JPS6281616A - Focus position detecting device - Google Patents
Focus position detecting deviceInfo
- Publication number
- JPS6281616A JPS6281616A JP60221820A JP22182085A JPS6281616A JP S6281616 A JPS6281616 A JP S6281616A JP 60221820 A JP60221820 A JP 60221820A JP 22182085 A JP22182085 A JP 22182085A JP S6281616 A JPS6281616 A JP S6281616A
- Authority
- JP
- Japan
- Prior art keywords
- light
- pattern
- striped pattern
- measured
- focus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Automatic Focus Adjustment (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、パターン付きLSIウェハ面に自動的焦点合
わせを行なう自動焦点装置に好適な声点位置検出装置で
ある。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention is a voice point position detection device suitable for an automatic focusing device that automatically focuses on a patterned LSI wafer surface.
周期的明暗パターン投影方式の焦点位置検出装置例とし
て特開昭58−70540号公報がある。第19図〜第
27図を用いて前者の方式について説明する。An example of a focal position detection device using a periodic brightness pattern projection method is disclosed in Japanese Patent Laid-Open No. 70540/1983. The former method will be explained using FIGS. 19 to 27.
第19図はその基本構成であり、縞パターンを試料面観
察光学系の合焦位#LVc対して、その前及び後ろへ若
干結像面がずれるように、光軸に沿った平面で2分割し
て配置しである。光源1よシ射出した照明光は、レンズ
2を通過して、縞パターン部3に至シ、半透過鏡4によ
って反射され、結像レンズ5に入射し、試料60表面上
に後述する前焦点用及び後焦点用縞パターンS&ISb
を投影する。該縞パターンは第2図に示す如く、遮光部
9及び光通過部10の繰り返しパターンで構成されてい
る。遮光部9、光通過部1〇−組で一つの検出明暗パタ
ーンとする。Figure 19 shows its basic configuration, and the striped pattern is divided into two on a plane along the optical axis so that the image plane is slightly shifted in front and behind the focal point #LVc of the sample surface observation optical system. It is arranged as follows. The illumination light emitted from the light source 1 passes through the lens 2, reaches the striped pattern section 3, is reflected by the semi-transparent mirror 4, enters the imaging lens 5, and forms a front focal point on the surface of the sample 60, which will be described later. Striped pattern for use and back focus S&ISb
to project. As shown in FIG. 2, the striped pattern is composed of a repeating pattern of light blocking portions 9 and light passing portions 10. The light shielding part 9 and the light passing part 10- set constitute one detection brightness and darkness pattern.
該縞パターンは同図に示す如く、光軸中心に垂直な平面
で3a及び3bに2分割される。前焦点用縞パターン3
a、後焦点用縞パターン3bの合焦点位置は、アレイ状
センサ7の合焦点位置に対して若干前寄り及び後寄シに
設けである。As shown in the figure, the striped pattern is divided into two parts 3a and 3b along a plane perpendicular to the center of the optical axis. Front focus stripe pattern 3
a, the focal point positions of the back focal striped pattern 3b are provided slightly toward the front and rear of the focal point position of the array sensor 7.
但し、このずれ量は等しくなるように、前会後焦点用縞
パターンを配置する。次に、該被測定試料表面の光学的
性質に応じた反射光が、結像レンズ5によって集光され
半透過鏡4を通過した後、プレイ状センサ7上に縞パタ
ーンを投影する。該アレイ状センサは第3図に示す如く
、光電素子71がマ) IJソックス状配置されたもの
である。該光電素子とアレイ状センサ面上における結像
縞パターンの対応関係は、同図に示す如く光電素子列1
列に対し明(暗)パターン1本が対応する。However, the pre- and post-focus striped patterns are arranged so that the amounts of deviation are equal. Next, the reflected light corresponding to the optical properties of the surface of the sample to be measured is focused by the imaging lens 5 and passes through the semi-transmissive mirror 4, after which a striped pattern is projected onto the play-shaped sensor 7. As shown in FIG. 3, the array sensor has photoelectric elements 71 arranged in an IJ sock shape. The correspondence relationship between the photoelectric elements and the imaging stripe pattern on the arrayed sensor surface is as shown in the figure.
One bright (dark) pattern corresponds to a column.
次に、アレイ状センサ7からの出力信号を第22図に示
す。同図に示す如く、明暗投影パターンの繰返し周期に
一致した出力信号が得られる。Next, the output signal from the array sensor 7 is shown in FIG. As shown in the figure, an output signal matching the repetition period of the chiaroscuro projection pattern is obtained.
該出力信号を信号処理回路8において、以下のような処
理を行ない合焦点位置を検出する。明部出力電圧Vlと
暗部出力電圧V、の差をと沙、明部出力電圧V、をもっ
てこの差と割算を行なう。The output signal is subjected to the following processing in the signal processing circuit 8 to detect the focal point position. The difference between the bright output voltage Vl and the dark output voltage V is divided by the bright output voltage V.
この割算結果をコントラストCと定義する。次に、前焦
点用縞パターンの明暗情報から求めたコントラストの和
ΣC1,と、後焦点用縞パターンの明暗情報から求めた
コントラストの和ΣC8は、第25図に示すようになり
、ΣCFとΣCoが等しくなった位置が合焦点位置であ
る。This division result is defined as contrast C. Next, the sum of contrasts ΣC1, obtained from the brightness information of the front focus striped pattern, and the sum of contrasts ΣC8, obtained from the brightness information of the back focus striped pattern, are as shown in FIG. 25, and ΣCF and ΣCo The position where the two become equal is the in-focus position.
