glass particles, etc. are suitable, but glass beads and shirasu balloons are not suitable because they do not have continuous pores.

上記の鉱物質多泡体は、醇化ケイ素、酸化アルミニウム
を主体とし、少量の各種金属酸化物よりなる化学組成を
有し、その単位容g+重量は0.05〜0.5k(1/
 Q 、吸油率0.5〜59/g程度の空隙を有したも
のであり、その比透磁率は105以下である。そしてそ
の粒子の大きさは、平均粒径1〜10mm好ましくは2
〜5IIII+1が用いられる。
The above-mentioned mineral foam has a chemical composition mainly composed of silicon oxide and aluminum oxide, with small amounts of various metal oxides, and its unit volume g + weight is 0.05 to 0.5 k (1/
Q. It has voids with an oil absorption rate of about 0.5 to 59/g, and its relative magnetic permeability is 105 or less. The average particle size of the particles is 1 to 10 mm, preferably 2 mm.
~5III+1 is used.

カーボン粉末含有抵抗皮膜は、皮膜形成性合成樹脂に対
し、2〜200phrのカーボン粉末が分散含有された
もので、鉱物質多泡体粒子に対するカーボン粉末の付着
量は02〜100(1/ Qの範囲である。
The carbon powder-containing resistance coating is made by dispersing 2 to 200 phr of carbon powder in a film-forming synthetic resin, and the amount of carbon powder attached to the mineral foam particles is 0.2 to 100 phr (1/Q). range.

第1図は、本発明の電波吸収体の拡大断面の模式図であ
って、鉱物質多泡体粒子1が多数集積され、その粒子表
面のカーボン粉末含有抵抗皮膜2によって相互に結合さ
れ、また該粒子1の内部に無数に存在する連通孔3の内
面にもカーボン粉末含有抵抗皮膜2が形成されている。
FIG. 1 is a schematic diagram of an enlarged cross section of the radio wave absorber of the present invention, in which a large number of mineral multifoam particles 1 are accumulated, and are bonded to each other by a carbon powder-containing resistance coating 2 on the particle surface. A carbon powder-containing resistive film 2 is also formed on the inner surface of the countless communicating holes 3 that exist inside the particle 1 .

従って、各粒子1はその表面並びに内部において電気的
に導通した複雑多岐な立体網状電気抵抗路が形成される
とともに、多数粒子が一体化された成形体となっている
Therefore, each particle 1 has a complex and various electrically conductive three-dimensional network electrical resistance path on its surface and inside, and is a molded body in which a large number of particles are integrated.

ホ8作用 上記の構成よりなる本発明の電波吸収体は、カーボン粉
末含有抵抗皮膜が表面、内部連通孔に被着された鉱物質
多泡体粒子が多数集積結合された成形体であるので、到
来電波を表面反射することなく内部に通入を許し、その
内部において複雑多岐な立体的な抵抗皮膜によって発生
電流を有効に熱エネルギーに変換吸収することができ、
しかも、主体が鉱物質であって、耐熱不燃性である。
E8 Effect: The radio wave absorber of the present invention having the above-mentioned structure is a molded body in which a large number of mineral foam particles having a carbon powder-containing resistance coating adhered to the surface and internal communication holes are integrated and bonded. It allows incoming radio waves to pass through the interior without being reflected on the surface, and inside, the generated current can be effectively converted and absorbed into thermal energy through a complex three-dimensional resistive film.
Moreover, it is mainly made of minerals and is heat resistant and nonflammable.

へ、実施例 連通気孔性鉱物質多泡体粒子として、人工11ffi骨
材として市販されているパーライト(フヨーライト社製
、商品名「ビーナスライト5号」、粒径25〜3111
m )を用いた。
Example 1 Perlite (manufactured by Fuyolite Co., Ltd., trade name "Venus Light No. 5", particle size 25-3111
m) was used.

カーボン粉末含有抵抗皮膜形成剤として、市販のカーボ
ン水分散体(ライオン社製、商品名CY−311、グラ
ファイト粉末10重量%、酢酸ビニール系樹脂10重量
%含有)を用い、これに酢酸ビニル系樹脂エマルジョン
接着剤、水を適宜添加混合してカーボン含有率、粘度を
調整し、処理液とした。
As a resistance film forming agent containing carbon powder, a commercially available carbon water dispersion (manufactured by Lion Corporation, trade name CY-311, containing 10% by weight of graphite powder and 10% by weight of vinyl acetate resin) was used, and vinyl acetate resin was added to this. The emulsion adhesive and water were appropriately added and mixed to adjust carbon content and viscosity, and a treatment liquid was prepared.

容器中で、パーライト05Q、処理液129を撹拌混合
した後、成形型に流し込み、上面から押板で厚さが83
%になるように圧縮し、乾燥後、脱型して100x  
1ooX 43mmの平板状ブロックとした。
After stirring and mixing Perlite 05Q and treatment liquid 129 in a container, the mixture was poured into a mold and pressed from the top with a press plate to a thickness of 83 mm.
%, after drying, remove from the mold and 100x
It was made into a flat block of 1oo x 43mm.

上記の製法により、接着剤樹脂含有量が509/交であ
って、カーボン含有分が+、 2.3.6.10.20
.30、60.100(1/ lの9個の平板状ブロッ
ク試料を製造し、その誘電定数を測定した。
By the above manufacturing method, the adhesive resin content is 509/cross, the carbon content is +, 2.3.6.10.20
.. Nine flat block samples of 30, 60.100 (1/l) were manufactured and their dielectric constants were measured.

誘電定数の測定は、10〜50MHzはQメーター法、
100MHz 〜6GHzは同@導波管内定在波法(短
絡法)により行った。得られた比誘電率ε、。
The dielectric constant is measured using the Q meter method for 10 to 50 MHz.
For frequencies from 100 MHz to 6 GHz, measurement was performed using the standing wave method (short-circuit method) in a waveguide. The obtained dielectric constant ε,.

誘電正接tanδから次の式により減衰定数α、位相定
数βを計算した。
The attenuation constant α and phase constant β were calculated from the dielectric loss tangent tan δ using the following equations.

ここで、λは自由空間波長である。Here, λ is the free space wavelength.

さらに、上記の数値を真空の位相定数β、=2π7′λ
で除して正規化減衰定数α/β0.正規化位相定数β/
β、を求めた。
Furthermore, we can convert the above value into the vacuum phase constant β, =2π7′λ
Divide by the normalized attenuation constant α/β0. Normalized phase constant β/
β was calculated.

第2図はα7′β0のカーボン含有量σ特性を電波周波
数fがO,Ot、0.05,0.2,1,6G l−(
zにおいてiqられIC実測データに対する回帰直線に
より示したグラフ、第3図はα/β、の周波数f特性を
カーボン含有量が1.10,30,60,100g /
 Q (7)試料ニラいテの実測データに対する回帰直
線により示したグラフ、第4図はα/β、とβ/β、と
の関連を示すグラフであり、これらのグラフからこの電
波吸収材料の正規化伝搬窓’e!I7..が次の式のよ
うに求められた。
Figure 2 shows the carbon content σ characteristics of α7′β0 when the radio frequency f is O, Ot, 0.05, 0.2, 1,6G l−(
Figure 3 shows the frequency f characteristics of α/β when the carbon content is 1.10, 30, 60, 100g/
Q (7) Figure 4 is a graph showing the relationship between α/β and β/β using the regression line for the measured data of the sample. Normalized propagation window 'e! I7. .. was calculated using the following formula.

f≦0.4G)−1z −o、oooケ’?3G’−”f−’°722)f≧ 
lG1−1z 第5図は上式により、正規化伝搬定数の実験式を求め、
これに基づいてα/βのカーボン含有量G特性を周波数
f別に示したグラフであり、比較のためにグラファイ1
〜コーテツド発泡ポリスチロールく密度22g/ Q 
、発泡径4mmの発泡ポリスチロールの内部に1〜10
0(]/ Qのカーボンを含有せしめた)の従来の電波
吸収体を比較例として前記と同様の測定に基づく、正規
化伝搬定数の実験式により、特性グラフを点線によって
併示する。
f≦0.4G)-1z-o, oooke'? 3G'-"f-'°722) f≧
lG1-1z Figure 5 shows the empirical formula for the normalized propagation constant using the above formula,
Based on this, this is a graph showing the carbon content G characteristics of α/β for each frequency f, and for comparison, graphite 1
~Coated polystyrene foam density 22g/Q
, 1 to 10 inside the foamed polystyrene with a foam diameter of 4 mm.
As a comparative example, a characteristic graph of a conventional radio wave absorber (containing carbon of 0 (]/Q) based on an experimental formula for a normalized propagation constant based on measurements similar to those described above is also shown by a dotted line.

図から、本発明の電波吸収体は、カーボン含有量が略1
0〜30(J/lの範囲において、従来のグラフ?イト
コーチイツト発泡ポリスチロール型〈比較例〉のものと
略同等の正規化減衰定数値であり、カーボン含有量が減
少すると比較例よりも潰れ、増加すると劣ることが判る
From the figure, the radio wave absorber of the present invention has a carbon content of approximately 1
0 to 30 (in the range of J/l, the normalized attenuation constant value is approximately the same as that of the conventional graphite-coated polystyrene foam type <comparative example>), and as the carbon content decreases, it is greater than the comparative example. When it collapses and increases, it becomes clear that it is inferior.

現在最も反射特性に優れていることが一般に認められて
いるピラミッド型電波吸収体のピラミッド部のカーボン
含有量は、従来の試料を用いた場合10g/文前後、ベ
ース部は30g/交前後である。
The carbon content in the pyramid part of the pyramid-shaped radio wave absorber, which is currently generally accepted to have the best reflective properties, is around 10 g/cm when using a conventional sample, and around 30 g/cm in the base part. .

従って本発明による電波吸収材を用いれば、同一の正規
化減衰定数を実現するためには少ないカーボン串で済む
ことが分る。例えば、従来の材料でカーボン含有量10
g/父のもののf=IG+−12におけるα/β、は0
2であるが、本発明による材料によれば約3g/、Qで
、同じG02が実現される。
Therefore, it can be seen that by using the radio wave absorbing material according to the present invention, fewer carbon skewers are required to achieve the same normalized attenuation constant. For example, conventional materials have a carbon content of 10
g/Father's f=IG+-12 α/β is 0
2, but with the material according to the invention the same G02 is achieved with about 3 g/,Q.

従って経済的である。Therefore, it is economical.

ト1発明の詳細 な説明したとおり、本発明の電波吸収体はカーボン粉末
含有抵抗皮膜の担体として多数の連通孔を有する鉱物質
多泡体粒子を用いて成形したものであるので、実質的に
不燃性であり、その電波吸収特性も従来のものと略同等
のものである。
As described in detail in Section 1 of the invention, the radio wave absorber of the present invention is molded using mineral foam particles having a large number of communicating holes as a carrier for the carbon powder-containing resistive film. It is nonflammable, and its radio wave absorption characteristics are approximately the same as conventional ones.

そして、その製造も粒子をカーボン含有結合剤液によっ
て処理して成形乾燥するのみであるので、平板状、横状
、ピラミッド状などの任意の形状。
In addition, since the manufacturing process involves simply treating the particles with a carbon-containing binder liquid and then forming and drying them, the particles can be formed into any shape such as flat, horizontal, or pyramidal.

寸法の成形が容易であり、またカーボン含有量を厚さ方
向に変化させるように処理液含浸条件を調節することも
可能であり、所望の電波吸収特性のものを容易に得るこ
とができる。
It is easy to shape the dimensions, and it is also possible to adjust the treatment liquid impregnation conditions so as to change the carbon content in the thickness direction, so that desired radio wave absorption characteristics can be easily obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電波吸収体の拡大断面を示す模式図、
第2図は実施例における正規化減衰定数α/β、のカー
ボン含有Her特性を周波数f別に示したグラ−2、第
3図は正規化減衰定数α7/βの周波If特性をカーボ
ン含有量θ別に示したグラフ、第4図は正規化減衰定数
α/β、と正規化位相宗教β/β0の関係示すグラフ、
第5図は正規化伝搬定数の実験式から得られた正規化減
衰定数α/β0のカーボン含有量ζ特性を周波数f別に
示したグラフである。 1・・・鉱物質多泡体粒子
FIG. 1 is a schematic diagram showing an enlarged cross section of the radio wave absorber of the present invention,
Figure 2 shows graph 2 showing the carbon content Her characteristics of the normalized attenuation constant α/β in the example for each frequency f, and Figure 3 shows the frequency If characteristics of the normalized attenuation constant α7/β at the carbon content θ. The graph shown separately, Figure 4, is a graph showing the relationship between the normalized attenuation constant α/β and the normalized phase religion β/β0,
FIG. 5 is a graph showing the carbon content ζ characteristics of the normalized attenuation constant α/β0 obtained from the experimental formula of the normalized propagation constant, for each frequency f. 1... Mineral multifoam particles

Claims (1)

【特許請求の範囲】[Claims] 表面並びに内部連通孔面に、カーボン粉末含有抵抗皮膜
(2)が被着された連通気孔性の鉱物質多泡体粒子(1
)を多数集積して、その粒子(1)相互間を前記皮膜(
2)により結合したことを特徴とする電波吸収体。
Open-pore mineral foam particles (1) coated with a carbon powder-containing resistance coating (2) on the surface and inner open-hole surface.
) are accumulated in large numbers, and the particles (1) are covered with the film (
2) A radio wave absorber characterized by being bonded by.
JP60221154A 1985-10-05 1985-10-05 Radio wave absorber Granted JPS6281799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60221154A JPS6281799A (en) 1985-10-05 1985-10-05 Radio wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60221154A JPS6281799A (en) 1985-10-05 1985-10-05 Radio wave absorber

Publications (2)

Publication Number Publication Date
JPS6281799A true JPS6281799A (en) 1987-04-15
JPH028479B2 JPH028479B2 (en) 1990-02-23

Family

ID=16762318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60221154A Granted JPS6281799A (en) 1985-10-05 1985-10-05 Radio wave absorber

Country Status (1)

Country Link
JP (1) JPS6281799A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6490597A (en) * 1987-09-30 1989-04-07 Ryoichi Kasagi Manufacture of electromagnetic wave absorption film and its applied article
US4952935A (en) * 1988-07-18 1990-08-28 Shinwa International Co., Ltd. Radiowave absorber and its manufacturing process
JPH03214797A (en) * 1990-01-19 1991-09-19 Denken Seiki Kenkyusho:Kk Electromagnetic shielding material
JPH09186485A (en) * 1996-01-08 1997-07-15 Nippon Paint Co Ltd Room for radio communication

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6490597A (en) * 1987-09-30 1989-04-07 Ryoichi Kasagi Manufacture of electromagnetic wave absorption film and its applied article
US4952935A (en) * 1988-07-18 1990-08-28 Shinwa International Co., Ltd. Radiowave absorber and its manufacturing process
JPH03214797A (en) * 1990-01-19 1991-09-19 Denken Seiki Kenkyusho:Kk Electromagnetic shielding material
JPH09186485A (en) * 1996-01-08 1997-07-15 Nippon Paint Co Ltd Room for radio communication

Also Published As

Publication number Publication date
JPH028479B2 (en) 1990-02-23

Similar Documents

Publication Publication Date Title
US3056707A (en) Sound deadener and absorber
EP0384256A1 (en) Method of making porous inorganic particle filled polyimide foam insulation products
JPH08204379A (en) Radio wave absorber
JPS6281799A (en) Radio wave absorber
US6709745B2 (en) Electromagnetic absorber material, method for the production thereof and method for the production of shielding devices thereof
KR20010032034A (en) Radio wave absorbing materials, radio wave absorber, and radio wave anechoic chamber and the like made by using the same
JPH10290094A (en) Electromagnetic-wave absorbing material and its manufacture
JP4375987B2 (en) Molded body for radio wave absorber, method for producing the same, and radio wave absorber
JP2743227B2 (en) Heat-resistant and non-flammable radio wave absorber
JP2001230588A (en) Electromagnetic wave absorbing body and its manufacturing method
JPS61189699A (en) Radio wave absorbent element
JP2000353893A (en) Wave absorber and its manufacture
US3348224A (en) Electromagnetic-energy absorber and room lined therewith
JP2818862B2 (en) Sound insulation plate and method of manufacturing the same
US4923538A (en) Method of making porous inorganic particle filled polyimide foam insulation products
JPH09307268A (en) Radio wave absorbing material
JPH01220899A (en) Wave absorber and manufacture thereof
JPH10215097A (en) Radio wave absorption building material
RU2171241C2 (en) Silicate composition for preparing heat-insulating foamed material
JP2903165B2 (en) Manufacturing method of incombustible radio wave absorber
JPS6242559Y2 (en)
JPH08130388A (en) Porous ferrite radio wave absorber
JP4266204B2 (en) Electromagnetic wave absorber and manufacturing method thereof
JPH0992996A (en) Wave absorber
JPH1051180A (en) Radio-wave absorber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees