JPS6279848A - Method for reactivation of oxide catalyst for removing arsenic in hydrocarbon - Google Patents

Method for reactivation of oxide catalyst for removing arsenic in hydrocarbon

Info

Publication number
JPS6279848A
JPS6279848A JP21623785A JP21623785A JPS6279848A JP S6279848 A JPS6279848 A JP S6279848A JP 21623785 A JP21623785 A JP 21623785A JP 21623785 A JP21623785 A JP 21623785A JP S6279848 A JPS6279848 A JP S6279848A
Authority
JP
Japan
Prior art keywords
catalyst
air
reactor
regeneration
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21623785A
Other languages
Japanese (ja)
Inventor
Michio Unoki
卯ノ木 道男
Teruyuki Onodera
小野寺 輝之
Toshiyuki Fukushima
俊之 福島
Yoriyuki Hayashi
林 頼之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA SEKIYU KAGAKU KK
Toyo CCI KK
Original Assignee
OSAKA SEKIYU KAGAKU KK
Toyo CCI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA SEKIYU KAGAKU KK, Toyo CCI KK filed Critical OSAKA SEKIYU KAGAKU KK
Priority to JP21623785A priority Critical patent/JPS6279848A/en
Publication of JPS6279848A publication Critical patent/JPS6279848A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PURPOSE:To easily reactivate a deactivated catalyst by passing air or a gaseous mixture composed of air and gaseous nitrogen onto an oxide catalyst consisting of deactivated manganese oxide and/or copper oxide. CONSTITUTION:This invention relates to a method for reactivation of the oxide catalyst consisting of the manganese oxide and/or copper oxide for removing the arsenic in hydrocarbon, in which valves 8, 9 are closed, then a regenerating gas outlet 7 and a supply valve 11 for gaseous nitrogen for purging are closed to introduce the gaseous nitrogen into a reactor 3 and to purge the gas; thereafter a supply valve 10 for air for regeneration is opened to incorporate the air into the gaseous nitrogen and the regeneration of the catalyst is executed at a prescribed temp. for a prescribed period. The deactiveted oxide catalyst is thus easily reactivated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、活性を失った炭化水素膜砒素用触媒である酸
化マンカン及び/又は酸化銅エリなる酸化物触媒の再活
性化方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for reactivating an oxide catalyst such as mancan oxide and/or copper erythrium oxide, which is a hydrocarbon membrane arsenic catalyst that has lost its activity. be.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

本発明者らは、さきに酸化マンガン(Mn02)及び/
又は酸化銅(CuO)L!llなる触媒が炭化水素例え
ばLPG中に容重れている微量の砒素化合物特にアルミ
ン類(AsH3、CH3AaHg 等)の除去能力が優
れていること金兄い出し、該酸化物触媒を用いて炭化水
素中の砒素を除去する方法を提案し次(特開昭57年7
7627号J0そして、これらの酸化物触媒は、その製
造時においては、製造されたマンガン或いは鋼の酸化物
を焼成したり或いは過酸化水素等の過酸化物で処理する
ことにより炭化水素の脱砒素触謀としての活性を付与し
ている。
The present inventors first discovered manganese oxide (Mn02) and/or
Or copper oxide (CuO) L! It has been discovered that the catalyst 1.1 has an excellent ability to remove trace amounts of arsenic compounds, especially alumines (AsH3, CH3AaHg, etc.) contained in hydrocarbons such as LPG, and using this oxide catalyst, it has been found that proposed a method for removing arsenic from
No. 7627 J0 During production, these oxide catalysts are used to remove arsenication of hydrocarbons by firing the produced manganese or steel oxides or by treating them with peroxides such as hydrogen peroxide. It gives it activity as a tact.

一方、炭化水素の脱砒素に使用済みの触媒や長期間の保
存によって失活し友これらの触媒については、その再生
法乃至は再活性化法が知られていなかったため廃棄処分
されるか、或いはこの失活した触媒を原料として多大の
コストヲかけ触媒全新たに製造する等の無駄が生じてい
た。
On the other hand, catalysts that have been used for arsenication of hydrocarbons and those that have been deactivated due to long-term storage are either disposed of or disposed of because there is no known method for regenerating or reactivating them. This deactivated catalyst is used as a raw material to produce a new catalyst at great cost, resulting in waste.

〔発明の目的〕[Purpose of the invention]

本発明は、炭化水素の脱砒素に使用することにより、或
いは長期間保存することにより失活した炭化水素脱砒常
用の酸化マンガン及び/欠は酸化銅よりなる酸fヒ物触
媒を簡単に再活性化する方法全提供することを目的とす
るものである。
The present invention can easily regenerate acid and arsenic catalysts made of manganese oxide and/or copper oxide, which are commonly used for hydrocarbon dearsenization, and which have been deactivated by use in arsenication of hydrocarbons or by long-term storage. The purpose is to provide a complete method of activation.

〔発明の構成〕[Structure of the invention]

本発明は、活性を失った酸化マンガン及び/又は酸化鋼
よ!llなる炭化水素脱砒木用酸化物触媒上に窒気又V
i空気と窒素ガスとの混合ガスを流通せしめることを特
徴とする前記触媒の再活性化方法であって、本発明者等
は失活した酸化マンガン及び/又は酸fヒ銅よりなる炭
化水素膜砒素用酸化物触媒を空気又は空気と窒素ガスと
の混合ガスで処理することにより該失活した酸化物触媒
を容易に再活性化しうることを見いだし本発明をなすに
到った。
The present invention is directed to deactivated manganese oxide and/or oxidized steel! Nitrogen or V
A method for reactivating the catalyst, characterized in that a mixed gas of air and nitrogen gas is passed through the catalyst, and the present inventors have developed a method for reactivating the catalyst, which is characterized by passing a mixed gas of air and nitrogen gas. The inventors have discovered that by treating the arsenic oxide catalyst with air or a mixed gas of air and nitrogen gas, the deactivated oxide catalyst can be easily reactivated, leading to the present invention.

本発明の失活した前記酸1ヒ物触媒の再活性ずヒ処理条
件は、触媒の種類或いは失活度により異なるが、常温か
ら数100℃の範囲内の温度で、空気又は空気と窒素と
全任意の割合で混合したカス?失活り、7’c触媒上に
10〜500 Nm31#/m3触媒の割合で流通せし
めるとよい。
The reactivation treatment conditions for the deactivated acid-1 arsenic catalyst of the present invention vary depending on the type of catalyst and the degree of deactivation, but the treatment conditions vary depending on the type of catalyst and the degree of deactivation, but at a temperature within the range of room temperature to several hundred degrees Celsius, air or air and nitrogen are used. Dregs mixed in any proportion? It is preferable to deactivate the catalyst and allow it to flow over the 7'c catalyst at a rate of 10 to 500 Nm31#/m3 catalyst.

つぎV?:、第1図に基いて本へ発明の実施の態様を説
明する。
Next V? Embodiments of the present invention will be explained based on FIG.

第1因は、酸イしマンガン、酸化銅又は酸イしマンガン
と酸1ヒ銅を任意の割合に混合した触媒を充填した反応
器にLPGを通しLPGに含有されている砒素不純物の
除去、並びに失活した触媒の再生を行う方法のフロー図
を示すものであって、図面中符号1はプロセスガス(L
PG )  の反し器への入口、2はプロセスガス反応
器出口、3は反応器、4は反応器内部@要監視装置、5
は再生用空気入口、6は再生用並びにパージ用窒素ガス
入口、7Vi再生ガス或いはパージガス出口、8はプロ
セスガス供給弁、9はプロセスガスブロック弁、10は
再生用空気供給弁、11は再生用又はパージ用窒素ガス
供給弁、12は再生用空気流量計、15ii、再生用又
はパージ用窒素ガス流量計を示す。
The first factor is the removal of arsenic impurities contained in LPG by passing the LPG through a reactor filled with a catalyst containing manganese oxide, copper oxide, or a mixture of manganese oxide and cupric oxide in any proportion; It also shows a flowchart of a method for regenerating a deactivated catalyst, in which reference numeral 1 indicates a process gas (L
PG ) inlet to the reactor, 2 is the process gas reactor outlet, 3 is the reactor, 4 is inside the reactor @ monitoring equipment, 5
is a regeneration air inlet, 6 is a nitrogen gas inlet for regeneration and purging, 7 is a regeneration gas or purge gas outlet, 8 is a process gas supply valve, 9 is a process gas block valve, 10 is a regeneration air supply valve, 11 is for regeneration or purge nitrogen gas supply valve; 12 is a regeneration air flow meter; 15ii is a regeneration or purge nitrogen gas flow meter;

先づ、反応器5に触媒全装入し念後再生ガス出ロアの配
管上の弁を開け、ついでパージ用窒素ガス供給弁11を
開としてパージ用窒素ガス入ロ6エジ反応器中に窒素ガ
スを溝入して反応器中の空気全パージしつ\、反応器内
の温度全LPGの脱砒素全行う場合の温度、例えば45
Cに昇温せしめる。パージが終った後再生ガス出ロアの
配管上の升およびパージ用窒素ガス供給弁11’を閉じ
、ついでプロセスガス供給9P8およびプロセスガスブ
ロック弁9全開き、LPG反応器人口1よりLPG 全
供給してLPGの脱砒未反応を開始する。
First, completely charge the catalyst into the reactor 5, open the valve on the regeneration gas output lower piping, and then open the purge nitrogen gas supply valve 11 to supply nitrogen into the purge nitrogen gas into the reactor. When gas is injected into the reactor to purge all of the air in the reactor, the temperature in the reactor is set to 45.
Raise the temperature to C. After the purge is completed, close the square on the piping of the regeneration gas output lower and the purge nitrogen gas supply valve 11', then fully open the process gas supply 9P8 and the process gas block valve 9, and completely supply LPG from the LPG reactor port 1. Then, the arsenization reaction of LPG is started.

そして、一定時間I、PI:) L7)脱砒未反応を行
い、触媒が失活し九場合には、弁8及び弁9を閉じ、つ
いで再生ガス出ロアの配管上の升及びパージ用窒素ガス
供給弁11を閉き、反応器中に窒素ガスを導入して反応
器中のLPG iバージレ、LPGのパージが終った後
、再生用空気供給弁10金開き、窒素カス中に空気を混
入して、所定の温度で/’71定の時間触媒の再生を行
う。触媒の再生を行う場合、即ち反IC器からLPGの
パージが終った後、再生用窒素ガス入口6の弁11を閉
じ、空気のみ全供給してもよく、或いは再生期間中、再
生用窒素カスの供給fii′全徐々に少なくし、再生用
空気の導入量を徐々に大とし、再生の終期には空気のみ
を送って再生を行うようにしてもよい。
Then, for a certain period of time I, PI:) L7) Dearsenization and unreacted reaction are performed, and if the catalyst is deactivated, valves 8 and 9 are closed, and then the tank on the pipe of the regeneration gas output lower and the purge nitrogen are removed. Close the gas supply valve 11, introduce nitrogen gas into the reactor, and after purging the LPG i verge in the reactor and LPG, open the regeneration air supply valve 10 and mix air into the nitrogen scum. Then, the catalyst is regenerated at a predetermined temperature for a predetermined period of time. When regenerating the catalyst, that is, after purging LPG from the de-IC device, the valve 11 of the regeneration nitrogen gas inlet 6 may be closed and only air can be fully supplied, or during the regeneration period, the regeneration nitrogen gas The supply of fii' may be gradually reduced, the amount of regeneration air introduced may be gradually increased, and at the end of regeneration only air may be sent for regeneration.

つぎに本発明の実施例全記載する。Next, all examples of the present invention will be described.

実施例1 第1図に示すような装置を用い、直径6頷高さ4鰭の酸
化マンガンのタプレツ) 5 m3f 充jft4した
反応器に、圧力1 & 5 ’rJ/cm”G、温度4
5℃でプロピ2フ92モルチ、プロバフ6モル侵、エチ
レン及びエタンよりなるC2留分1モルチおよびブタン
、プメジエン等のC4留分1モル%よりなるガス’に4
000に9/時の割合で反応器に通じた。反応器入口及
び出口におけるA8H3の変化の状態を第2図に示す。
Example 1 Using an apparatus as shown in FIG. 1, a reactor filled with manganese oxide tapelets of 5 m3f (4 fins) with a diameter of 6 nodules and a height of 4 fins was placed at a pressure of 1 &5'rJ/cm'G and a temperature of 4.
At 5°C, 92 mol of propylene fluoride, 6 mol of probuff, 1 mol of a C2 fraction consisting of ethylene and ethane, and 1 mol % of a C4 fraction such as butane and pumediene were added to a gas '4.
000 to 9/h passed through the reactor. Figure 2 shows the changes in A8H3 at the inlet and outlet of the reactor.

第2図かられかるように、反応開披5か月目より反応器
出口におけるAsH3の量が徐々に上昇し、7か月月に
は反応器出口のAsH3の官有量がj 8PPBに上昇
したので、この時点において反応全停止し、反応器中の
C!、 LPG 1窒素ガスにてパージした後、25℃
で10時間窒素ガスと空気の混合ガスを11l100N
/時の割合で反応器に通じて触媒の再生を行った。
As can be seen from Figure 2, the amount of AsH3 at the reactor outlet gradually increased from the 5th month after the start of the reaction, and by the 7th month, the amount of AsH3 at the reactor outlet rose to 8 PPB. Therefore, the reaction completely stopped at this point, and the C! , After purging with LPG 1 nitrogen gas, 25℃
11l100N of mixed gas of nitrogen gas and air for 10 hours.
The catalyst was regenerated by passing through the reactor at a rate of 1/h.

触媒の再生を行う間、窒素ガスへの空気の混入量を徐々
に増加せしめ、10時間目に空気の割合が100%にな
るように窒素ガスと空気の混合割合全制御した。
While regenerating the catalyst, the amount of air mixed into the nitrogen gas was gradually increased, and the mixing ratio of nitrogen gas and air was fully controlled so that the air ratio reached 100% at 10 hours.

触媒の再生を終った後、反応器中の空気をパージし、再
びC3PLG留分を通じてC3LPG留分の脱砒素を前
と同じ条件で再開し念。触媒の再生期間前後における反
応器入口及び出口におけるAsH3の含′)Pf童全全
第3図示す。
After regenerating the catalyst, the air in the reactor was purged, and the arsenic removal of the C3LPG fraction was restarted under the same conditions as before through the C3PLG fraction. Figure 3 shows the concentration of AsH3 at the reactor inlet and outlet before and after the catalyst regeneration period.

第5図かられかるように、触媒の再生後におけるO、 
LPGから脱砒素能力は、新らしい触媒の脱砒素能力と
同じ程度まで回復している。
As can be seen from Fig. 5, O after regeneration of the catalyst,
The arsenic removal ability from LPG has been restored to the same level as that of the new catalyst.

なお、触媒の再生に際し、反応器中のC,LPGを窒素
ガスにてパージした後再生ガスとして空気のみ全用いf
c場合、約12時間で触媒の再生を行うことができた。
In addition, when regenerating the catalyst, only air is used as the regeneration gas after purging the C and LPG in the reactor with nitrogen gas.
In case c, the catalyst could be regenerated in about 12 hours.

実施例2 実施例1で用いたのと同じ酸化マンガン触媒1.5−を
充填した反応器に圧力16.5 ky/iG、温度45
℃で実施例1で用いたのと同じm成の03LPG全90
0に9/時の割合で通じた。反応器入口及び出口におけ
るC、 LPG K含MされているASH,の童の変f
じの状態を第4図に示す。第4図かられかるように、反
応開始後15か月目から反応器出口におけるASH3の
景が次第に上昇し、16か月目には反応器出口における
C3LPG中のAsH3n ホソ20 PPBに達した
。この時点において反応を停止し、反応器中のC,LP
Gを窒素ガスにてパージした後15℃で15時間触媒の
再生を行つ次。再生に際しては、窒素ガス中への空気の
混入量を徐々に増加せしめ、15時時間区9気100%
となるように制御しながら、再生用ガスを180 Nm
’/時の割合で通じた。
Example 2 A reactor filled with the same manganese oxide catalyst 1.5- as used in Example 1 was placed at a pressure of 16.5 ky/iG and a temperature of 45
03LPG of the same composition as used in Example 1 at 90°C.
0 at a rate of 9/hour. C at the inlet and outlet of the reactor, LPG K-containing ASH,
The same situation is shown in Figure 4. As can be seen from FIG. 4, the concentration of ASH3 at the reactor outlet gradually increased from the 15th month after the start of the reaction, and reached AsH3n Hoso20 PPB in the C3LPG at the reactor outlet at the 16th month. At this point, the reaction is stopped and the C, LP in the reactor is
After purging G with nitrogen gas, the catalyst was regenerated at 15° C. for 15 hours. During regeneration, the amount of air mixed into the nitrogen gas is gradually increased, and the 15:00 time period is 9 air 100%.
While controlling the regeneration gas to 180 Nm
It passed at a rate of '/hour.

触媒の再生前後における活性を第5図に示す。Figure 5 shows the activity of the catalyst before and after regeneration.

第5図から再活性化後においては、触媒の活性は、初期
の活性に戻っていることがわかる。
It can be seen from FIG. 5 that after reactivation, the activity of the catalyst returned to its initial activity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法fc実施するための装置の1例を
示すフロー図、第2図は実施例1における反応器入口と
出口におけるASH3の@有量の変化金示す図、第3図
は実施例1における触媒の再生前後における反応器入口
と出口のAsH,含有量の変化を示す図、第4図は実施
例2における反応器入口と出口のA8H,含有量の変化
を第5図は実施例2における触媒の再生前後Vこおける
反応器の入口と出口のAsH3含有量の変化を示す図で
ある。 1・・プロセスガスの反応器への人口、2・・プロセス
ガスの反応器出口、5・・反応器、5・・再生用空気入
口、6・・再生用並びにパージ用窒素ガス入口、7・・
再生ガス或いはノ(−ジガス出口
FIG. 1 is a flow diagram showing an example of an apparatus for carrying out the method fc of the present invention, FIG. 2 is a diagram showing the amount of change in ASH3 at the inlet and outlet of the reactor in Example 1, and FIG. 3 Figure 4 shows the change in AsH content at the reactor inlet and outlet before and after catalyst regeneration in Example 1, and Figure 5 shows the change in A8H content at the reactor inlet and outlet in Example 2. 1 is a diagram showing changes in AsH3 content at the inlet and outlet of the reactor before and after catalyst regeneration in Example 2. FIG. 1. Input of process gas to reactor, 2. Outlet of process gas to reactor, 5. Reactor, 5. Air inlet for regeneration, 6. Inlet of nitrogen gas for regeneration and purging, 7.・
Regeneration gas or gas outlet

Claims (1)

【特許請求の範囲】[Claims] 1、活性を失った酸化マンガン及び/又は酸化銅よりな
る炭化水素脱砒素用酸化物触媒上に空気又は空気と窒素
ガスとの混合ガスを流通せしめることを特徴とする前記
触媒の再活性化方法。
1. A method for reactivating a catalyst, which comprises flowing air or a mixed gas of air and nitrogen gas over an oxide catalyst for dearsenizing hydrocarbons made of manganese oxide and/or copper oxide that has lost its activity. .
JP21623785A 1985-10-01 1985-10-01 Method for reactivation of oxide catalyst for removing arsenic in hydrocarbon Pending JPS6279848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21623785A JPS6279848A (en) 1985-10-01 1985-10-01 Method for reactivation of oxide catalyst for removing arsenic in hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21623785A JPS6279848A (en) 1985-10-01 1985-10-01 Method for reactivation of oxide catalyst for removing arsenic in hydrocarbon

Publications (1)

Publication Number Publication Date
JPS6279848A true JPS6279848A (en) 1987-04-13

Family

ID=16685421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21623785A Pending JPS6279848A (en) 1985-10-01 1985-10-01 Method for reactivation of oxide catalyst for removing arsenic in hydrocarbon

Country Status (1)

Country Link
JP (1) JPS6279848A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024450A (en) * 1988-06-21 1990-01-09 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst regeneration process
JP2018508493A (en) * 2015-01-30 2018-03-29 シムライズ アーゲー Method for the synthesis of substituted alkylcycloalkanones

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024450A (en) * 1988-06-21 1990-01-09 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst regeneration process
JPH0555186B2 (en) * 1988-06-21 1993-08-16 Nippon Catalytic Chem Ind
JP2018508493A (en) * 2015-01-30 2018-03-29 シムライズ アーゲー Method for the synthesis of substituted alkylcycloalkanones
US10442751B2 (en) 2015-01-30 2019-10-15 Symrise Ag Method for preparing substituted alkyl cycloalkanones

Similar Documents

Publication Publication Date Title
AU615032B2 (en) Desulphurisation
US3974256A (en) Sulfide removal process
JP3009309B2 (en) Methods for removing hydrogen sulfide from gas streams
US4311680A (en) Method for removal of sulfur compounds from a gas stream
JPH0248406A (en) Inert-gas purifying method to large quantity of nitrogen using no hydrogen or other reducing gases
JPH0153086B2 (en)
JPH01502008A (en) Method for regenerating reforming catalyst contaminated with sulfur
US4217244A (en) Regeneration of isomerization catalysts containing magnesium oxide
US2270165A (en) Catalyst
JPS6279848A (en) Method for reactivation of oxide catalyst for removing arsenic in hydrocarbon
US5755840A (en) Method for providing oxygen in gas process
US4045371A (en) Process for preparing a gas desulfurization sorbent
US6652826B1 (en) Process for elimination of low concentrations of hydrogen sulfide in gas mixtures by catalytic oxidation
JP2654515B2 (en) Method for producing desulfurizing agent
JPH02107313A (en) Removal of sulfur compound and desulfuring agent for use therefor
US4529574A (en) Process for the removal of sulfur oxide from a gas
JP3165719B2 (en) Adsorbent regeneration method
JP3646885B2 (en) Removal of hydrogen sulfide from gas streams
JPS63383A (en) Improved method for removing sulfur oxides from flue gas of fcc apparatus
Li et al. Low Temperature Oxidative Coupling of Methane by Perovskite Oxide.
JPH04161221A (en) Method and apparatus adsorbing and removing nox
TW394780B (en) Process for removal of polymeriation inhibitors from monomer mixtures with the aid of an alumina
JPS5817821A (en) Method for removing nox and sox from waste gas
JPH02302496A (en) Desulfurizing method of town gas
JPS62183833A (en) Desulfurizing method