JPS628085A - Automatic pretreatment of radioactive iodine in nuclear reactor cooling water - Google Patents

Automatic pretreatment of radioactive iodine in nuclear reactor cooling water

Info

Publication number
JPS628085A
JPS628085A JP60146359A JP14635985A JPS628085A JP S628085 A JPS628085 A JP S628085A JP 60146359 A JP60146359 A JP 60146359A JP 14635985 A JP14635985 A JP 14635985A JP S628085 A JPS628085 A JP S628085A
Authority
JP
Japan
Prior art keywords
radioactive iodine
cooling water
membrane filter
filter
reactor cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60146359A
Other languages
Japanese (ja)
Inventor
Kazuo Murakami
一男 村上
Yoshiyuki Yuasa
湯浅 嘉之
Minoru Akimoto
実 秋元
Toshiaki Ito
敏明 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP60146359A priority Critical patent/JPS628085A/en
Publication of JPS628085A publication Critical patent/JPS628085A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To improve a measuring sensitivity and facilitate the preservation of a sample by flowing a sample liquid to be measured containing a pretreated radioactive iodine through a silver membrane filter to thereby collect the radioactive iodine. CONSTITUTION:When a sample liquid 1 to be measured that contains a pretreated radioactive iodine is flowed through a silver membrane filter 3, only the radioactive iodine is efficiently collected by the filter 3. The measurement of the radioactive iodine by the filter 3 enables a measuring sensitivity to be improved because a measuring instrument can approach the filter 3. Further, since the sample 1 is preserved in the state of the filter 3, the preservation of the material is largely facilitated.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は原子炉冷却水やシツピング水中に含まれる極低
濃度の放射性よう素を測定するための原子炉冷却水中の
放射性よう素の自動前処理方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to automatic pretreatment of radioactive iodine in reactor cooling water for measuring extremely low concentrations of radioactive iodine contained in reactor cooling water and shipping water. Regarding the method.

[発明の技術的背景とその問題点] 原子炉において、その冷却水中(シツピング水を含む)
に含まれる放射性よう素の存在を知り、その量を測定す
ることは、次の理由により極めて重要である。
[Technical background of the invention and its problems] In a nuclear reactor, its cooling water (including shipping water)
It is extremely important to know the presence of radioactive iodine contained in and measure its amount for the following reasons.

すなわち原子炉の炉心に装架される多数の燃料棒のうち
健5全でない燃料棒があるとき、例えば燃料被覆管にピ
ンホールその他の破損があるときは、燃焼状態にある燃
料から放射性ガスの漏洩が生じる。特に放射性ガスのう
ち放射性よう素の存在は燃料棒の破損の情報源と考えら
れ放射性よう素置の多少は破損の程度を知る目安となる
ものである。
In other words, if one of the many fuel rods installed in the core of a nuclear reactor is not in good condition, for example if there is a pinhole or other damage in the fuel cladding, radioactive gas may be released from the burning fuel. Leakage occurs. In particular, the presence of radioactive iodine among radioactive gases is considered to be a source of information on fuel rod damage, and the amount of radioactive iodine can be used as an indicator of the extent of damage.

従って、原子、炉冷却水中の放射性よう素の測定は、原
子炉を設置する原子力発電所では、保守管理業務の一環
として定期的に行なわれている。
Therefore, measurements of radioactive iodine in nuclear reactors and reactor cooling water are regularly carried out as part of maintenance management work at nuclear power plants where nuclear reactors are installed.

放射性よう素を含んだ測定用試料の調整には、まず前処
理を行なう必要があるが、この前処理法により放射性よ
う素足m下限(u Ci /m i)はGe検出器によ
るガンマ線スペクトロメトリでは、採取した冷却水をそ
のまま測定するときはほぼ1Q−5、採取した冷却水を
イオン交換ペーパあるいはイオン交換カラムに通水して
よう素を分離測定するときはほぼ10−5〜10−6、
溶媒抽出法によりよう素を分離測定するときはほぼ10
−7〜1゜−8である。
To prepare a measurement sample containing radioactive iodine, it is first necessary to perform pretreatment, but this pretreatment method allows the lower limit of radioactive iodine m (u Ci /m i) to be lowered by gamma ray spectrometry using a Ge detector. , when measuring the collected cooling water as it is, it is approximately 1Q-5, and when the collected cooling water is passed through ion exchange paper or an ion exchange column to separate and measure iodine, it is approximately 10-5 to 10-6.
When separating and measuring iodine using the solvent extraction method, approximately 10
-7 to 1°-8.

前述したように燃料棒破損の有無とその程度を知るには
、燃料棒を冷却した原子炉冷却水中に含まれる極低濃度
の放射性よう素を測定しなければならないから、前処理
方法としては、溶媒抽出法を用いることが必然的に要請
される。
As mentioned above, in order to determine the presence or absence of fuel rod damage and its extent, it is necessary to measure the extremely low concentration of radioactive iodine contained in the reactor cooling water that cooled the fuel rods, so as a pretreatment method, It is necessarily required to use a solvent extraction method.

従来、この溶媒抽出作業は採取した試料を作業者が実験
室において手作業で行なっていたが、このやり方では測
定に時間がかかり、かつ測定に従事する作業者の放射線
被曝も増大するという問題があった。
Conventionally, this solvent extraction work was carried out manually by workers in the laboratory using the collected samples, but this method took time to measure and also increased the radiation exposure of the workers involved in the measurements. there were.

このような問題を解決するため、本出願人は放射性よう
素の自動化された前処理方法を開発し先に特許出願した
(特願昭57−95683号)。
In order to solve these problems, the present applicant has developed an automated pretreatment method for radioactive iodine and has previously filed a patent application (Japanese Patent Application No. 57-95683).

しかしながら、この発明の方法においても処理された試
料は液体であるため、測定器をある距離以上近付けるこ
とができず、測定感度が比較的に悪いという問題がある
。また測定試料が液体のため保存が非常に困難であると
いう問題がある。
However, even in the method of this invention, since the treated sample is a liquid, the measuring instrument cannot be brought closer than a certain distance, and there is a problem that the measurement sensitivity is relatively poor. Another problem is that since the measurement sample is a liquid, it is very difficult to store it.

[発明の目的] 本発明はかかる従来の事情に対処してなされたもので、
測定感度を向上さけまた試料の保存を容易に行うことの
できる原子炉冷却水中の放射性よう素の自動前処理方法
を提供しようとするものである。
[Object of the invention] The present invention has been made in response to such conventional circumstances,
The present invention aims to provide an automatic pretreatment method for radioactive iodine in reactor cooling water, which improves measurement sensitivity and facilitates sample preservation.

[発明の概要] すなわち、本発明は、あらかじめ前処理された放射性よ
う素を含む液体測定試料を、銀メンブレンフィルタに通
水し、この銀メンブレンフィルタに前記放射性よう素を
捕集することを特徴とする原子炉冷却水中の放射性よう
素の自動前処理方法である。
[Summary of the Invention] That is, the present invention is characterized in that a pretreated liquid measurement sample containing radioactive iodine is passed through a silver membrane filter, and the radioactive iodine is collected on the silver membrane filter. This is an automatic pretreatment method for radioactive iodine in reactor cooling water.

[発明の実施例] 以下、本発明の詳細を図面を用いて説明する。[Embodiments of the invention] Hereinafter, details of the present invention will be explained using the drawings.

本発明の原子炉冷却水中の放射性よう素の自動前処理方
法では、例えば特願昭57−95683号の方法により
あらかじめ前処理された放射性よう素を含む液体測定試
料が用いられる。
In the automatic pretreatment method for radioactive iodine in nuclear reactor cooling water of the present invention, a liquid measurement sample containing radioactive iodine that has been pretreated, for example, by the method disclosed in Japanese Patent Application No. 57-95683 is used.

すなわち本発明方法は、このようにして前処理された液
体測定試料を銀メンブレンフィルタに通水し、この銀メ
ンブレンフィルタに液体測定試料の放射性よう素を捕集
することを特徴としている。
That is, the method of the present invention is characterized in that the thus pretreated liquid measurement sample is passed through a silver membrane filter, and radioactive iodine in the liquid measurement sample is collected by the silver membrane filter.

図は本発明の原子炉冷却水中の放射性よう素の自動前処
理装置に用いられる原子炉冷却水中の放射性よう素の自
動前処理方法を示すもので、前処理装置によりあらかじ
め前処理された放射性よう素を含む液体測定試R1は、
一対のフィルターホルダー2a、2bに介挿される銀メ
ンブレンフィルタ3に通水され、銀メンブレンフィルタ
3に放射性よう素が捕集される。そして、銀メンブレン
フィルタ3に通水された液体測定試料1は廃液として装
置外に排出される。
The figure shows an automatic pretreatment method for radioactive iodine in reactor cooling water used in the automatic pretreatment device for radioactive iodine in reactor cooling water of the present invention. The liquid measurement sample R1 containing element is
Water is passed through a silver membrane filter 3 inserted between a pair of filter holders 2a and 2b, and radioactive iodine is collected by the silver membrane filter 3. The liquid measurement sample 1 that has passed through the silver membrane filter 3 is discharged outside the apparatus as waste liquid.

一般に銀メンブレンフィルタ3は放射性よう素を効率的
に捕集するが、妨害核種となる他の放射性核種をも捕集
してしまうという問題がある。
Generally, the silver membrane filter 3 efficiently collects radioactive iodine, but there is a problem in that it also collects other radionuclides that can be interfering nuclides.

しかしながら、本発明方法では、すでに前処理された放
射性よう素を含む液体測定試料1を銀メンブレンフィル
タ3に通水しているため、銀メンブレンフィルタ3では
放射性よう素のみが効率的に捕集される。
However, in the method of the present invention, since the pretreated liquid measurement sample 1 containing radioactive iodine is passed through the silver membrane filter 3, only the radioactive iodine is efficiently collected by the silver membrane filter 3. Ru.

この銀メンブレンフィルタ3を用いての放射性よう素の
測定は、測定器を十分この銀メンブレンフィルタ3に近
付けることができるため、測定感度を従来より5倍程度
向上することができる。従って、炉水中の放射性よう素
濃度が1桁以上低い、炉水浄化系出口水あるいは複水中
のよう氷濃度測定を確実に行うことが可能となる。
When measuring radioactive iodine using this silver membrane filter 3, the measuring instrument can be brought sufficiently close to this silver membrane filter 3, so that the measurement sensitivity can be improved by about 5 times compared to the conventional method. Therefore, it is possible to reliably measure the ice concentration in reactor water purification system outlet water or mixed water, where the radioactive iodine concentration in the reactor water is one order of magnitude or more lower.

また、試料は銀メンブレンフィルタ3の状態で保存され
るため、その保管が非常に容易になる。
Furthermore, since the sample is stored in the state of the silver membrane filter 3, its storage becomes very easy.

[発明の効果] 以上のべたように、本発明の原子炉冷却水中の放射性よ
う素の自動前処理方法によれば、あらかじめ前処理され
た放射性よう素を含む液体測定試料を、銀メンブレンフ
ィルタに通水し、この銀メンブレンフィルタに放射性よ
う素を捕集するようにしたので、測定感度を従来より大
幅に向上し、また試料の保存を容易に行うことができる
[Effects of the Invention] As described above, according to the automatic pretreatment method for radioactive iodine in nuclear reactor cooling water of the present invention, a pretreated liquid measurement sample containing radioactive iodine is transferred to a silver membrane filter. Since water is passed through and radioactive iodine is collected on this silver membrane filter, measurement sensitivity is significantly improved compared to conventional methods, and samples can be easily stored.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明方法に用いられるよう素自動前処理装置を示
す説明図である。
The figure is an explanatory diagram showing an automatic iodine pretreatment apparatus used in the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)あらかじめ前処理された放射性よう素を含む液体
測定試料を、銀メンブレンフィルタに通水し、この銀メ
ンブレンフィルタに前記放射性よう素を捕集することを
特徴とする原子炉冷却水中の放射性よう素の自動前処理
方法。
(1) Radioactivity in reactor cooling water characterized by passing a pretreated liquid measurement sample containing radioactive iodine through a silver membrane filter, and collecting the radioactive iodine on the silver membrane filter. Automatic pretreatment method for iodine.
JP60146359A 1985-07-03 1985-07-03 Automatic pretreatment of radioactive iodine in nuclear reactor cooling water Pending JPS628085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60146359A JPS628085A (en) 1985-07-03 1985-07-03 Automatic pretreatment of radioactive iodine in nuclear reactor cooling water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60146359A JPS628085A (en) 1985-07-03 1985-07-03 Automatic pretreatment of radioactive iodine in nuclear reactor cooling water

Publications (1)

Publication Number Publication Date
JPS628085A true JPS628085A (en) 1987-01-16

Family

ID=15405932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60146359A Pending JPS628085A (en) 1985-07-03 1985-07-03 Automatic pretreatment of radioactive iodine in nuclear reactor cooling water

Country Status (1)

Country Link
JP (1) JPS628085A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742508A (en) * 1980-08-25 1982-03-10 Nippon Atom Ind Group Co Ltd Collection of iodine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742508A (en) * 1980-08-25 1982-03-10 Nippon Atom Ind Group Co Ltd Collection of iodine

Similar Documents

Publication Publication Date Title
Brooksbank et al. Analysis for trace impurities by neutron activation
US3783268A (en) Device for measuring activity concentration in primary circulation systems of nuclear reactors
JPS628085A (en) Automatic pretreatment of radioactive iodine in nuclear reactor cooling water
JP3202397B2 (en) Separation method of iodine and fluorine in reactor coolant.
Gjeci Analysis of 90 Sr in environmental and biological samples by extraction chromatography using a crown ether
Robinson et al. Determination of Hg and other trace elements in soil using neutron activation analysis
RU2785061C1 (en) METHOD FOR DETERMINATION OF ACTIVITY OF 238,239+240,241Pu RADIONUCLIDES IN AEROSOL SAMPLES AND PRECIPITATIONS
Koarashi et al. A simple and reliable monitoring system for 3 H and 14 C in radioactive airborne effluent
Smith et al. Fission-Product Monitoring in EBR-I, Mark IV
Metzger et al. Bioanalysis of uranium, plutonium, and curium on breathing zone air samples by solvent extraction and PERALS spectroscopy
JPS6118144B2 (en)
JPS628084A (en) Radioactive iodine monitor for nuclear reactor cooling water
Shank et al. Tritium instrumentation for a fusion reactor power plant
Cellini et al. POSSIBILITIES WHICH THE REACTOR OF MONCLOA OFFERS WITH RESPECT TO CHEMISTRY
Hadzistelios et al. Radiochemical separation and determination of europium by Ge (Li) detector in biological tissues
Langhorst Investigation into the improvement of monitoring gaseous effluents for radioactive iodine
Pool et al. Single Shell Tank Waste Characterization Project for Tank B-110, Core 9-data package and PNL validation summary report
Maslov et al. Low level measurements of thorium and neptunium in environmental samples using the (γ, f) reaction
Martell et al. Rapid determination of uranium by x-ray fluorescence
Allsop et al. Tritium source identification in CANDU reactors
Wright et al. TEST RESULTS OF THE BETTIS HIGH-PRESSURE OXYGEN ANALYZER
Worley Accurate quantification of radioactive materials by x-ray fluorescence: gallium in plutonium metal/.
Volent et al. Method for investigation of various iodine species in the primary coolant of the Nuclear Power Plant in Paks
Whittemore Effluent releases at the TRIGA reactor facility
Kangilaski et al. Fission-product-release Measurement from Clad Fuel Specimens