JPS6280523A - Method and circuit for detecting flame in gas turbine combustor - Google Patents

Method and circuit for detecting flame in gas turbine combustor

Info

Publication number
JPS6280523A
JPS6280523A JP22012085A JP22012085A JPS6280523A JP S6280523 A JPS6280523 A JP S6280523A JP 22012085 A JP22012085 A JP 22012085A JP 22012085 A JP22012085 A JP 22012085A JP S6280523 A JPS6280523 A JP S6280523A
Authority
JP
Japan
Prior art keywords
flame
circuit
time
gas turbine
flames
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22012085A
Other languages
Japanese (ja)
Other versions
JPH0731083B2 (en
Inventor
Seisaku Takihana
瀧花 清作
Yasumasa Nishijima
庸正 西嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60220120A priority Critical patent/JPH0731083B2/en
Publication of JPS6280523A publication Critical patent/JPS6280523A/en
Publication of JPH0731083B2 publication Critical patent/JPH0731083B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/72Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flame burners

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To detect only either fire selectively by paying attention only to the light emission wavelength of a chemical species that fires feature and monitoring a change in the lapse of time in light emission intensity or a light emission intensity value of each wavelength, etc. CONSTITUTION:A light beam sampled by a fire flame sampling head 6 is inputted to an interference filter 7 through an optical fiber 13. The interference filter 7 transmits only a light beam required for selective fire detection. Then, a filtered light beam is guided to a photodetector 8 through the optical fiber 13 and converted into an electric signal 14, which is monitored by a time-wise judging circuit 11 with time through an amplifier 9 and an integration circuit 10 and the compared with a set value. For example, the integral value of the light emission intensity of 3,880Angstrom generated by the secondary fire occurrence after an ignition time t0 is comapred with a set value and a fire detection signal is generated at time t1 when the integral value exceeds the set value. Then the electric signal 14 is transmitted to a fire occurrence judging circuit 12 to judge whether a fire occurs or not.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はガスタービン燃焼器内の火炎検知方法及び火炎
検知回路に係り、特に燃焼器内に、拡散火炎及び予混合
火炎が同時に存在する場合、又は、輝炎及び不輝炎が同
時に存在する場合に、いずれか一方の火炎のみを選択的
に検知する方法及び回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a flame detection method and a flame detection circuit in a gas turbine combustor, particularly when a diffusion flame and a premix flame exist simultaneously in the combustor. Alternatively, the present invention relates to a method and a circuit for selectively detecting only one of the flames when a bright flame and a non-bright flame exist at the same time.

〔発明の背景〕[Background of the invention]

火炎は熱線と光線を出す波動エネルギを放射する。油燃
焼の場合は全放射エネルギの約90%、ガス燃焼で約9
5%は不可視光線の赤外線領域に属し、熱として利用さ
れる。短波長の紫外線領域のエネルギは1%以下である
。又、注意すべきことは、熱線によって赤熱された物体
からも可視光線及び赤外線が放射される。ガスタービン
燃焼器内の火炎を検知する火炎検出器は、この赤熱され
た物体(例えば、燃焼器内筒)から放射される光と、燃
焼炎から放射された光とを区別する必要がある。従って
、ガスタービン火炎検出器に、可視光線領域及び赤外線
領域のものを使用することはガスタービンの運転上の安
全性が失われることになる。従来技術による火炎検出器
の検知方式を大別すると、下記の6方式となる。
Flames radiate wave energy that produces heat and light rays. Approximately 90% of the total radiant energy is consumed by oil combustion, and approximately 90% by gas combustion.
5% belongs to the infrared region of invisible light and is used as heat. The energy in the short wavelength ultraviolet region is 1% or less. Also, it should be noted that objects heated by heat rays also emit visible and infrared rays. A flame detector that detects flame within a gas turbine combustor must distinguish between light emitted from this red-hot object (eg, the combustor inner cylinder) and light emitted from the combustion flame. Therefore, using a gas turbine flame detector in the visible light region or infrared region will result in a loss of operational safety of the gas turbine. The detection methods of flame detectors according to the prior art can be broadly classified into the following six methods.

(1)バイメタル方式:燃焼炎の存在をガス温度によっ
て検出する。
(1) Bimetal method: The presence of combustion flame is detected by gas temperature.

(2)CdSセル方式:火炎の存在を光による抵抗変化
として検出する。
(2) CdS cell method: The presence of flame is detected as a resistance change due to light.

(3)PbSセル方式:火炎の存在を赤外線による抵抗
値の変化として検出する。
(3) PbS cell method: The presence of flame is detected as a change in resistance value due to infrared rays.

(4)光電管方式:火炎の存在を光による物体の光電子
放出量として検出する。
(4) Phototube method: The presence of flame is detected as the amount of photoelectrons emitted by an object due to light.

(5)フレームロンド方式:火炎の存在をその導体とし
ての性質を利用して電流値として検出する。
(5) Flame Rondo method: The presence of flame is detected as a current value using its properties as a conductor.

(6)ウルトラビジョン方式:火炎の存在を紫外線領域
のみのエネルギ量として検出する。
(6) Ultra vision method: The presence of flame is detected as the amount of energy only in the ultraviolet region.

これらの方式に関する波長別相対感度を第1図に示す。The relative sensitivities of these methods by wavelength are shown in FIG.

ガスタービン燃焼器内火炎検知方式としては上項の第(
6)項のウルトラビジョン方式が一般的に使用されてい
る(波長: 1900〜2000人)。
The flame detection method in the gas turbine combustor is
The ultravision method described in section 6) is commonly used (wavelength: 1900 to 2000 people).

本方式で従来採用されているガスタービン燃焼器内火炎
検知回路を第2図に示す。燃焼器内に存在する火炎は、
紫外線光電管1で直接サンプリングされ、電気信号とな
り、次にフィリップフロップ回路2にて短形波を発信さ
せる。そして整波回路3にて直流信号に変換し、次の積
分回路4にて積分され、火炎有無判断回路5に導かれ、
火炎の存在が検知される。
Figure 2 shows the gas turbine combustor flame detection circuit conventionally used in this system. The flame present in the combustor is
The ultraviolet light is sampled directly by the ultraviolet phototube 1 and turned into an electrical signal, which is then sent to a philip-flop circuit 2 to emit a rectangular wave. Then, it is converted into a DC signal by the rectifying circuit 3, integrated by the next integrating circuit 4, and guided to the flame presence/absence judgment circuit 5.
The presence of flame is detected.

さて、近年、環境問題に関する世の中の関心は、増加の
一途をたどっており、ガスタービンから大気へ放出され
る排気ガス中のNO8に対する規制値もその例外ではな
く、厳しくなる一方である。
Now, in recent years, the world's interest in environmental issues has continued to increase, and the regulatory values for NO8 in exhaust gas released into the atmosphere from gas turbines are no exception, and are becoming increasingly strict.

本時流に沿うべく、各社はガスタービン燃焼器の低NO
x化にしのぎをけずっている。その結果として、従来の
単一燃焼方式に変って、多重燃焼方式が採用されるに致
っている。その代表例が、拡散燃焼と予混合燃焼を併用
した低NO8燃焼器である。従って、当該燃焼器内には
、拡散火炎と予混合火炎(又は、輝炎及び不輝炎)が同
時に存在するが、No、制御の最適化の為、当該火炎の
点火時期が相違する。この場合、当該両火炎のうち一方
の火炎が存在しており、この状態でもう一方の火炎の確
立を確認する必要があるが、ガスタービン燃焼器は、高
熱容量、小形化という制約から。
In order to follow this trend, each company is developing gas turbine combustors with low NO
He's struggling to make it into an x-gen. As a result, the conventional single combustion method has been replaced by a multiple combustion method. A typical example is a low NO8 combustor that uses both diffusion combustion and premix combustion. Therefore, a diffusion flame and a premixed flame (or a bright flame and a non-bright flame) exist simultaneously in the combustor, but the ignition timings of the flames are different for optimization of control. In this case, one of the two flames is present, and it is necessary to confirm the establishment of the other flame in this state, but gas turbine combustors are limited by their high heat capacity and miniaturization.

コンパクトにできており、当該両火炎が混在している為
、従来技術では一方の火炎の影響を受け、もう一方の火
炎確立の確認ができない。
Since it is compact and both flames are mixed, the conventional technology is affected by one flame and cannot confirm the establishment of the other flame.

〔発明の目的〕[Purpose of the invention]

本発明は上述した欠点を無くし、しかも従来の火炎検知
回路と同一の機能をも有することによって、拡散火炎と
予混合火炎又は、輝炎と不輝炎とが同時存在するガスタ
ービン燃焼器に於いて、いずれか一方の火炎(例えば、
予混合火炎)のみを選択的に検知できる火炎検知方法及
び回路を提供することにある。
The present invention eliminates the above-mentioned drawbacks, and also has the same function as the conventional flame detection circuit, so that it can be used in a gas turbine combustor where a diffusion flame and a premixed flame, or a bright flame and a non-bright flame exist simultaneously. flame on either side (e.g.
An object of the present invention is to provide a flame detection method and circuit that can selectively detect only a premixed flame.

〔発明の概要〕[Summary of the invention]

本発明の要点は、燃焼特性の異なる2種類の火炎(拡散
火炎及び予混合火炎、又は、輝炎及び不輝炎)が、ガス
タービン燃焼器内に同時に存在している場合に、当該火
炎が特徴的に有している単数側又は複数個の化学種(例
えば、○H,CH。
The gist of the present invention is that when two types of flames with different combustion characteristics (diffusion flame and premix flame, or bright flame and non-bright flame) exist simultaneously in a gas turbine combustor, the flame Characteristically having a single or plural chemical species (for example, ○H, CH.

C2等)の発光波長(3000人〜6000人)のみに
着目し、その発光強度の積分値の経時的変化、又は、波
長毎の発光強度値、又は、両者を監視することによって
、いずれか一方の火炎を選択的に検知できる方法及び検
知回路を考案したことである。
By focusing only on the emission wavelength (3,000 to 6,000 people) of C2, etc.) and monitoring the temporal change in the integrated value of the emission intensity, the emission intensity value for each wavelength, or both, it is possible to detect either one of them. devised a method and detection circuit that can selectively detect flames.

〔発明の実施例〕[Embodiments of the invention]

拡散火炎と予混合火炎との配分により低NOx化をはか
つているガスタービン低NO8燃焼器に於いて、燃料と
してガスを使用した場合の予混合火炎の化学種(○H,
CH,Cx )の波長と発光強度の代表的な特性例を第
3図に、又拡散火炎の化学種(○H、CH、Cx )の
波長と発光強度の代表的特性を第4図に示す。第3図と
第4図との比較をすると、予混合火炎は、波長3880
人のCHに、又、拡散火炎は、波長5160人の02に
その特長を有していることが判る。従って当該化学種の
発光強度を監視すれば、当該火炎の存在が検知できる。
In a gas turbine low NO8 combustor that aims to reduce NOx by distributing the diffusion flame and premixed flame, the chemical species of the premixed flame (○H,
Figure 3 shows typical characteristics of the wavelength and emission intensity of CH, Cx ), and Figure 4 shows typical characteristics of the wavelength and emission intensity of diffusion flame chemical species (○H, CH, Cx ). . Comparing Figures 3 and 4, the premixed flame has a wavelength of 3880
It can be seen that the human CH and the diffusion flame have the characteristic at the wavelength 5160 human 02. Therefore, by monitoring the luminescence intensity of the chemical species, the presence of the flame can be detected.

上記の予混合火炎に対し、第5図の如き透過率を有する
干渉フィルタにより、フィルタリングすると、第6図の
発光特性を得ることができる逆に、拡散火炎に対し、第
7図の如き干渉フィルタにより、フィルタリングすると
、第8図の発光特性を得る。輝炎と不輝炎とを比較した
時、両者を区別する最も大きな特長は、輝炎には、可視
光線に近い、 5160人の波長を有するCz化学種か
ら発せられる発光特性を有しているということである。
If the above premixed flame is filtered using an interference filter having a transmittance as shown in FIG. 5, the emission characteristics shown in FIG. 6 can be obtained. Conversely, for a diffusion flame, an interference filter as shown in FIG. When filtering is performed, the emission characteristics shown in FIG. 8 are obtained. When comparing luminescent flames and non-luminous flames, the most important feature that distinguishes them is that luminous flames have luminescent properties emitted from Cz chemical species with a wavelength of 5160 people, which is close to visible light. That's what it means.

第9図に輝炎の、又第10図に不輝炎の代表的発光特性
を示す。従って、上記輝炎に対して。
FIG. 9 shows typical luminescent characteristics of a luminescent flame, and FIG. 10 shows typical luminescent characteristics of a non-luminescent flame. Therefore, for the above luminous flame.

5160人近傍に最大透過率特性を有する干渉フィルタ
を使用すれば、輝炎の存在を検知することが可能となる
。本方法を適用すれば1発光特性の異なる火炎に対して
、どちらか一方の火炎検知が可能となる6第11図に天
然ガス焚用低NO8燃焼器の代表的な構造図を示す、燃
焼器内筒16は、燃焼器ケーシング20と外[21及び
前側カバー22の内に配置され、頭部燃焼室17と後部
燃焼室18及びコーン23から構成され、かつ、後流側
の尾筒19に連結されており、燃料ノズルとして1次燃
料ノズル24と2次燃料ノズル25とを有し、火炎特性
として、1次火炎は拡散火炎、又2次火炎は予混合火炎
となる。火炎検知器として。
If an interference filter having a maximum transmittance characteristic near 5160 people is used, it becomes possible to detect the presence of a luminous flame. If this method is applied, it becomes possible to detect one of the flames with different light emission characteristics.6 Figure 11 shows a typical structural diagram of a low NO8 combustor for natural gas firing. The inner cylinder 16 is disposed inside the combustor casing 20, the outer cover 21, and the front cover 22, and is composed of a head combustion chamber 17, a rear combustion chamber 18, and a cone 23, and is connected to the tail cylinder 19 on the downstream side. The fuel nozzles are connected to each other, and have a primary fuel nozzle 24 and a secondary fuel nozzle 25 as fuel nozzles.As for flame characteristics, the primary flame is a diffusion flame, and the secondary flame is a premixed flame. As a flame detector.

外筒21の後部に、フレームサンプリングヘッド(光学
レンス及び光ファイバ、又必要に応じて冷却機構を有す
。)6を設置し、光ファイバ13か連結されている。尚
火炎検知器の設M@所は、−例であって、この位置に限
定されるものではない。
A frame sampling head (having an optical lens, an optical fiber, and a cooling mechanism if necessary) 6 is installed at the rear of the outer cylinder 21, and an optical fiber 13 is connected thereto. The location where the flame detector is installed is just an example, and is not limited to this location.

燃焼器はN08制御の最適化の為に、第12図に示す燃
料制御が行われる。1次燃料F1はガスタービン回転数
20%で投入し、点火栓にて着火し。
In the combustor, fuel control as shown in FIG. 12 is performed to optimize N08 control. The primary fuel F1 is injected into the gas turbine at a rotational speed of 20% and ignited by the ignition plug.

ガスタービン負荷25%迄運転される。この1次火炎長
さは、燃焼状態により異なり、後流個迄火炎が存在する
。ガスタービン負荷25%にて、2次燃料Fzが投入さ
れ、−次火炎により自己着火温度以上に加熱され、着火
する。この2次火炎(予混合火炎)確立を9本発明によ
って検知する。
The gas turbine is operated up to 25% load. The length of this primary flame varies depending on the combustion state, and the flame exists up to the wake. At a gas turbine load of 25%, secondary fuel Fz is injected, heated to a temperature higher than the self-ignition temperature by the secondary flame, and ignited. The establishment of this secondary flame (premixed flame) is detected by the present invention.

第13図、第14図及び第15図に本発明からな ゛る
ガスタービン燃焼器内火炎検知回路の代表例を示す。第
13図に於いて、火炎フレームサンプリングヘッド6に
よりサンプリングされ、当該光線は光ファイバ13を通
って干渉フィルタ7へ導入される。干渉フィルタ7は、
2次火炎(予混合火炎)が特徴的に有している化学種C
Hの持つ波長3880人の光線のみを透過する機能を有
しており。
FIGS. 13, 14, and 15 show representative examples of the gas turbine combustor flame detection circuit according to the present invention. In FIG. 13, sampled by flame flame sampling head 6, the beam is introduced through optical fiber 13 to interference filter 7. The interference filter 7 is
Chemical species C characteristically possessed by secondary flame (premixed flame)
It has the function of transmitting only the 3880 wavelengths of light that H has.

選択的火炎検知の為に必要な光線のみを後流へ伝達する
。フィルタリングされた光線は、光ファイバ13を通り
(尚、必ずしも光ファイバを通す必然性は無い。)、受
光器8へ導かれ、電気信号14に変換される。この信号
14は、増巾器9で増巾され、積分回路10で積分され
1次に当該積分量は、経時的判断回路11で、経時的に
監視され、設定値との比較を行う。経時的判断回路11
の監視機能を第16図に示す6本実施例では、2次燃料
F2により発生した2次火炎fz  (予混合火炎)を
検知する為の機能を有し、点火時間t。
Only the light beam necessary for selective flame detection is transmitted to the wake. The filtered light beam passes through the optical fiber 13 (although it is not necessarily necessary to pass through the optical fiber), is guided to the light receiver 8, and is converted into an electrical signal 14. This signal 14 is amplified by an amplifier 9, integrated by an integrating circuit 10, and firstly, the integrated amount is monitored over time by a temporal judgment circuit 11 and compared with a set value. Temporal judgment circuit 11
The monitoring function is shown in FIG. 16. In this embodiment, there is a function for detecting the secondary flame fz (premix flame) generated by the secondary fuel F2, and the ignition time t.

抄機の2次火炎確立により発生する3880人の波長の
発光強度積分量を設定値と比較しており、設定値を越え
た時間t1にて火炎検知信号を発する。
The integral amount of emission intensity of 3880 wavelengths generated by the establishment of the secondary flame of the paper machine is compared with a set value, and a flame detection signal is generated at time t1 when the set value is exceeded.

本電気信号14は火炎有無判断回路12へ伝達され、火
炎有無の判断が下される。
This electric signal 14 is transmitted to the flame presence/absence judgment circuit 12, and a judgment is made as to whether or not there is a flame.

第14図に於いて、第13図と同じ処理をされた電気信
号14は増巾器9から波長別判断回路15に入り、波長
別に当該発光強度(本実施例では波長3880人の発光
強度)が監視され、設定値との比較が行われる。波長別
判断回路15の監視機能を第17図に示す0本実施例で
は、2次火炎f2を検知する為の機能を有し、2次火炎
f2.確立後に発生する発光強度値を設定値と比較して
おり、設定値を越えた時、火炎検知信号を発する。本電
気信号14は火炎有無判断回路12へ伝達され、火炎有
無の判断が下される。
In FIG. 14, the electric signal 14 that has been processed in the same manner as in FIG. 13 enters the wavelength-specific judgment circuit 15 from the amplifier 9, and the corresponding light emission intensity is determined by wavelength (in this example, the light emission intensity of 3880 people with a wavelength) is monitored and compared with the set value. The monitoring function of the wavelength-based judgment circuit 15 is shown in FIG. 17. In this embodiment, the monitoring function of the wavelength-specific judgment circuit 15 is shown in FIG. The light emission intensity value generated after establishment is compared with the set value, and when the set value is exceeded, a flame detection signal is issued. This electric signal 14 is transmitted to the flame presence/absence judgment circuit 12, and a judgment is made as to whether or not there is a flame.

第15図は、第13図と第14図で記載された両回路を
併用することにより、火炎検知の信頼性を向上した火炎
検知回路を示す。尚、1次火炎(拡散火炎)のみを選択
別的に検知することも、同様の方法及び回路にて実現可
能である(化学種Czの有する波長5160人の光線を
監視する)、又、輝炎と不輝炎が同時に存在するガスタ
ービン燃焼器に於いて、いずれか一方のみを選択的に検
知する方法及び回路も同様である。
FIG. 15 shows a flame detection circuit that improves the reliability of flame detection by using both the circuits shown in FIGS. 13 and 14 in combination. It is also possible to selectively detect only the primary flame (diffusion flame) using the same method and circuit (monitoring the 5160-wavelength light beam of the chemical species Cz). The same applies to a method and a circuit for selectively detecting only one of flames in a gas turbine combustor where flames and non-luminous flames exist at the same time.

〔発明の効果〕〔Effect of the invention〕

拡散火炎と予混合火炎との配分により低NOx化がはか
れる。ガスタービン低NOx燃焼器のみならず、輝炎と
不輝炎が同時に存在するガスタービン燃焼器に於いて、
必要とするいずれか一方の火炎のみを選択的に検知する
ことが可能となり、ガスタービン運転上の安全性を飛型
的に向上するという効果を発揮する。
Lower NOx can be achieved by distributing the diffusion flame and the premix flame. Not only in gas turbine low NOx combustors, but also in gas turbine combustors where bright flame and non-bright flame exist at the same time.
It is now possible to selectively detect only one of the required flames, which has the effect of dramatically improving the safety of gas turbine operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術からなる各種火炎検知器の各波長に対
する相対感度を示す特性図、第2図は従来採用されてい
るガスタービン燃焼器内火炎検知回路図、第3図は予混
合火炎の有する化学種の各波長と発光強度の代表的特性
図、第4図は拡散火炎の有する化学種の各波長と発光強
度の代表的特性図、第5図は予混合火炎検知に使用する
干渉フィルタの透過率特性図、第6図は干渉フィルタに
てフィルタリングされた光線の波長と発光強度の関係を
示す特性図、第7図は拡散火炎に使用する干渉フィルタ
の透過率特性図、第8図は干渉フィルタにてフィルタリ
ングされた光線の波長と発光強度の関係を示す特性図、
第9図は輝炎の有する化学種の各波長と発光強度の代表
的特性図、第10図は不輝炎の有する化学種の各波長と
発光強度の代表的特性図、第11図は代表的な低NOx
燃焼器の構造を示す断面図、第12図は代表的な低N 
Ox燃焼器の燃料制御スケジュール図、第13図、第1
4図及び第15図はそれぞれ本発明になるガスタービン
燃焼器内火炎検知回路のブロック図、第16図は本発明
になる経時的判断回路の動作説明図、第17図は本発明
になる波長別判断回路の動作説明図である。 6・・・フレームサンプリングヘッド、7・・・干渉フ
ィルタ、8・・・受光器、9・・・増幅器、10・・・
積分回路、11・・・判断回路、16・・・内筒、17
・・・頭部燃焼室、18・・・後部燃焼室、24・・・
1次燃料ノズル、25・・・2次燃料ノズル。
Figure 1 is a characteristic diagram showing the relative sensitivity of various flame detectors according to the prior art to each wavelength, Figure 2 is a diagram of a conventional flame detection circuit in a gas turbine combustor, and Figure 3 is a diagram of a premixed flame detection circuit. Figure 4 is a typical characteristic diagram of each wavelength and emission intensity of chemical species possessed by a diffusion flame. Figure 5 is an interference filter used for premix flame detection. Figure 6 is a characteristic diagram showing the relationship between the wavelength of the light beam filtered by the interference filter and the emission intensity. Figure 7 is the transmittance characteristic diagram of the interference filter used for diffusion flames. Figure 8 is the transmittance characteristic diagram of the interference filter used for diffusion flame. is a characteristic diagram showing the relationship between the wavelength of the light beam filtered by the interference filter and the emission intensity,
Figure 9 is a typical characteristic diagram of each wavelength and luminescence intensity of chemical species possessed by a luminescent flame, Figure 10 is a representative characteristic diagram of each wavelength and luminescence intensity of chemical species possessed by a non-luminous flame, and Figure 11 is a representative characteristic diagram. low NOx
A cross-sectional view showing the structure of the combustor, Figure 12 is a typical low-N
Fuel control schedule diagram of Ox combustor, Fig. 13, Fig. 1
4 and 15 are block diagrams of the flame detection circuit in the gas turbine combustor according to the present invention, FIG. 16 is an explanatory diagram of the operation of the temporal judgment circuit according to the present invention, and FIG. 17 is the wavelength diagram according to the present invention. FIG. 6 is an explanatory diagram of the operation of the separate determination circuit. 6... Frame sampling head, 7... Interference filter, 8... Light receiver, 9... Amplifier, 10...
Integral circuit, 11... Judgment circuit, 16... Inner cylinder, 17
...Head combustion chamber, 18...Rear combustion chamber, 24...
Primary fuel nozzle, 25... secondary fuel nozzle.

Claims (1)

【特許請求の範囲】 1、拡散火炎と予混合火炎との配分により低NO_x化
をはかつているガスタービン低NO_x燃焼器に於いて
、前記両火炎が存在する場合に、いずれか一方の火炎が
特徴的に具備する化学種の発光波長の光の強度を検知し
予め定めた設定値と比較して当該火炎の有無を判別する
ことを特徴とするガスタービン燃焼器内火炎検知方法。 2、フレームサンプリングヘッドからサンプリングされ
た光を光ファイバで伝送し、特徴的な単数又は複数個の
化学種発光波長帯に合わせた干渉フィルタにてフィルタ
リング後、受光器で受光信号に変換し、増巾器にて増巾
した後、積分回路へ伝送し、その発光強度の積分量を経
時的判断回路に導き、時間に対する当該積分量と設定値
とを比較することにより、火炎有無を検知するガスター
ビン燃焼器内火炎検知回路。
[Claims] 1. In a gas turbine low NO_x combustor that aims to achieve low NO_x by distributing diffusion flames and premixed flames, when both flames exist, one of the flames A method for detecting a flame in a gas turbine combustor, characterized in that the intensity of light having a characteristic emission wavelength of a chemical species is detected and compared with a predetermined set value to determine the presence or absence of the flame. 2. The light sampled from the frame sampling head is transmitted through an optical fiber, filtered by an interference filter that matches the emission wavelength band of a characteristic single or multiple chemical species, and then converted into a received light signal by a light receiver and amplified. After being amplified by a filter, the gas is transmitted to an integrating circuit, the integrated amount of the emitted light intensity is led to a time-dependent judgment circuit, and the presence or absence of a flame is detected by comparing the integrated amount with respect to time and a set value. Turbine combustor flame detection circuit.
JP60220120A 1985-10-04 1985-10-04 Gas turbine combustor flame detection method Expired - Lifetime JPH0731083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60220120A JPH0731083B2 (en) 1985-10-04 1985-10-04 Gas turbine combustor flame detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60220120A JPH0731083B2 (en) 1985-10-04 1985-10-04 Gas turbine combustor flame detection method

Publications (2)

Publication Number Publication Date
JPS6280523A true JPS6280523A (en) 1987-04-14
JPH0731083B2 JPH0731083B2 (en) 1995-04-10

Family

ID=16746229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60220120A Expired - Lifetime JPH0731083B2 (en) 1985-10-04 1985-10-04 Gas turbine combustor flame detection method

Country Status (1)

Country Link
JP (1) JPH0731083B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53107890A (en) * 1977-03-03 1978-09-20 Mitsubishi Heavy Ind Ltd Air ratio detecting method in combustion furnace
JPS5965230A (en) * 1982-10-06 1984-04-13 Mitsubishi Electric Corp Flame air ratio detecting device
JPS60127427A (en) * 1983-12-14 1985-07-08 Ishikawajima Harima Heavy Ind Co Ltd Flame detecting apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53107890A (en) * 1977-03-03 1978-09-20 Mitsubishi Heavy Ind Ltd Air ratio detecting method in combustion furnace
JPS5965230A (en) * 1982-10-06 1984-04-13 Mitsubishi Electric Corp Flame air ratio detecting device
JPS60127427A (en) * 1983-12-14 1985-07-08 Ishikawajima Harima Heavy Ind Co Ltd Flame detecting apparatus

Also Published As

Publication number Publication date
JPH0731083B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
CA1104228A (en) Discriminating fire sensor
KR101604571B1 (en) Three wavelength type infrared flame detector having ultraviolet sensor
US4296324A (en) Dual spectrum infrared fire sensor
US4039844A (en) Flame monitoring system
KR101817730B1 (en) Fire detection device having a plurality of sensor groups for preventing false alarm
US5612676A (en) Dual channel multi-spectrum infrared optical fire and explosion detection system
GB1578611A (en) Flame sensing method and apparatus therefor
CA1124361A (en) Fire or explosion detection
CN106768330B (en) A kind of flame detecting device based on spectrum
KR101787967B1 (en) System and method for preventing false alarm of fire detection device
JPS6280523A (en) Method and circuit for detecting flame in gas turbine combustor
GB2089502A (en) Flame Detector
JP2002536632A (en) Silicon carbide photodiode based flame scanner
CN210109053U (en) Flame-out judgment device of hydrogen flame ionization detector
CN2411479Y (en) Device for detecting boiler flame using infrared light
US5775895A (en) Combustion-state detecting circuit of combustion apparatus
JP2622382B2 (en) Flame detector
US10197276B2 (en) System and method for detecting flame within a burner
JPS5979123A (en) Flame sensor
KR101573244B1 (en) Sensitibity adjustable fire detection device in local area
RU2121110C1 (en) Device for selective check of flame of burner in combustion chamber of combustion unit
JPH0629666B2 (en) Flame detector
WO1989012774A1 (en) Solid-state optical flame detector
JP2000099850A (en) In-furnace fire detection method and its device
JPH0449482Y2 (en)