この装置では次の様な問題点がある。 ゛(1)該
縞パターンの明暗情報として得られる光量はアレイ状セ
ンサの大きさに限定されてしまい光量が不足し、その結
果S/N比が十分とれず動作が不安定となる。例えば、
結像レンズ5に50倍の対物レンズ、アレイ状センサ7
の受光面の大きさを4 m (L) X 2 wm (
W) (第21図参照)とすると、縞パターン全体の大
きさは4 m (/、) X 2噛(−)と一義的に決
まってしまう。This device has the following problems. (1) The amount of light obtained as brightness information of the striped pattern is limited by the size of the array sensor, resulting in insufficient light amount, resulting in insufficient S/N ratio and unstable operation. for example,
An imaging lens 5, a 50x objective lens, and an array sensor 7
The size of the light receiving surface is 4 m (L) x 2 wm (
W) (see Fig. 21), the size of the entire striped pattern is uniquely determined as 4 m (/,) x 2 m (-).
(2) 縞パターン1本がアレイ状センサのW方向の
1列に対応するため、縞パターンとアレイ状センサの相
互のL CL)方向の位置ずれに対して動作が不安定と
なる。また、被測定物体が焦点ずれを起こした場合、明
部出力電圧v1と暗部出力電圧v2の差は急速に零に近
づくため、焦点ずれ量検出の広い動作範囲m(第23図
)をもつことができない。(2) Since one striped pattern corresponds to one row of the arrayed sensor in the W direction, the operation becomes unstable due to mutual positional deviation between the striped pattern and the arrayed sensor in the LCL direction. In addition, when the object to be measured is defocused, the difference between the bright output voltage v1 and the dark output voltage v2 rapidly approaches zero, so it is necessary to have a wide operating range m (Fig. 23) for detecting the amount of defocus. I can't.
(3) まず、被測定物体表面の状態により反射光の
明るさにバラツキが生ずる事について述べる。(3) First, we will discuss the fact that the brightness of reflected light varies depending on the surface condition of the object to be measured.
1)表面の凹凸によるバラツキ
例えばLSIウェハなどでは第24図に示す如くパター
ンの密な部分と疎な部分が有る。前者ではパターンエツ
ジ部分で照明光が散乱され暗くなυ、後者では散乱され
ないので明るい。1) Variations due to surface irregularities For example, in an LSI wafer, as shown in FIG. 24, there are areas where the pattern is dense and areas where it is sparse. In the former, the illumination light is scattered at the edge of the pattern, making it dark υ, while in the latter, it is not scattered and is therefore bright.
11)表面の材質の反射率の違いによるバラツキ
1)と同様にLSIエエハを例にする。LSIウェハで
は第7図に示す如く、Siの基板の上に多数の層があり
、それぞれの材質で反射率が異なる。大むね次の様に分
類で^る。11) Variations due to differences in reflectance of surface materials Similarly to 1), an LSI wafer will be taken as an example. As shown in FIG. 7, in an LSI wafer, there are many layers on a Si substrate, and each material has a different reflectance. Generally, they are classified as follows.
3i、A1・・・・・・反射率が高い
Si3N4 r Po1y−8t・・・反射率が低めま
た。 SiO2などの透明層では表面明るさは下地の
反射率に依存するが下地が同一のものであっても5if
tの厚さによって表面明るさにバラツキが生じる。3i, A1... Si3N4 r Po1y-8t... Low reflectance. For transparent layers such as SiO2, the surface brightness depends on the reflectance of the underlying layer, but even if the underlying layer is the same, the brightness will be 5if.
The surface brightness varies depending on the thickness of t.
従って、第26図(a) 、 (b)に示す如く明るさ
のバラツキが生じる境界部などに投影縞パターンの一部
がかかったりすると、検出明暗信号もそれに従ってバラ
ツキを生じる。しかるにこの装置では同図(a)に示し
た測定箇所での合焦点時の検出明暗信号は同図[有])
の様になり、均一な表面明るさを有する箇所の焦点ずれ
時の検出信号(同図(C))と同一になり誤検出を起こ
す。Therefore, if a part of the projected stripe pattern overlaps the boundary where brightness variations occur as shown in FIGS. 26(a) and 26(b), the detected brightness signal will also vary accordingly. However, with this device, the detected brightness and darkness signals at the focused point at the measurement location shown in Figure (a) are as follows.
The result is the same as the detection signal at the time of defocusing at a location with uniform surface brightness (FIG. 10(C)), resulting in false detection.
また、例えば試料像検出視野と投影縞パターンの位置関
係は第27図の様になっており、縞パターン投影部と試
料像検出領域が近接しているため第19図の半透過鏡4
を光路の一部に挿入し、(第18図参照)価パターンの
光路と試料像検出部の光路を分離することはできない。For example, the positional relationship between the sample image detection field and the projected striped pattern is as shown in FIG.
is inserted into a part of the optical path (see FIG. 18), and the optical path of the valence pattern and the optical path of the sample image detection section cannot be separated.
(4)半透過鏡が光路断面全域に挿入されているため試
料表面観察光光量が半透過鏡の反射率分だけ減少する。(4) Since the semi-transmissive mirror is inserted throughout the cross-section of the optical path, the amount of light for observing the sample surface is reduced by the reflectance of the semi-transmissive mirror.
従って、試料表面観察光を光電変換した場合、試料表面
観察信号のS/Nが低下する。Therefore, when the sample surface observation light is photoelectrically converted, the S/N of the sample surface observation signal decreases.
本発明の目的は、前記の問題点による焦点位置検出誤差
の発生を防ぎ、試料表面の状態に影響されない安定に且
つ高精度な焦点位置検出装置を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to prevent the occurrence of focal position detection errors due to the above-mentioned problems and to provide a stable and highly accurate focal position detection device that is not affected by the condition of the sample surface.
本発明は従来、試料表面の明るさのバラツキを補正せず
に焦点位置検出を行なっていたものを次の様に改善し高
精度に且つ安定性の高い焦点位置検出を可能にした。The present invention improves the conventional method of detecting the focus position without correcting variations in brightness on the sample surface as follows, and enables highly accurate and highly stable focus position detection.
(1) センサの前にシリンドリカルレンズを設置し
、縞パターンの長手方向の光学的像圧縮を行なうことに
よって、明暗情報を高S/Nで安定に検出できる様にし
た。(1) By installing a cylindrical lens in front of the sensor and performing optical image compression in the longitudinal direction of the striped pattern, brightness information can be stably detected with a high S/N ratio.
(2)投影縞パターン1本に対し、第16図に示す如く
複数のセンサ(ここでは3絵素)を対応させ、中心部の
センサ出力信号のみをサンプリングし、検出信号の安定
化を図った〇(3) 複数の投影縞パターンを第17
図に示す如く前焦点用と後焦点用の縞パターンの一組(
又は初数組)を交互に配置し、さらに被測定物体表面の
パターンに対し投影縞パターンが45゜の角度をもつ様
にして、前述した被測定物体表面の明るさのバラツキに
よって焦点付l;を検出誤差が生じないようにした。(2) As shown in Figure 16, multiple sensors (three pixels in this case) are associated with one projection stripe pattern, and only the sensor output signal in the center is sampled to stabilize the detection signal. 〇(3) Multiple projection stripe patterns as the 17th
As shown in the figure, a set of striped patterns for front focus and back focus (
or the first set) are arranged alternately, and furthermore, the projected fringe pattern is made to have an angle of 45° with respect to the pattern on the surface of the object to be measured, and focusing is performed according to the above-mentioned variation in brightness on the surface of the object to be measured; to avoid detection errors.
(4)アレイ状センサの一部を、被測定物体表面の縞パ
ターン投影部の正反射光測定に用い、その曲1定値によ
り明暗信号の補正を行ない、被測定物体表面の明るさの
バラツキによって焦点位置検出誤差が生じないようにし
た。(4) A part of the array sensor is used to measure the specularly reflected light of the striped pattern projection part on the surface of the object to be measured, and the brightness signal is corrected using the constant value of track 1, and the variation in brightness on the surface of the object to be measured is corrected. This prevents focus position detection errors from occurring.
(5)I!18図に示す如く、縞パターン投影部と試料
像噴出部?十分に離し、縞パターン投影用半透過鏡をh
3パターンのみを投影する大版さにした。従って、試
料像検出の光量は半透過鏡4aで減らされることなく検
出器に到達するので、試料像検出信号のS/Nは向上す
る。(5) I! As shown in Figure 18, the striped pattern projection part and the sample image ejection part? Keep the semi-transparent mirror for striped pattern projection at a sufficient distance.
It was made into a large version that only projected three patterns. Therefore, try
Since the amount of light for detecting the sample image reaches the detector without being reduced by the semi-transmissive mirror 4a, the S/N of the sample image detection signal is improved.
また、縞パターン明暗情報検出用アレイ状センサには余
分な迷光が入射しないので、明暗情報検出信号のS/N
も向上し動作が安定化する。In addition, since no extra stray light enters the array sensor for striped pattern brightness information detection, the S/N of the brightness information detection signal is
This also improves performance and stabilizes operation.
本発明を、ウヱハ異物検査装置に適用した例について説
明する。全体構成を第1図て示す。An example in which the present invention is applied to a wafer foreign matter inspection device will be described. The overall configuration is shown in Figure 1.
本装置はウェハ上異物検出部と、焦点位置検出部から構
成される。ウェハは2ステージ27に固定され第2図に
示す如<X−Y方向に走査される。異物検出中にウェハ
6のうねりに起因する焦点ずれが生じるが異物検出性能
に悪影響を及ぼすので、常に焦点位置を保持する必要が
ある。This device consists of an on-wafer foreign object detection section and a focus position detection section. The wafer is fixed on two stages 27 and scanned in the X-Y directions as shown in FIG. During foreign object detection, a focus shift occurs due to the waviness of the wafer 6, but this has a negative effect on the foreign object detection performance, so it is necessary to always maintain the focal position.
そこで前述した焦点位置検出法を用いれば、同図に示す
様に異物検査と並行して焦点位置を検出し2方向駆動機
構を有する2ステージにフィードバックをかけ、異物検
査時に焦点ずれを実時間で補正することができる。まず
、装置の概要について説明する。異物検出部は、像間系
29(a)(b) 、検出系22、信号処理系25、異
物メモリ24、表示器25より成る。また、ウェハ6は
2ステージ27に真空吸着され、X−Yステージ制御回
路26及びX−Yステージ28によってX−Y方向に走
査される。異物検査中にウェハ6のうねりに起因する焦
点ずれが生じるが、これは異物検出性能に影響を及ぼす
ので常に焦点位置を保持することが不可欠である。そこ
で、本発明の焦点位置検出法を焦点位置検出部7 、7
00 、8に用いれば、同図に示すように異物検査と並
行して焦点位置を検出し2ドライバ5oからZステージ
27にフィードバックをかけるので、焦点ずれを実時間
で補正することができる。Therefore, if the focus position detection method described above is used, as shown in the figure, the focus position is detected in parallel with the foreign object inspection and feedback is applied to two stages with a two-direction drive mechanism, and the focus shift can be detected in real time during the foreign object inspection. Can be corrected. First, an overview of the device will be explained. The foreign object detection section includes an inter-image system 29(a)(b), a detection system 22, a signal processing system 25, a foreign object memory 24, and a display 25. Further, the wafer 6 is vacuum-adsorbed on the two stages 27 and scanned in the X-Y direction by the X-Y stage control circuit 26 and the X-Y stage 28. During foreign object inspection, a focus shift occurs due to the waviness of the wafer 6, but this affects the foreign object detection performance, so it is essential to maintain the focal position at all times. Therefore, the focus position detection method of the present invention is applied to the focus position detection units 7, 7.
00, 8, the focus position is detected in parallel with the foreign object inspection and feedback is applied from the 2 driver 5o to the Z stage 27, as shown in the figure, so that the focus shift can be corrected in real time.
次に異物検出部だついて説明する。本検出法では第3図
に示す様だ、ウェハの斜め上方からHe−Neレーザ2
9a、2?bをX方向の両側から照itし、ウェハ上の
異物よシ発生した散乱光を上方の40倍の対物レンズ5
で集光しPin Siホトダイオードリニアセンサ22
で光電変換し異物信号を異物メモIJ241Cストアし
、ウェハ上すべてを走査した後、表示器25で異物位置
を表示する。同図に示しである様に異物検査部と縞パタ
ーン投影部はウェハ上で距離a離れて^るので半透過鏡
4aで容易にそれぞれの光路な分離することができる。Next, the foreign object detection section will be explained. In this detection method, as shown in Figure 3, a He-Ne laser 2 is emitted from diagonally above the wafer.
9a, 2? b is illuminated from both sides in the
Pin Si photodiode linear sensor 22
After photoelectrically converting the foreign object signal and storing the foreign object signal in the foreign object memo IJ241C and scanning the entire wafer, the foreign object position is displayed on the display 25. As shown in the figure, since the foreign matter inspection section and the striped pattern projection section are separated by a distance a on the wafer, their respective optical paths can be easily separated using the semi-transmissive mirror 4a.
異物からの検出信号は第4図に示す如く、数10 mV
の電気的なノイズ成分を含んでおシ、従来法では異物検
出系と焦点位置検出系の光路を分離していなかったため
、1μm程度の異物の中にはノイズとのS/Nが十分に
とれない場合が発生し、異物の見逃しを生じていた。し
かし、本発明では前述の様に両者の光路を分離している
ため、従来に比べ異物信号のS/Nは2倍(半透過鏡4
が透過50%、反射50%の場合)向上し、1μm程度
の異物もすべて安定に検出可能となる。The detection signal from the foreign object is several tens of mV, as shown in Figure 4.
In the conventional method, the optical path of the foreign object detection system and the focal position detection system were not separated, so some foreign objects of about 1 μm could be detected with a sufficient S/N ratio with the noise. Occasionally, foreign objects were overlooked. However, in the present invention, since the two optical paths are separated as described above, the S/N of the foreign object signal is twice as large as that of the conventional method (semi-transmissive mirror 4
(when the transmission is 50% and the reflection is 50%), and all foreign particles of about 1 μm can be stably detected.
この分離は、異物検査装置特有の照明法(即ち、照明光
1で検査を行うのではなく、外部照明光29a、29b
で照明を行う)にのみ適用出来る。This separation is performed using an illumination method specific to the foreign object inspection device (i.e., instead of inspecting with the illumination light 1, the external illumination light 29a, 29b
Applicable only to lighting
次に、自動焦点系について説明する。Next, the autofocus system will be explained.
第1図に本発明の基本構成を示している。光源1から射
出した照明光は、縞パターン3a、。FIG. 1 shows the basic configuration of the present invention. The illumination light emitted from the light source 1 has a striped pattern 3a.
3bを通過し、該縞パターンを被測定物体60表面に投
影する。縞パターンは第10図に示す如く、遮光部9−
光通過部1o−遮光部9で1組の前(後)焦点位置検出
パターンを構成する。試料表面で反射した反射光は、結
像レンズ5によって集光され、さらにシリンドリカルレ
ンズ11によって縞パターンの長手方向のみが圧縮され
、アレイ状センサ7に縞パターンを投影する。アレイ状
センサで検出された検出信号は第17図の様になる。ま
た、焦点すれと検出信号の関係も同図に示しである。
′
次に本特許の特徴の効果について説明する。3b, and projects the striped pattern onto the surface of the object to be measured 60. The striped pattern is as shown in FIG.
The light passing section 1o and the light shielding section 9 constitute one set of front (rear) focal position detection patterns. The reflected light reflected from the sample surface is condensed by the imaging lens 5, further compressed only in the longitudinal direction of the striped pattern by the cylindrical lens 11, and the striped pattern is projected onto the array sensor 7. The detection signal detected by the array sensor is as shown in FIG. The relationship between out-of-focus and detection signals is also shown in the figure.
'Next, the effects of the features of this patent will be explained.
(1) シリンドリカルレンズの効果本実施例では第
6図に示す様にセンサ位置での拡大投影縞パターンの長
さくuP)をセンサの長さくW)に圧縮する様にシリン
ドリカルレンズを設置した。この結果、アレイ状センサ
で検出される有効な光量はシリンドリカルレンズを設置
しない場合に比べて一/W倍に増加し検出信号のS/N
比の改善が図れる。(1) Effect of cylindrical lens In this embodiment, as shown in FIG. 6, a cylindrical lens was installed so as to compress the length uP) of the enlarged projected fringe pattern at the sensor position to the sensor length W). As a result, the effective amount of light detected by the array sensor increases by 1/W times compared to when no cylindrical lens is installed, and the S/N of the detection signal increases.
The ratio can be improved.
(2)縞パターン1本に複数絵素を対応させる効果
本実施例では第16図に示す如く、縞パターン1本に対
してセンサ3絵素を対応させ中心部の信号のみを検出し
ている。センサ位置に縞パターンを結像させた場合の光
強度分布を第7図に示す。第7図(sL)は試料焦点位
置での光強度分布、同図(b)は焦点ずれ時の光強度分
布を示している。従来例では縞パターン1本に対して1
絵素を対応させていたので、第7図(a)に示す斜線部
のSt、Sxすべてが光電変換され信号出力V1. V
、となる。この場合コントラスト計算結果(前述のC)
は、第8図(a)に示す様に位置ずれ量に対し急速に零
に近づく。(2) Effect of making multiple picture elements correspond to one striped pattern In this embodiment, as shown in FIG. 16, three pixels of the sensor are made to correspond to one striped pattern, and only the signal in the center is detected. . FIG. 7 shows the light intensity distribution when a striped pattern is imaged at the sensor position. FIG. 7(sL) shows the light intensity distribution at the sample focus position, and FIG. 7(b) shows the light intensity distribution at the time of defocus. In the conventional example, 1 stripe pattern is used for each stripe pattern.
Since the picture elements were made to correspond, St and Sx in the shaded area shown in FIG. 7(a) are all photoelectrically converted and the signal output V1. V
, becomes. In this case, the contrast calculation result (C above)
quickly approaches zero with respect to the amount of positional deviation, as shown in FIG. 8(a).
これに対し3絵素を対応させた場合、中心1絵素で光電
変換される光量は減るものの第7図(It)のS’t、
S≦を光電変換するのでコントラスト計算結果は第20
図すの様にゆるやかに零に近づく。従って、縞パターン
1本にセンサ1絵素を対応させた時よりも、縞パターン
1本にセンサ複数絵素な対応させ中心部の1号のみを検
出した方が動作が安定化する。又、本方式はセンサと縞
パターンの相対位置L (t)方向の位置合せが従来法
だ比べて余裕があり、縞パターンの位置調整が容易であ
る。On the other hand, when three pixels are associated, although the amount of light photoelectrically converted by the central one pixel decreases, S't in Fig. 7 (It),
Since S≦ is photoelectrically converted, the contrast calculation result is the 20th
As shown in the figure, it slowly approaches zero. Therefore, the operation is more stable when one stripe pattern is made to correspond to a plurality of sensor picture elements and only No. 1 in the center is detected than when one stripe pattern is made to correspond to one sensor pixel. In addition, in this method, the relative position of the sensor and the striped pattern in the L (t) direction has more margin than in the conventional method, and the position of the striped pattern can be easily adjusted.
(5)前焦点用縞パターンと後焦点用縞パターンを交互
に配置する効果及び縞パターンを被測定物体パターンに
対し45°傾ける効果。(5) The effect of alternately arranging the front focus stripe pattern and the back focus stripe pattern, and the effect of tilting the stripe pattern by 45 degrees with respect to the pattern of the object to be measured.
前焦点用縞パターンと後焦点用縞パターンを交互に配置
した結果、それぞれの焦点用の縞パターン1組が投影さ
れる領域は繰り返し回数だけ細分化される。従って、前
述した様に試料表面上で明るさのバラツキの生じる境界
部分に投影縞パターンの一部がかかっても、明るさのバ
ラツキが検出信号に与える影響は低減される。また、第
9図に示す如く、従来法ではウェハパターンの繰り返し
周期が投影縞パターンの繰り返し周期と一致した場合誤
検出を生じていた。本発明ではLSIウェハなどのパタ
ーンは大部分が直交パターンであることに着目し、投影
縞パターンをこれらに対し45″傾けることにより、前
記の誤検出を防ぐことが可能となった。As a result of alternately arranging the front focus stripe patterns and the back focus stripe patterns, the area onto which each set of focus stripe patterns is projected is subdivided by the number of repetitions. Therefore, even if a portion of the projected fringe pattern overlaps the boundary portion where brightness variations occur on the sample surface as described above, the influence of the brightness variations on the detection signal is reduced. Further, as shown in FIG. 9, in the conventional method, erroneous detection occurs when the repetition period of the wafer pattern matches the repetition period of the projected stripe pattern. In the present invention, we have focused on the fact that most of the patterns on LSI wafers are orthogonal patterns, and by tilting the projected stripe pattern by 45'' with respect to these patterns, it has become possible to prevent the above-mentioned erroneous detection.
(4) 明るさ補正の効果
まず、センサの分割について述べる。本実施例では、第
10図に示す如ぐアレイ状センナの両端を試料表面の明
るさのバラツキ測定に使用し、残りの部分で投影縞パタ
ーンの明暗情報を検出する。センサの分割の方法は種々
考えられるが、同一のセンサで投影縞パターンの明暗情
報と試料表面の明るさのバラツキを同時に検出するもの
はすべて本特許請求の囲とする。センサからの出力信号
は、蓼11図の様になる。同図(a)は縞パターン明暗
情報検出信号で試料表面の明るさのバラツキに応じて信
号の明レベルと暗レベルはバラツキを生じる。次に、同
図(b)に明るさのバラツキを測定した結果を示す。こ
こで表面明るさのバラツキ測定信号Q))を用かで縞パ
ターン明暗情報測定信号(a)を割算処理すれば同図(
G)に示す如く、試料表面の明るさのバラツキの影響を
除去した投影縞パターンの明暗情報(正規化)のみが検
出できる。(4) Effect of brightness correction First, we will discuss the division of the sensor. In this embodiment, both ends of the arrayed sensor shown in FIG. 10 are used to measure variations in brightness on the sample surface, and the remaining parts are used to detect brightness information of the projected fringe pattern. Various methods of dividing the sensor can be considered, but any method that simultaneously detects the brightness information of the projected stripe pattern and the brightness variation of the sample surface with the same sensor is within the scope of the present patent claim. The output signal from the sensor is as shown in Figure 11. FIG. 5A shows a striped pattern brightness information detection signal, and the bright level and dark level of the signal vary depending on the variation in brightness of the sample surface. Next, the results of measuring the variations in brightness are shown in FIG. 2(b). Here, if the surface brightness variation measurement signal Q)) is used to divide the striped pattern brightness information measurement signal (a), the same figure (
As shown in G), only the brightness information (normalized) of the projected fringe pattern, which removes the influence of variations in brightness on the sample surface, can be detected.
(5)光路を試料表面観察部と縞パターン投影部とに分
離した効果
後述するウェハ異物検出装置に適用した例について述べ
る。本装置では、視野中心部を第3図に示す様に試料上
の異物からの散乱光の検出に用い、周辺部に縞パターン
を投影する。(5) Effect of separating the optical path into the sample surface observation section and the striped pattern projection section An example of application to a wafer foreign matter detection device to be described later will be described. In this device, the center of the field of view is used to detect scattered light from foreign objects on the sample, as shown in FIG. 3, and a striped pattern is projected on the periphery.
第12図(a)に検出系の光路断面全てに半透過鏡透過
50チ反射5曝を挿入した場合の異物の検出信号、同図
(b)に縞パターンの光路のみに同じ半透過鏡を挿入し
た場合の異物の検出信号を示す。同図からも判る様に半
透過鏡の反射率の分だけ、異物の検出信号は増加し、従
来法では異物信号と電気ノイズ信号の比S/Nが検出限
界付近にあった異物も、Sが2倍近く増加するので安定
に異物を検出できる。Figure 12 (a) shows a foreign object detection signal when a semi-transmissive mirror is inserted into the entire optical path cross-section of the detection system, with 50 reflections and 5 exposures inserted, and Fig. 12 (b) shows a foreign object detection signal when the same semi-transmissive mirror is inserted only in the striped pattern optical path. Shows the foreign object detection signal when inserted. As can be seen from the figure, the foreign object detection signal increases by the reflectance of the semi-transmissive mirror, and even foreign objects whose S/N ratio of foreign object signal to electrical noise signal was near the detection limit in the conventional method can be detected by S increases by nearly twice, allowing stable detection of foreign objects.
次に、信号処理系について説明する。全体の回路構成を
第25図に示す。まず、アレイ状センサの出力はシリア
ルに取り出され、明暗信号、明るさのバラツキ測定信号
は別々に加算器13 、15によって加算される。明る
さ測定信号はアンプ回路14によってレベル補正される
。Next, the signal processing system will be explained. The entire circuit configuration is shown in FIG. 25. First, the outputs of the array sensor are taken out serially, and the brightness and darkness signals and brightness variation measurement signals are separately added by adders 13 and 15. The level of the brightness measurement signal is corrected by the amplifier circuit 14.
その後、明暗信号は明るさ信号により割算され、正規化
される。次に、正規化された明暗信号はサンプル&ホー
ルド回路によって特定の絵素の信号のみがサンプリング
され、明部出力信号と暗部出力信号に分割される。分割
された信号は、コントラスト算出回路(差分)19で、
明部出力と暗部出力の差をコントラストとして出力し、
次の差動出力算出回路において、前焦点用コントラスト
の和ΣCF及ヒ後焦点用コントラストの和ΣCBをそれ
ぞれ加算器205 、206で求め、ΣC2とΣC3の
差を差分回路207で求め、その結果を差動出力として
出力する。第26図に本信号処理系に用いるクロヅパル
スのタイミングチャートを示す。まず、アレイ状センサ
はCpoによって走査されシリアルに信号を出力する。The brightness signal is then divided by the brightness signal and normalized. Next, the normalized bright/dark signal is sampled by a sample-and-hold circuit, and is divided into a bright part output signal and a dark part output signal. The divided signals are processed by a contrast calculation circuit (difference) 19.
Outputs the difference between bright and dark output as contrast,
In the next differential output calculation circuit, the sum ΣCF of the front focus contrast and the sum ΣCB of the rear focus contrast are determined by adders 205 and 206, respectively, the difference between ΣC2 and ΣC3 is determined by the difference circuit 207, and the results are Output as differential output. FIG. 26 shows a timing chart of the Crozu pulse used in this signal processing system. First, the array sensor is scanned by Cpo and outputs a signal serially.
本実施例では、縞パターン1本に対してセンサ3絵素を
対応させ、計8組の縞パターンを投影するので48パル
スを要し、リセットパルス1を含め計49パルスで一回
の走査を行なう。明暗信号はCp t*Cp2で抽出さ
れ、それぞれ縞パターンの中心 4の明暗情報のみを抽
出する様にタイミングをとっである。Cps 、 C2
0(Cps 、Cps )は前(後)焦点用コントラス
トをラッチするためのタイミングパルスである。In this embodiment, 3 pixels of the sensor correspond to one striped pattern, and a total of 8 sets of striped patterns are projected, so 48 pulses are required, and one scan is performed with a total of 49 pulses including reset pulse 1. Let's do it. The light and dark signals are extracted at Cpt*Cp2, and the timing is set so that only the light and dark information at the center 4 of the striped pattern is extracted. Cps, C2
0 (Cps, Cps) is a timing pulse for latching the front (back) focus contrast.
第15図に本方式を用いて焦点位置検出を行なった結果
を示す。同図の破線は従来法による検出結果である。こ
の様に、高精度で且つ広い動作範囲をもつ焦点位置検出
が可能となる。FIG. 15 shows the results of focal position detection using this method. The broken line in the figure is the detection result by the conventional method. In this way, it is possible to detect the focal position with high precision and a wide operating range.
以上で、安定な動作を行なう自動焦点機構をもったウェ
ハ上異物検出装置が実現できた。As described above, an on-wafer foreign object detection device with an automatic focusing mechanism that operates stably has been realized.
以上説明したように本発明てよれば、試料表面に明るさ
のバラツキのある試料でも高精度に焦点位置検出が可能
である。また、異物検出系の光量を減少させないので他
の観察系の検出信号のS/Nを向上させることができる
。従ってウェハ異物検出装置などに適用した場合、異物
検出性能も向上する。As explained above, according to the present invention, it is possible to detect the focal position with high accuracy even on a sample with uneven brightness on the sample surface. Furthermore, since the light intensity of the foreign object detection system is not reduced, the S/N ratio of detection signals of other observation systems can be improved. Therefore, when applied to a wafer foreign matter detection device, the foreign matter detection performance is also improved.
第1図は本発明の一実施例の基本構成図、第2図は実施
例のウェハ走査法を説明する図、第3図は実施例の光学
系の構成を示す図、第4図は異物からの検出信号を示す
グラフを示す図、第5図は検出信号のグラフを示す図、
第6図はシリンドリカルレンズを挿入した場合の光路図
、第7図は光強度分布を説明するグラフ、第8回正面図
、第11図は焦点位置検出信号を示すグラフ、第1″2
−図は異物からの検出信号を示すグラフ、第13図は信
号処理系の構成図、第1+図はクロツクのタイミングチ
ャート図、第15図は差動出力と焦点ずれの関係を示す
グラフ、第16図は本発明の検出法の縞パターンとアレ
イセンサの位置関係を示す図、第19図は本検出法の縞
パターンと照明部の構成図、第1g図は本検出法の光路
を説明する図、第19図は従来検出法の光学系構成図、
第20図は従来検出法の縞パターン配置図、第21図は
従来検出法の縞パターンとセンサの位lt関係を示す図
、第22図は従来検出法の明暗検出信号と焦点ずれの関
係を示すグラフ、第23図は検出コントラストと焦点ず
れの関係を示すグラフ、及び動作範囲mを説明するグラ
フ、第2手図はLSIウェハの表面図、萬25図はLS
Iウェハの断面図、第26図(a)は誤検出を起こす測
定有する箇所の焦点ずれ時の検出信号を示すグラフ、第
27図は視野内における縞パターン投影部と観察部の位
置関係を示す図である。
1・・・照明用光源、 2.29・・・コンデン
サレンズ、3・・・縞パターン部、
3a・・・前ピント用縞パターン、
3b・・・後ピント用縞パターン、
4.4a・・・半透過鏡、 5・・・対物レンズ、
6・・・試料、 7・・・アレイ状センサ、
71・・・センサの絵素、 8・・・信号処理回路、
9・・・縞パターン1本、10・・・縞パターン明部、
11・・・シリンドリカルレンズ、
13 、15・・・加算器、 14・・・増幅器、1
6・・・割算器、
17.18・・・サンプル&ホールド回路、19・・・
差分器、 20・・・差動出力算出回路、201
〜240・・・ラッチ回路、
205.206・・・加算器、 207・・・差分器、
21・・・全反射鏡(又は半透過鏡)、22・・・異物
検出器、 23・・・異物信号処理回路、24・・・
異物メモリ、 25・・・表示器、26・・・X−Y
ステージ駆動回路、
27−−−Zスf−ジ、 28.XYステージ、29
a l b・・・異物検出用照明、50・・・Zステ
ージドライバ、
700・・・明暗情報検出部、
291・・・コンデンサレンズ。
、・ふFig. 1 is a basic configuration diagram of an embodiment of the present invention, Fig. 2 is a diagram explaining the wafer scanning method of the embodiment, Fig. 3 is a diagram showing the configuration of the optical system of the embodiment, and Fig. 4 is a diagram showing foreign matter. FIG. 5 is a diagram showing a graph of the detection signal,
Fig. 6 is an optical path diagram when a cylindrical lens is inserted, Fig. 7 is a graph explaining the light intensity distribution, the 8th front view, Fig. 11 is a graph showing the focal position detection signal, 1''2
Figure - is a graph showing the detection signal from a foreign object, Figure 13 is a configuration diagram of the signal processing system, Figure 1+ is a clock timing chart, Figure 15 is a graph showing the relationship between differential output and focus shift, Figure 16 is a diagram showing the positional relationship between the stripe pattern of the detection method of the present invention and the array sensor, Figure 19 is a diagram of the stripe pattern of the detection method and the configuration of the illumination section, and Figure 1g explains the optical path of the detection method of the present invention. Figure 19 is a diagram of the optical system configuration of the conventional detection method.
Fig. 20 is a diagram showing the stripe pattern arrangement of the conventional detection method, Fig. 21 is a diagram showing the relationship between the stripe pattern of the conventional detection method and the sensor position, and Fig. 22 is a diagram showing the relationship between the brightness detection signal and defocus of the conventional detection method. 23 is a graph showing the relationship between detected contrast and defocus, and a graph explaining the operating range m. The second figure is a surface view of the LSI wafer, and Figure 25 is the LS
A cross-sectional view of the I wafer, FIG. 26(a) is a graph showing the detection signal at the time of defocusing of the measurement point that causes false detection, and FIG. 27 shows the positional relationship between the stripe pattern projection part and the observation part within the field of view. It is a diagram. 1... Light source for illumination, 2.29... Condenser lens, 3... Striped pattern portion, 3a... Striped pattern for front focus, 3b... Striped pattern for rear focus, 4.4a...・Semi-transparent mirror, 5...Objective lens,
6... Sample, 7... Array sensor,
71...Sensor picture element, 8...Signal processing circuit,
9...One striped pattern, 10...Bright part of the striped pattern,
11... Cylindrical lens, 13, 15... Adder, 14... Amplifier, 1
6...Divider, 17.18...Sample & hold circuit, 19...
Differential device, 20... Differential output calculation circuit, 201
~240...Latch circuit, 205.206...Adder, 207...Differentiator,
21... Total reflection mirror (or semi-transmission mirror), 22... Foreign object detector, 23... Foreign object signal processing circuit, 24...
Foreign object memory, 25...Display unit, 26...X-Y
Stage drive circuit, 27--Z stage, 28. XY stage, 29
a l b...Lighting for foreign object detection, 50...Z stage driver, 700...Brightness information detection unit, 291...Condenser lens. ,·debt
Claims (1)
物体に投影結像せしめる第1の結像光学系と、上記被測
定物体からの反射光を複数の光電素子より成るアレイ状
センサに結像せしめる第2の結像光学系と、上記アレイ
状センサにより光電変換して得た該縞パターンの明暗情
報により、上記被測定物体の焦点位置を検出するための
電気回路とを備えたことを特徴とする焦点位置検出装置
。 2、第2の結像光学系にシリンドリカルレンズを、縞パ
ターンの各々を長手方向に圧縮するように設置したこと
を特徴とした特許請求の範囲第1項記載の焦点位置検出
装置。 3、明部もしくは暗部のいずれかの縞パターンの拡大像
幅と前記アレイ状センサの絵素の整数倍幅を一致させ各
々の縞パターンの中心部の絵素の明暗情報のみを抽出す
ることを特徴とする特許請求の範囲第1項記載の焦点位
置検出装置。 4、該縞パターンの複数組を、該第1の光学系の所定の
合焦点位置に対して、前方に結像位置を有する縞パター
ン(前焦点縞パターン)と、後方に結像位置を有する縞
パターン(後焦点用縞パターン)に分け、且つ前焦点用
縞パターンと後焦点用縞パターンを結像位置で交互に繰
り返して結像する様に配置したことを特徴とする特許請
求の範囲第1項記載の焦点位置検出装置。 5、前記アレイ状センサを縞パターンの明暗情報抽出と
、被測定物体表面の反射率の測定に同時に用い、該信号
測定結果により前者の検出信号の補正を行ない、前記被
測定物体の表面反射率のバラツキの影響を除去したこと
を特徴とする特許請求の範囲第1項記載の焦点位置検出
装置。 6、前記投影縞パターンを被測定物体観察視野周辺に投
影し、光軸の中心部は被測定物体観察光の検出に使用し
、半透過鏡を観察視野の一部に挿入し投影縞パターンの
光路と、被測定物体観察系の光路を分離し、両者の光量
を増加させたことを特徴とする特許請求の範囲第1項記
載の焦点位置検出装置。[Claims] 1. A first imaging optical system that projects and images a striped pattern of periodically repeating bright and dark areas onto an object to be measured; a second imaging optical system that forms an image on an array sensor made of elements; and a second imaging optical system for detecting the focal position of the object to be measured using brightness information of the striped pattern obtained by photoelectric conversion by the array sensor. A focal position detection device characterized by comprising an electric circuit. 2. The focal position detection device according to claim 1, wherein a cylindrical lens is installed in the second imaging optical system so as to compress each of the striped patterns in the longitudinal direction. 3. Match the enlarged image width of the striped pattern in either the bright area or the dark area with the integral multiple width of the picture elements of the array sensor, and extract only the brightness information of the picture elements in the center of each striped pattern. A focal position detection device according to claim 1, characterized in that: 4. A plurality of sets of the stripe patterns are formed, with respect to a predetermined focal point position of the first optical system, a stripe pattern having an imaging position in front (front focus stripe pattern) and an imaging position having an imaging position in the rear. Claim 1, characterized in that the image is divided into stripe patterns (rear focus stripe patterns), and the front focus stripe patterns and the back focus stripe patterns are arranged so as to alternately repeat the image formation at the imaging position. The focal position detection device according to item 1. 5. The array sensor is used to simultaneously extract brightness information of the striped pattern and measure the reflectance of the surface of the object to be measured, and the former detection signal is corrected based on the signal measurement result, and the reflectance of the surface of the object to be measured is corrected. 2. The focus position detection device according to claim 1, wherein the influence of variations in the focus position is removed. 6. Project the projected fringe pattern around the observation field of the object to be measured, use the center of the optical axis to detect the observation light of the object to be measured, and insert a semi-transparent mirror into a part of the observation field of view to see the projected fringe pattern. 2. The focal position detection device according to claim 1, wherein the optical path and the optical path of the object observation system to be measured are separated to increase the amount of light of both.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60221820A JPS6281616A (en) | 1985-10-07 | 1985-10-07 | Focus position detecting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60221820A JPS6281616A (en) | 1985-10-07 | 1985-10-07 | Focus position detecting device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6281616A true JPS6281616A (en) | 1987-04-15 |
Family
ID=16772697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60221820A Pending JPS6281616A (en) | 1985-10-07 | 1985-10-07 | Focus position detecting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6281616A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63212911A (en) * | 1987-03-02 | 1988-09-05 | Hitachi Electronics Eng Co Ltd | Auto focus system |
JPS63213810A (en) * | 1987-03-02 | 1988-09-06 | Hitachi Electronics Eng Co Ltd | Auto-focusing system |
JPS63239412A (en) * | 1987-03-27 | 1988-10-05 | Hitachi Electronics Eng Co Ltd | Automatic focusing system |
JP2007511758A (en) * | 2003-11-14 | 2007-05-10 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Apparatus and method for determining the focus of an imaging system |
JP2007327891A (en) * | 2006-06-09 | 2007-12-20 | Hitachi High-Technologies Corp | Visual inspection system |
-
1985
- 1985-10-07 JP JP60221820A patent/JPS6281616A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63212911A (en) * | 1987-03-02 | 1988-09-05 | Hitachi Electronics Eng Co Ltd | Auto focus system |
JPS63213810A (en) * | 1987-03-02 | 1988-09-06 | Hitachi Electronics Eng Co Ltd | Auto-focusing system |
JPS63239412A (en) * | 1987-03-27 | 1988-10-05 | Hitachi Electronics Eng Co Ltd | Automatic focusing system |
JP2007511758A (en) * | 2003-11-14 | 2007-05-10 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Apparatus and method for determining the focus of an imaging system |
JP2007327891A (en) * | 2006-06-09 | 2007-12-20 | Hitachi High-Technologies Corp | Visual inspection system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6538751B2 (en) | Image capturing apparatus and distance measuring method | |
US6172349B1 (en) | Autofocusing apparatus and method for high resolution microscope system | |
JP4256137B2 (en) | Dual beam symmetrical height system and method | |
US5212390A (en) | Lead inspection method using a plane of light for producing reflected lead images | |
KR101782336B1 (en) | Inspection apparatus and inspection method | |
JP6364193B2 (en) | Focus position adjustment method and inspection method | |
JPH0610694B2 (en) | Automatic focusing method and device | |
TWI665444B (en) | Defect inspection device and method | |
KR20210000728A (en) | Performance monitoring of design-based alignment | |
JP3105702B2 (en) | Optical defect inspection equipment | |
EP0871072A2 (en) | Multiple detector alignment system for photolithography | |
JPH0772093A (en) | Detecting method and inspecting apparatus for defect such as foreign matter | |
KR20010013628A (en) | Method for focusing during imaging of structured surfaces of disc-shaped objects | |
US7767982B2 (en) | Optical auto focusing system and method for electron beam inspection tool | |
CN110658196B (en) | Defect detection device and defect detection method | |
TW202203341A (en) | Design-to-wafer image correlation by combining information from multiple collection channels | |
JPS6281616A (en) | Focus position detecting device | |
JPH0135492B2 (en) | ||
JP3595117B2 (en) | Array element inspection method and array element inspection apparatus | |
JPS6244201B2 (en) | ||
JPS60237347A (en) | Apparatus for inspecting foreign matter | |
JPS5870540A (en) | Focal position detector | |
JP2001166202A (en) | Focus detection method and focus detector | |
JPS61104242A (en) | Apparatus for inspecting foreign matter | |
KR0154559B1 (en) | Method of and apparatus for inspecting recticle for defects |