JPS628046A - Method for measuring nuclear magnetic resonance signal - Google Patents

Method for measuring nuclear magnetic resonance signal

Info

Publication number
JPS628046A
JPS628046A JP60147034A JP14703485A JPS628046A JP S628046 A JPS628046 A JP S628046A JP 60147034 A JP60147034 A JP 60147034A JP 14703485 A JP14703485 A JP 14703485A JP S628046 A JPS628046 A JP S628046A
Authority
JP
Japan
Prior art keywords
signal
gradient
magnetic field
time
gradient magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60147034A
Other languages
Japanese (ja)
Other versions
JPH038215B2 (en
Inventor
Kazuya Hoshino
星野 和哉
Eiji Yoshitome
吉留 英二
Hiroyuki Matsuura
裕之 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Yokogawa Medical Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp, Yokogawa Medical Systems Ltd filed Critical Yokogawa Electric Corp
Priority to JP60147034A priority Critical patent/JPS628046A/en
Publication of JPS628046A publication Critical patent/JPS628046A/en
Publication of JPH038215B2 publication Critical patent/JPH038215B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56572Correction of image distortions, e.g. due to magnetic field inhomogeneities caused by a distortion of a gradient magnetic field, e.g. non-linearity of a gradient magnetic field

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To easily calculate the accurate position of the DC component of a free induction decrement (FID) and the accurate amplitude of data in the vicinity of DC, prior to applying a gradient magnetic field for a reading gradient, by applying a gradient having a code opposite to that of the magnetic field for an appropriate time. CONSTITUTION:Prior to FID observation, a reading gradient is applied to an opposite direction only in slight quantity. By this sequence, a FID signal can be observed slightly before a time origin and the time origin can be decided as the peak of the signal. If DELTAT is set to proper length, the disturbance of the signal due to the rising of a gradient is also received in this time and a signal with accurate amplitude can be observed. DELTAT is different at every apparatus but may be several hundred micro-seconds-several mili-seconds and the increase in a signal observing time due to this can be neglected. This sequence is stored in a memory circuit and a gradient magnetic field driving circuit is controlled by said sequence and the application of a gradient magnetic field can be achieved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、核磁気共鳴(nuclear magnet
ic  resonance :以下これをNMRと略
称する)現象を利用して被検体内における特定原子核分
布等を被検体外部より知るようにしたNMR断層撮像装
置におけるNMR信号の測定方法の改善に関するもので
ある。
Detailed Description of the Invention (Industrial Application Field) The present invention is directed to nuclear magnetic resonance (nuclear magnetic resonance).
The present invention relates to an improvement in a method of measuring an NMR signal in an NMR tomographic imaging apparatus that utilizes the phenomenon of ic resonance (hereinafter abbreviated as NMR) to determine the distribution of specific atomic nuclei within a subject from outside the subject.

(従来の技術) NMR1il撮像装置におけるNMR信号の観測方法に
は、FfD信号(自由誘導減衰信号)を観測する方法と
、エコー信号を観測する方法とがある。第5図はflD
信号を観測する場合のパルスシーケンスを示す図、第6
図はエコー信号を観測する場合のパルスシーケンスを示
す図で、第6図においては勾配磁場印加の様子について
は図示を省略しである。
(Prior Art) Methods for observing NMR signals in an NMR1il imaging device include a method of observing an FfD signal (free induction decay signal) and a method of observing an echo signal. Figure 5 is flD
Diagram showing the pulse sequence when observing signals, No. 6
This figure shows a pulse sequence when observing an echo signal, and in FIG. 6, the state of applying a gradient magnetic field is not shown.

FID信号観測の場合は、第5図の(ロ)に示すように
2勾配磁場を印加した状態で同図(イ)に示すように9
01パルスを印加して所定のスライスのスピンを励起(
選択励起)する。次に、Y勾配磁場印加(ビューごとに
その大きさが変る)を与えて位相エンコードを行う。続
いて、読出し勾配用のX勾配磁場を与え、この時点をF
ID信号の時間原点(t−0)とし、そのFID信号を
T時間にわたって観測する。
In the case of FID signal observation, two gradient magnetic fields are applied as shown in Figure 5 (B), and 9 as shown in Figure 5 (A).
01 pulse is applied to excite the spins of a predetermined slice (
selective excitation). Next, phase encoding is performed by applying a Y gradient magnetic field (its magnitude changes for each view). Subsequently, an X gradient magnetic field for the readout gradient is applied, and this point is F.
The time origin (t-0) of the ID signal is taken as the time origin, and the FID signal is observed for T time.

一方、エコー信号観測の場合は、90°パルス印加から
NMR信号が発生するところまでは第5図の場合と同様
であるが、90°パルス印加の後1時間経過したとき1
80′パルスを印加し、分散中のスピンを180°反転
させる。これによりスピンは集束しはじめ、前記180
°パルス印加より1時間経過した時点で最大となるよう
なエコー信号を発生する。このように発生するエコー信
号の観測は、図示のように180°パルス印加の直後か
らエコー信号が実質上なくなる時点までのTmm期間物
れる。
On the other hand, in the case of echo signal observation, the process from the application of the 90° pulse to the point where the NMR signal is generated is the same as the case shown in Figure 5, but when 1 hour has passed after the application of the 90° pulse,
An 80' pulse is applied to invert the spins during dispersion by 180°. As a result, the spins begin to converge, and the 180
° Generate an echo signal that reaches its maximum one hour after pulse application. Observation of the echo signal generated in this manner lasts for a period of Tmm from immediately after the application of the 180° pulse until the echo signal substantially disappears, as shown in the figure.

(発明が解決しようとする問題点) ところで、FED信号はエコー信号に比べて使い難い点
が幾つかあるため、従来は主としてエコー信号の観測の
方が用いられていた。しかし、単位時間当りのS/Nで
比較すると、T2緩和による信号の低下や180°パル
スによる無駄時間が無いという点でエコー信号よりもF
ID信号の方が優れていることが分る。
(Problems to be Solved by the Invention) Incidentally, since FED signals have several points that are difficult to use compared to echo signals, conventionally, observation of echo signals has been mainly used. However, when compared in terms of S/N per unit time, F
It can be seen that the ID signal is superior.

このような理由からFID信号を用いる方が望ましいが
、FID信号利用には他に次のような問題がある。
For these reasons, it is preferable to use the FID signal, but the use of the FID signal has the following problems.

2次元フーリエ変換を行うに際し、FID信号のピーク
値とその位1ff(この位置はFID信号の観測の際の
時間原点になる。)とを正確に捕えてデータを処理する
必要がある。エコー信号を用いる場合は第6図に示され
るようにNMR画像の2次元フーリエ変換における直流
成分(DC成分)がエコー信号のピーク(図のP点)と
して正確に得られるので問題はないが、FID信号を用
いた場合は、DC成分がその先頭のデータに相当はする
けれども、この部分ではピークとしての正確な位置を求
めることが困難な上、観測勾配の立上がりによる波形の
乱れで正確な振幅を得ることもまた難しいという問題が
あった。
When performing a two-dimensional Fourier transform, it is necessary to accurately capture the peak value of the FID signal and its 1ff (this position becomes the time origin when observing the FID signal) and process the data. When using an echo signal, there is no problem as the direct current component (DC component) in the two-dimensional Fourier transform of the NMR image can be accurately obtained as the peak of the echo signal (point P in the figure), as shown in FIG. When using an FID signal, although the DC component corresponds to the first data, it is difficult to determine the exact position of the peak in this part, and the waveform is disturbed by the rise of the observation slope, making it difficult to obtain the correct amplitude. There was also the problem that it was difficult to obtain.

本発明の目的は、この様な点に鑑み、FID信号のDC
成分の正確な位置及びDC付近のデータの正確な振幅を
容易に求めることができるようなFID信号の得られる
FID信°号測定方法を提供することにある。
In view of these points, an object of the present invention is to reduce the DC
It is an object of the present invention to provide an FID signal measurement method that allows an FID signal to be easily determined to accurately determine the exact position of a component and the accurate amplitude of data near DC.

(問題点を解決するための手段) この様な目的を達成するために、本発明では、選択励起
後読出し勾配用の勾配磁場を与えて、発生するFID信
号を観測するようにした核磁気共鳴信号の測定方法にお
いて、読出し勾配用の勾配磁場印加に先立ち、その勾配
磁場とは反対符号の勾配を適宜の時間印加するようにし
、FID信号をその時間原点よりも少し手前から発生さ
せて、時間原点の正確な位置及びその付近のデータの正
確な振幅が得られるようにしたことを特徴とする。
(Means for solving the problem) In order to achieve such an object, the present invention provides a nuclear magnetic resonance system in which a gradient magnetic field for a readout gradient is applied after selective excitation, and the generated FID signal is observed. In the signal measurement method, prior to applying a gradient magnetic field for the readout gradient, a gradient with the opposite sign to that of the gradient magnetic field is applied for an appropriate time, and the FID signal is generated a little before the time origin, and the time The present invention is characterized in that the accurate position of the origin and the accurate amplitude of data in the vicinity thereof can be obtained.

(実施例) 以下図面を用いて本発明を実施例につき詳細に説明する
。第1図は本発明の方法を実施するためのNMR断Fm
m像装置の要部構成図である。図において、1はマグネ
ットアセン1すで、内部には対象物を挿入するための空
間部分(孔)が設けられ、この空間部分を取巻くように
して、対象物に一定の磁場を印加する主磁場コイルと、
勾配磁場を発生するための勾配磁場コイル(個別に勾配
磁場を発生することができるように構成されたX勾配磁
場コイル、y勾配(i&場ココイルび2勾配!!場コイ
ル)と、対象物内の原子核のスピンを励起するための高
周波パルスを与えるRF送信コイルと、対象物からのN
MR信号を検出する受信用コイル等が配置されている。
(Example) The present invention will be described in detail below with reference to the drawings. FIG. 1 shows an NMR section Fm for carrying out the method of the present invention.
FIG. 2 is a configuration diagram of main parts of an m-image device. In the figure, 1 is a magnet assembly 1, which has a space (hole) inside for inserting an object, and a main magnetic field that surrounds this space and applies a constant magnetic field to the object. coil and
Gradient magnetic field coils for generating gradient magnetic fields (X gradient magnetic field coil configured to be able to generate gradient magnetic fields individually, y gradient (i & field coil and 2 gradient!! field coils) and An RF transmitting coil that provides a high-frequency pulse to excite the spin of the nucleus of the
A receiving coil and the like for detecting MR signals are arranged.

主磁場コイルは主磁場電源2に、G X + G y*
Gz各勾配磁場コイルはGx、Gy、Gz勾配磁場駆動
回路3に、RF送信コイルはRF電力増幅器4に、NM
R信号の受信用コイルは前置増幅器5にそれぞれ接続さ
れている。1oはシーケンス記憶回路で、勾配磁場や高
周波磁場の発生シーケンスを制御すると共に得られたN
MR信りをA/DI換するときのタイミングを制御する
The main magnetic field coil is connected to the main magnetic field power supply 2, G X + G y *
Each Gz gradient magnetic field coil is connected to the Gx, Gy, Gz gradient magnetic field drive circuit 3, the RF transmitting coil is connected to the RF power amplifier 4, and the NM
The receiving coils for the R signal are each connected to a preamplifier 5. 1o is a sequence memory circuit that controls the generation sequence of gradient magnetic fields and high-frequency magnetic fields and stores the obtained N
Controls the timing when converting MR signals into A/DI.

6はゲート変調回路、7は高周波信号を発生するRF発
振回路である。ゲート変調回路6は、シーケンス記憶回
路10からのタイミング信号によりRFR振回路7が出
力した高周波信号を変調し、高周波パルスを生成する。
6 is a gate modulation circuit, and 7 is an RF oscillation circuit that generates a high frequency signal. The gate modulation circuit 6 modulates the high frequency signal output from the RFR oscillation circuit 7 using the timing signal from the sequence storage circuit 10 to generate a high frequency pulse.

この高周波パルスはRF電力増幅器4に与えられる。This high frequency pulse is given to the RF power amplifier 4.

8は位相検波器で、RF発振回路7の出力信号を参照し
て、受信用コイルで検出し前置増幅器5を介して送られ
るNMR信号を位相検波する。
A phase detector 8 detects the phase of the NMR signal detected by the receiving coil and sent via the preamplifier 5 with reference to the output signal of the RF oscillation circuit 7.

11はA/D変換器で、位相検波器8を介して得られた
NMR信号(アナログ)をディジタル信号に変換する 13は計算機を含む処理装置で、種々のスキャ“ンを実
現するためスキャン条件をシーケンス記憶回路10に供
給する機能や、A10変194器より入力される観測デ
ータからスピン密度分布等に関する情報を画像に再構成
する演算処理機能、操作コンソール12に対する情報の
授受を行う機能などを有する。
11 is an A/D converter that converts the NMR signal (analog) obtained through the phase detector 8 into a digital signal. 13 is a processing device including a computer, which converts scan conditions to realize various scans. a function of supplying information to the sequence storage circuit 10, an arithmetic processing function of reconstructing information on spin density distribution etc. into an image from observation data inputted from the A10 transducer 194, a function of sending and receiving information to and from the operation console 12, etc. have

処理装置13で得られた再構成像は表示装!!9におい
て表示される。
The reconstructed image obtained by the processing device 13 is displayed! ! 9.

このような構成における動作を次に説明する。The operation in such a configuration will be explained next.

第5図に示す従来のシーケンスにおいては、読出し勾配
(X勾配磁場)を印加した瞬間が時間原点に相当してい
る。しかし実際には読出し勾配の立上がりに時間を要し
、どの間にスピンの位相が変化するため、勾配が完全に
立上がった(したがって信号が観測できるようになった
)時点ではすでに時間原点からずれてしまっている。ま
た、勾配の立上がり直後は、勾配磁場コイルと受信コイ
ルの結合状態により受信信号が乱れていることも考えら
れ、データの正確さは保証されない。
In the conventional sequence shown in FIG. 5, the moment when the readout gradient (X gradient magnetic field) is applied corresponds to the time origin. However, in reality, it takes time for the readout gradient to rise, and the spin phase changes during this time, so by the time the gradient has completely risen (and therefore the signal can be observed), it has already shifted from the time origin. It's gone. Further, immediately after the gradient rises, the received signal may be disturbed due to the coupling state of the gradient magnetic field coil and the receiving coil, and the accuracy of the data is not guaranteed.

本発明では第2図に示すように従来のシーケンスとは読
出し勾配(X勾配磁場)の印加が異なるシーケンスでス
キャンを行うことにより時間原点付近の正確なデータを
得るようにしている。すなわち、FIDI2測に先立っ
て、読出し勾配を僅かだけ反対方向に印加しておく。こ
のシーケンスによりFID信号を時間原点の少し前から
観測できるようになり、信号のピークとして時間原点を
確定できるようになる。また、ΔTを適当な長さにすれ
ば、勾配の立上がり等による信号の乱れもこの時間に納
まり、正確な振幅の信号を観測することができる。ΔT
 4.を装置にもよるが数百μsecないし数m se
cでよく、これによる信号W?11時間の増大は無視で
きる。
In the present invention, as shown in FIG. 2, accurate data near the time origin is obtained by scanning in a sequence in which the application of a readout gradient (X gradient magnetic field) is different from the conventional sequence. That is, prior to the FIDI2 measurement, a read gradient is applied in a slightly opposite direction. This sequence makes it possible to observe the FID signal from a little before the time origin, and it becomes possible to determine the time origin as the peak of the signal. Furthermore, if ΔT is set to an appropriate length, signal disturbances due to the rise of the slope, etc. will be contained within this time, and a signal with accurate amplitude can be observed. ΔT
4. Depending on the device, it takes several hundred μsec to several msec.
c is sufficient, and the signal W due to this? The increase in 11 hours is negligible.

このようなシーケンスはシーケンス記憶回路10に記憶
されていて、シーケンス記憶回路10により勾配磁場駆
動回路3を制御することにより上記のような勾配磁場印
加が達成される。
Such a sequence is stored in the sequence storage circuit 10, and the gradient magnetic field drive circuit 3 is controlled by the sequence storage circuit 10, thereby achieving application of the gradient magnetic field as described above.

さて、時間原点は信号がピークをとる位置であるが、一
般にその点がサンプリング点と一致するとは限らない。
Now, the time origin is the position where the signal peaks, but generally that point does not always coincide with the sampling point.

そこで、第3図に示すように、ピーク近傍の数点(S+
 、82.83 )に関して、適当な関数(例えば2次
閏数等)Fnで近似して真のピークPtを求めるのが望
ましい。また、フーリエ変換法ではワープ!l零でのビ
ューでのみ時間原点の検出が可能なので、他のビューで
はワープ綴本のビューで決定した値を用いる。
Therefore, as shown in Figure 3, several points near the peak (S+
, 82.83), it is desirable to obtain the true peak Pt by approximating it with an appropriate function (eg, quadratic leap number, etc.) Fn. Also, in the Fourier transform method, Warp! Since the time origin can be detected only in the view at l zero, the values determined in the warp binding view are used in other views.

このようにして得られた正確なFIDデータは、適当な
方法により画像化することができる。画像化の方法は種
々あるが、フーリエ法再構成でアーティフアクトの少な
い画像を得るための一つの方法として例えば次のような
方法がある。
Accurate FID data obtained in this way can be visualized by an appropriate method. There are various imaging methods, and one method for obtaining an image with fewer artifacts using Fourier reconstruction is the following method, for example.

FrD信号の負の時間領域に零値を埋め込み、又は零値
があるものと見なして、FrD信号を測定した際のml
勾配の傾き方向により一方はそのままとし、他方は読出
し時間軸が正負反転するように複素画像をフーリエ変換
し、更に主磁場不均一により生じた読出し方向の位置・
濃度歪みを補正する。このようにして得られた2枚の画
像を複素数加算することで主磁場不均一の影響を少なく
し、絶対値処理又は位相回転等の画像処理で実数値画像
を得る。
ml when measuring the FrD signal by embedding a zero value in the negative time domain of the FrD signal or assuming that there is a zero value
Depending on the direction of the gradient, one side is left as is, while the other is Fourier-transformed to the complex image so that the readout time axis is reversed. Furthermore, the position and position in the readout direction caused by the main magnetic field inhomogeneity are
Correct density distortion. By adding complex numbers to the two images obtained in this manner, the influence of the main magnetic field non-uniformity is reduced, and a real value image is obtained by image processing such as absolute value processing or phase rotation.

なお、本発明の方法はフーリエ法のみでなく、投影法(
PR法)にも同様に用いることができる。
Note that the method of the present invention uses not only the Fourier method but also the projection method (
It can be similarly used for PR method).

その際のパルスシーケンス例を第4図に示す。PR法で
は、ビューごとにプロジェクション勾配の方向を変えて
(X勾配磁場とY勾配磁場とを変化させて)スキャンす
るが、本発明を実施するためには、信号観測に先立って
観測時と同じ角度で符号が反対の勾配を印加するように
すればよい。すなわち、例えばY勾配磁場としてGpr
+を印加する場合では信号観測前に−fiGpr+を印
加し、X勾配磁場としてGP?2を印加する場合は信号
観測前に−AGP1”2を印加する。ただし、kは正の
定数であり、GP?IIGp?2はビューごとに変る磁
場の強さである。
An example of the pulse sequence at that time is shown in FIG. In the PR method, scanning is performed by changing the direction of the projection gradient for each view (by changing the X gradient magnetic field and the Y gradient magnetic field), but in order to implement the present invention, the direction of the projection gradient is changed for each view (by changing the X gradient magnetic field and the Y gradient magnetic field). It is sufficient to apply gradients having opposite signs at angles. That is, for example, as a Y gradient magnetic field, Gpr
When applying +, apply -fiGpr+ before signal observation and use GP? as the X gradient magnetic field. 2, apply -AGP1''2 before signal observation. However, k is a positive constant, and GP?IIGp?2 is the strength of the magnetic field that changes for each view.

(発明の効果) 以上説明したように、本発明によれば、時間原点の位置
及びその近辺での信号振幅の正確なFIDデータをとる
ことができ、これによりFID信号によるwi像ができ
FrD信号の特徴である単位時間当りのS/Nが良好な
画像を得ることができる。
(Effects of the Invention) As explained above, according to the present invention, it is possible to obtain accurate FID data of the signal amplitude at and around the time origin, thereby creating a wi image based on the FID signal and a FrD signal. It is possible to obtain an image with a good S/N ratio per unit time, which is a characteristic of .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施するためのNMR断層撮像
装置の一実施例を示す構成図、第2図は本発明の方法を
実施するためのパルスシーケンスを示す図、第3図はF
fD信号のピーク値を曲線近似する様子を説明するため
の図、第4図は本発明の方法をPR法に適用した場合の
パルスシーケンスを示す図、第5図はFID信号観測に
係る従来のパルスシーケンスを示す図、第6図はエコー
信号観測に係る従来のパルスシーケンスを示す図である
。 1・・・マグネットアセンブリ、2・・・主磁場電源、
3・・・勾配磁場駆動回路、4・・・RFF力増幅器、
5・・・前置増幅器、6・・・ゲート変調回路、7・・
・RF発発註回路8・・・位相検波器、9・・・表示装
置、1o・・・シーケンス記憶回路、11・・・A/D
変換器、12・・・操作コンソール、13・・・処理装
置。 第2図 り。 第3図 第4図 第5図 qD’
FIG. 1 is a block diagram showing an embodiment of an NMR tomography apparatus for implementing the method of the present invention, FIG. 2 is a diagram showing a pulse sequence for implementing the method of the present invention, and FIG. 3 is an F
A diagram for explaining how the peak value of the fD signal is approximated by a curve, FIG. 4 is a diagram showing a pulse sequence when the method of the present invention is applied to the PR method, and FIG. A diagram showing a pulse sequence. FIG. 6 is a diagram showing a conventional pulse sequence related to echo signal observation. 1... Magnet assembly, 2... Main magnetic field power supply,
3... Gradient magnetic field drive circuit, 4... RFF force amplifier,
5... Preamplifier, 6... Gate modulation circuit, 7...
・RF generation note circuit 8...Phase detector, 9...Display device, 1o...Sequence storage circuit, 11...A/D
Converter, 12... operation console, 13... processing device. Second diagram. Figure 3 Figure 4 Figure 5 qD'

Claims (1)

【特許請求の範囲】[Claims] 被検体の所望のスライス面を選択励起した後、読出し勾
配用の勾配磁場を印加し、被検体の再構成断層像を求め
るために利用されるFID信号を測定する核磁気共鳴信
号の測定方法において、前記読出し勾配用の勾配磁場印
加に先立ち、その勾配磁場とは反対符号の勾配を適宜の
時間印加するようにし、FID信号をその時間原点より
も少し手前から発生させて、時間原点の正確な位置及び
その付近のデータの正確な振幅が得られるようにしたこ
とを特徴とする核磁気共鳴信号の測定方法。
In a method for measuring a nuclear magnetic resonance signal, which selectively excites a desired slice plane of a subject, applies a gradient magnetic field for a readout gradient, and measures an FID signal used to obtain a reconstructed tomographic image of the subject. , Prior to applying the gradient magnetic field for the readout gradient, a gradient with the opposite sign to the gradient magnetic field is applied for an appropriate time, and the FID signal is generated a little before the time origin, so that the time origin is accurately determined. A method for measuring nuclear magnetic resonance signals, characterized in that accurate amplitude of data at and around the position can be obtained.
JP60147034A 1985-07-04 1985-07-04 Method for measuring nuclear magnetic resonance signal Granted JPS628046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60147034A JPS628046A (en) 1985-07-04 1985-07-04 Method for measuring nuclear magnetic resonance signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60147034A JPS628046A (en) 1985-07-04 1985-07-04 Method for measuring nuclear magnetic resonance signal

Publications (2)

Publication Number Publication Date
JPS628046A true JPS628046A (en) 1987-01-16
JPH038215B2 JPH038215B2 (en) 1991-02-05

Family

ID=15421030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60147034A Granted JPS628046A (en) 1985-07-04 1985-07-04 Method for measuring nuclear magnetic resonance signal

Country Status (1)

Country Link
JP (1) JPS628046A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01223948A (en) * 1988-03-03 1989-09-07 Toshiba Corp Magnetic resonance imaging method
JP2009281792A (en) * 2008-05-20 2009-12-03 Dai Ichi High Frequency Co Ltd Fbg light spectrum analyzer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029646A (en) * 1983-02-25 1985-02-15 Asahi Chem Ind Co Ltd Device for obtaining signal containing information on spin-spin relaxation
JPS6095339A (en) * 1983-09-09 1985-05-28 ゼネラル・エレクトリツク・カンパニイ Method of generating nmr image data

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029646A (en) * 1983-02-25 1985-02-15 Asahi Chem Ind Co Ltd Device for obtaining signal containing information on spin-spin relaxation
JPS6095339A (en) * 1983-09-09 1985-05-28 ゼネラル・エレクトリツク・カンパニイ Method of generating nmr image data

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01223948A (en) * 1988-03-03 1989-09-07 Toshiba Corp Magnetic resonance imaging method
JP2009281792A (en) * 2008-05-20 2009-12-03 Dai Ichi High Frequency Co Ltd Fbg light spectrum analyzer

Also Published As

Publication number Publication date
JPH038215B2 (en) 1991-02-05

Similar Documents

Publication Publication Date Title
EP0543468A1 (en) Magnetic resonance imaging method
JP4106053B2 (en) Magnetic resonance imaging apparatus and eddy current compensation derivation method
US6737865B2 (en) MRI apparatus
JP2755125B2 (en) MR imaging device
US5068610A (en) Mri method and device for fast determination of the transverse relaxation time constant t2
US20020050816A1 (en) MR imaging method, phase error measuring method, and MRI apparatus
JPH0838444A (en) Magnetic resonance imaging device
JPS628046A (en) Method for measuring nuclear magnetic resonance signal
JP3928992B2 (en) Magnetic resonance imaging system
JP2528864B2 (en) Inspection equipment using nuclear magnetic resonance
JPH0723929A (en) Mri device
JP3447099B2 (en) MRI equipment
US11885864B2 (en) Magnetic resonance imaging apparatus and method of controlling the same
JPH0244219B2 (en)
EP0153703A2 (en) NMR imaging apparatus
JP4609975B2 (en) Magnetic resonance imaging system
JP3112028B2 (en) Fluid imaging device
JP3332951B2 (en) Magnetic resonance imaging equipment
JP3478867B2 (en) Magnetic resonance imaging equipment
JPH11216124A (en) Nuclear magnetic resonance examination device
JP2695594B2 (en) MRI equipment
JPH0311223B2 (en)
JP2636649B2 (en) MR imaging device
JP2866968B2 (en) Nuclear magnetic resonance imaging system
JPH0421491B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees