JPS6279289A - Carbonaceous mesophase material supporting metal - Google Patents
Carbonaceous mesophase material supporting metalInfo
- Publication number
- JPS6279289A JPS6279289A JP21875285A JP21875285A JPS6279289A JP S6279289 A JPS6279289 A JP S6279289A JP 21875285 A JP21875285 A JP 21875285A JP 21875285 A JP21875285 A JP 21875285A JP S6279289 A JPS6279289 A JP S6279289A
- Authority
- JP
- Japan
- Prior art keywords
- silver
- supported
- carbonaceous mesophase
- carbonaceous
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Working-Up Tar And Pitch (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は新規な化合物である金属成分を担持させた炭素
質メソフェーズ体に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a carbonaceous mesophase body supporting a metal component, which is a novel compound.
(従来の技術)
一般にコールタールピッチ、石油系重質油等の画青物な
どのピッチ類を加熱処理すると、約J!;0−4’jO
℃の温度領域において光学的等方性な物質であるピッチ
マトリックス中に、約1μm程度の光学的異方性の小球
体の生成が見られ、これがしだいに成長し小球体同士が
合体するとともに、ついては全体が光学的に異方性構造
となることは既に広く知られた現象である。(Prior art) In general, when pitches such as coal tar pitch and blueprint materials such as heavy petroleum oil are heat-treated, the pitch is approximately J. ;0-4'jO
In the pitch matrix, which is an optically isotropic substance in the temperature range of ℃, the formation of optically anisotropic spherules of about 1 μm is observed, and as these spherules gradually grow and the spherules coalesce, Therefore, it is already a widely known phenomenon that the entire structure becomes optically anisotropic.
ここで、光学的異方性小球体は一般にメンカーボン・マ
イクロビーズと呼称され、かかるメソカーボンマイクロ
・ビーズが成長・合体した無定形の光学的異方性領域は
バルクメソ7エーズと呼ばれている。Here, the optically anisotropic small spheres are generally called mesocarbon microbeads, and the amorphous optically anisotropic region in which such mesocarbon microbeads grow and coalesce is called bulk meso7Aes. .
このようなメソカーボンマイクロビーズあるいはバルク
メソフェーズ(以下、「炭素質メンフェーズ体」と記す
。)はピッチ的要素と炭素材的要素を兼備しているため
従来の炭素原料に見られない素材として近年注目を浴び
ておシ。Such mesocarbon microbeads or bulk mesophase (hereinafter referred to as "carbonaceous menphase") have both pitch-like and carbon material elements, and have recently been developed as a material that is not found in conventional carbon raw materials. I love getting attention.
高密度炭素材あるいは炭素電極用バインダピッチ等への
応用が検討されている。Applications to high-density carbon materials or binder pitch for carbon electrodes are being considered.
(発明が解決しようとする問題点)
しかしながら、炭素質メソフェーズ体は単にピッチ的要
素と炭素材的要素の化学的性質を兼備しているだけでは
なく、比表面積に対する吸着能あるいは嵩密度などの物
理的な面からの特異な性質をも有しておシ、このような
特異な物的性質に注目し、吸着剤あるいは触媒担体等の
新規な応用がなされていなかった。(Problems to be Solved by the Invention) However, carbonaceous mesophase materials not only have the chemical properties of pitch elements and carbon material elements, but also have physical properties such as adsorption capacity for specific surface area and bulk density. However, no new applications such as adsorbents or catalyst supports have been made based on these unique physical properties.
(問題点を解決するための手段)
そこで、本発明者等は、炭素質メソフェーズ体の特異な
物理的性質を十分に生かすべく鋭意検討した結果、かか
る炭素質メソフェーズ体に有用な金属成分を担持させる
ことによシ、新規な吸着剤あるいは新規な触媒等として
オU用できることを見い出し、本発明に到達した。(Means for Solving the Problems) Therefore, as a result of intensive studies to make full use of the unique physical properties of carbonaceous mesophase bodies, the present inventors have found that carbonaceous mesophase bodies carry useful metal components. The present inventors have discovered that by doing so, it can be used as a new adsorbent or a new catalyst, and have arrived at the present invention.
すなわち、本発明の目的は炭素質メソフェーズ体を利用
した新規な吸着剤あるいは触媒等の新規な化合物を提供
するものであシ、これは、炭素質メソフェーズ体に金属
成分を担持させたことを特徴とする金属担持炭素質メソ
フェーズ体によシ容易に達成される。That is, an object of the present invention is to provide a novel compound such as a novel adsorbent or a catalyst using a carbonaceous mesophase body, which is characterized in that a metal component is supported on the carbonaceous mesophase body. This can be easily achieved using a metal-supported carbonaceous mesophase body.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
等を製造する一般的な製造法によって得られたものが使
用され、具体的にはコールタールピッチ、ナフサタール
ピッチあるいは樹脂等を原料として、不活性雰囲気下、
約、7kO−j00℃0.3〜io時間程度の加熱処理
条件してピッチマトリックス中に生成するメソカーボン
マイクロビーズあるいはメソカーボンマイクロビーズが
合体して得られるバルクメンフェーズをピッチマトリッ
クスを選択的に溶解する溶剤1例えばピリジン、キノリ
ン、ニトロベンゼン等やアントラセン油、クレオソート
油、石油系芳否族油等のタール油によって室温であるい
は加熱して溶解、分散させた後、戸別して得られるメン
カーボン・マイクロビーズあるいはバルクメソれる形態
によシ異なるが1通常球形もしくは粒状のものが用いら
れ、その大きさも特に限定されるものではないが、平均
径1μm=j簡、好ましくはjμm〜jm程度を用いる
のがよい。Those obtained by general manufacturing methods are used. Specifically, coal tar pitch, naphtha tar pitch, resin, etc. are used as raw materials, and under an inert atmosphere,
The mesocarbon microbeads generated in the pitch matrix or the bulk membrane phase obtained by the coalescence of the mesocarbon microbeads are selectively added to the pitch matrix under heat treatment conditions of approximately 7 kO-j00°C for 0.3 to io hours. Dissolving Solvent 1 For example, pyridine, quinoline, nitrobenzene, etc., anthracene oil, creosote oil, petroleum aromatic oil, etc., can be dissolved and dispersed at room temperature or by heating, and then obtained by door-to-door operation. Although it varies depending on the form of microbeads or bulk beads, spherical or granular ones are usually used, and the size is not particularly limited, but the average diameter is 1 μm = j, preferably about j μm to jm. Good.
バルクメソ7エーズを用いる場合は望ましい形状、大き
さに粉砕して用いるとよい。When using bulk meso-7Aze, it is preferable to crush it into a desired shape and size.
また、炭素質メソフェーズ体の物性としては20℃での
ブタノール浸漬比重がへ10〜八ダ0好ましくは/、2
0〜/、3!、O/III値が/、j 〜3.0のもの
を用いるのがよい。In addition, the physical properties of the carbonaceous mesophase body include a specific gravity immersed in butanol at 20°C of 10 to 80, preferably /2
0~/, 3! , an O/III value of /,j to 3.0 is preferably used.
このような炭素質メソフェーズ体に担持される金属成分
としては、その使用目的により異なるが、具体的には銅
、鉄、コバルト、ニッケル、ルビジウム、銀、モリブデ
ン、ルテニウム、口みて担持してもよく、コ種以上の異
なる金属成分を担持させてもよい。また、その形態とし
ては単体、酸化物、ハロゲン化物btMs水酸化物、硫
化物等の金属成分が用いられる。The metal components supported on such a carbonaceous mesophase body vary depending on the purpose of use, but specifically, copper, iron, cobalt, nickel, rubidium, silver, molybdenum, ruthenium, etc. may also be supported. , or more different metal components may be supported. Moreover, as for its form, a metal component such as a simple substance, an oxide, a halide btMs hydroxide, or a sulfide is used.
炭素質メソフェーズ体に担持させる金属成分の量は特に
限定されるものではないが、通常金属単体に換算して0
.07一ダ0重量方、好ましくはOo−〜コO重量%程
度である。The amount of metal component supported on the carbonaceous mesophase body is not particularly limited, but is usually 0 in terms of the metal itself.
.. It is preferably about 0.07 to 0.0% by weight.
炭素質メソフェーズ体に金属を担持させる方法としては
、通常の触媒担体に触媒成分を浸漬処理する方法、イオ
ン交換法、あるいはそれらを併用する方法等を用いれば
よく、具体的には使用目的に応じた形状〃大きさの炭素
質メソフッ
ニーズ体を上述した金属の硝酸塩、酢酸塩、炭酸基、塩
化物、有機錯化合物等の水溶液あるいは有機溶液に浸漬
し、該炭素質メンフェーズ体に金属の可溶性塩を合役せ
しめ、次いでrL床するか、または更に水累ガス、還元
性薬品あるいは紫外線照射等による還元により行なわれ
る。As a method for supporting a metal on a carbonaceous mesophase body, a method of immersing a catalyst component in a normal catalyst carrier, an ion exchange method, or a method using a combination of these methods may be used.Specifically, depending on the purpose of use, A carbonaceous mesophuniform body of the shape and size is immersed in an aqueous or organic solution of the above-mentioned metal nitrate, acetate, carbonate group, chloride, organic complex compound, etc. This can be carried out by combining the two and then applying an rL bed, or further reducing by using a water accumulating gas, a reducing agent, ultraviolet irradiation, or the like.
また、これらの炭素質メソフェーズ体を化学反応によっ
て官能基を導入したものも用いることができる。導入す
る官能澁としてはスルホン酸基、カルボン酸基、ニトロ
基、あるいはアミノ基であシ、特にイオン交換能を有す
るスルホン酸基、カルボン酸基、アミノ基が有用である
。Furthermore, carbonaceous mesophase bodies into which functional groups have been introduced by chemical reaction can also be used. The functional group to be introduced may be a sulfonic acid group, a carboxylic acid group, a nitro group, or an amino group, particularly a sulfonic acid group, a carboxylic acid group, or an amino group having ion exchange ability.
ましい。更に、官能基を導入した炭素質メソフェーズ体
を用いた場合は容易にかつ多量の金属成分を担持するこ
とができるので好ましい。Delicious. Furthermore, it is preferable to use a carbonaceous mesophase material into which a functional group has been introduced, since it can easily support a large amount of metal component.
また、本発明における担持とは炭素質メソフェーズ体の
表面部に金属成分が付着している状態の場合は勿論のこ
と、炭素質メソフェーズ体の内部にまでも金属成分が含
有されている状態及び両者状態が混在している場合も含
めていうものである。Furthermore, in the present invention, the term "supported" refers to not only a state in which a metal component is attached to the surface of a carbonaceous mesophase body, but also a state in which a metal component is contained even inside the carbonaceous mesophase body, and a state in which a metal component is contained in the interior of the carbonaceous mesophase body. This includes cases where conditions are mixed.
(効果・用途)
本発明によれば、金鴇担持炭素買メソフェーズ体という
fr現な化合物は非常に簡便に製造でき、また得られた
金属担持炭素質メソフェーズ体は廃水中に官有される微
量の放射性ヨウ素等の吸着剤あるいは個々の化学反応等
に用いられる触媒等に利用することができる。(Effects/Applications) According to the present invention, a modern compound called metal-supported carbonaceous mesophase substance can be produced very easily, and the obtained metal-supported carbonaceous mesophase substance is present in trace amounts in wastewater. It can be used as an adsorbent for radioactive iodine, etc., or as a catalyst for individual chemical reactions.
以下、本発明を実施例を用いてよシ具体的に説明するが
、本発明の要旨をこえない限シ、本発明は下記実施例に
限定されるものではない。Hereinafter, the present invention will be explained in detail using examples, but the present invention is not limited to the following examples as long as it does not go beyond the gist of the invention.
尚、各実施例に用いた炭素質メンフェーズ体のms、F
A製方法および物体値をそれぞれ第1我に示す。In addition, ms, F of the carbonaceous menphase body used in each example
A manufacturing method and object values are shown in Part 1.
第 l 表
実施例/
炭素質メンフェース11体(タイプN−MO)’ii良
度八7へol/lの硝酸銀水U液中に10 torr
の減圧下で浸漬せしめ、次いで市販の超音波振動装置に
てt、o”c%3時間超音波振動処理を行ない、その後
、銀が担持された炭素質メソフェーズ体を戸別した。次
いで水洗後ioo℃で9気乾燥し、銀担持炭素質メソフ
ェース゛体を得た。Table l Examples/11 carbonaceous membranes (type N-MO) 'ii Good quality 87 to 10 torr in ol/l silver nitrate water U solution
Then, ultrasonic vibration treatment was carried out for 3 hours using a commercially available ultrasonic vibrator, and then the silver-supported carbonaceous mesophase body was transported from house to house.Then, after washing with water, the carbonaceous mesophase body was transported from house to house. It was dried at 9° C. to obtain a silver-supported carbonaceous mesophase.
この銀担持炭素質メンフェーズ体をMO−A、p /
とする。This silver-supported carbonaceous menphase material is MO-A, p/
shall be.
試料中の銀担持量については、銀担持試料を歳硝酸水溶
液(試薬特級)によシ銀を硝酸銀としたのち原子吸光法
によシ定量しだ。The amount of silver supported in the sample was determined by dipping the silver-supported sample into a nitric acid aqueous solution (special grade reagent) to convert the silver into silver nitrate, and then quantifying it by atomic absorption spectrometry.
また、担持銀の平均粒子径は粉末X#回折法によシ銀の
(///)回折線より求めた。この場曾、内部標準物質
としてシリコン(粒子径が3−5メツシユのもの)の(
ニー〇)回折線を用いて補正した。用いた対隘極は餉(
Ou)であシ、Cukal、 0uka2の二ihの分
離は銀の(lll)反射についてはJOnθ日の方法、
シリコンの(ココの反射についてはRachinger
の方法によった。以下の各実施例の場合もこれらの方法
を用いて銀担持量および担持銀の平均粒子径を測定した
。Further, the average particle diameter of the supported silver was determined from the (///) diffraction line of silver by powder X# diffraction method. At this time, silicon (with a particle size of 3-5 mesh) was used as an internal standard substance.
〇) Corrected using diffraction lines. The counter pole used was 餉(餉)
Ou) Adashi, Cukal, 2ih separation of 0uka2 is JOnθ day method for silver (lll) reflection,
Silicon (for the reflection here, see Rachinger)
According to the method. In each of the following examples, the amount of silver supported and the average particle diameter of supported silver were measured using these methods.
MO−A、91の銀担持量はす、3oz量S1担持銀の
平均粒子径はg32Aであった。The amount of silver supported in MO-A, 91 was 3 oz, and the average particle diameter of the silver supported in S1 was g32A.
実71!i例コ
実施例/と同様の炭素質メソフェーズ体を用い、実施例
/と同様にして銀担持炭素質メンフェーズ体を得た後、
更にコZO℃で/時間水素還元した。Fruit 71! Example i Using the same carbonaceous mesophase body as in Example/, a silver-supported carbonaceous mesophase body was obtained in the same manner as in Example/, and then
Further, hydrogen reduction was performed at ZO°C for an hour.
得られた銀担持炭素質メソフェーズ体をMO−ANコと
する。MO−A、92の銀担持量および担持銀の平均粒
子径はそれぞれA、II&重量%および107ダムであ
った。The obtained silver-supported carbonaceous mesophase body is referred to as MO-AN. The amount of silver supported and the average particle diameter of the supported silver in MO-A, 92 were A, II&wt% and 107 dam, respectively.
実施例3
炭素質メソフェーズ体(タイプa−Wa )を濃度o、
i mo17tの過酸素酸銀(Atazo、)のベンゼ
ン溶液に7θ″″” torrの減圧下で浸漬させた後
、超音波振動装置によ)室温、3時間超音波振動処理を
行ない、銀が担持した炭素質メンツ二−ズ体を戸別し、
次いでベンゼンにて洗浄後室温にて/ 0 = tor
rの減圧下で乾燥した。Example 3 Carbonaceous mesophase body (type a-Wa) was prepared at a concentration o,
The silver was immersed in a benzene solution of 17 t of silver peroxide (Atazo) under a reduced pressure of 7θ'''' torr, and then subjected to ultrasonic vibration treatment at room temperature for 3 hours (using an ultrasonic vibrator) to ensure that the silver was supported. The carbonaceous materials were distributed door to door,
Then, after washing with benzene, at room temperature / 0 = tor
Dry under vacuum at r.
乾燥した銀担持炭素質メンフェーズ体をシャーレに移し
、シャーレ中で時折かきまぜながら、室温でj時間コ!
fダnmの紫外線照射によシ還元した。Transfer the dried silver-supported carbonaceous menphase to a Petri dish and leave it at room temperature for j hours while stirring occasionally in the Petri dish.
It was reduced by ultraviolet irradiation at f nm.
との銀担持炭素質メソフェーズ体をMO−IJ3とする
。MO−A7.7の銀担持量および担持銀の平均粒子径
はそれぞれココ、6テ重fiXおよびλコロAであった
。The silver-supported carbonaceous mesophase material is designated as MO-IJ3. The amount of silver supported and the average particle diameter of the supported silver in MO-A7.7 were Coco, 6T FfiX, and λ ColoA, respectively.
このように有機溶媒系での含浸法を用いれは゛低濃度硝
酸銀水溶液にもかかわらず多量の銀を担持させることが
可能である。As described above, by using an impregnation method using an organic solvent system, it is possible to support a large amount of silver in spite of a low concentration silver nitrate aqueous solution.
実施例ダ
炭素質メンフェーズ体(タイプN−MO)を濃硫酸溶液
によりtoo℃で7時間スルフォン化処理を行ない、水
で硫酸を希釈した後、戸別し、洗浄液のpHが7付近に
なるまで水洗し、次いでスルフォン基が導入された炭素
質メン7工−ズ体をioo”cで空気乾床し九。Example D A carbonaceous menphasic material (type N-MO) was subjected to sulfonation treatment with a concentrated sulfuric acid solution at too high a temperature for 7 hours, and after diluting the sulfuric acid with water, it was washed from house to house until the pH of the cleaning solution reached around 7. After washing with water, the carbonaceous membrane into which the sulfone group had been introduced was air-dried on an ioo''c.
得られたスルフォン基導入の炭素質メソフェーズ体を濃
度0.t mol/lの硝酸銀水溶液に10”−”t、
orrの減圧下で浸漬し、30℃、1時間で超音波振動
処理を行ない、銀が担持された炭素質メソフェーズ体を
戸別、水洗後り0℃で71時間空気乾燥を行なった。The obtained carbonaceous mesophase body into which a sulfone group has been introduced was reduced to a concentration of 0. 10"-"t in a silver nitrate aqueous solution of t mol/l,
The silver-supported carbonaceous mesophase material was immersed under a reduced pressure of 0.04 C. and subjected to ultrasonic vibration treatment for 1 hour at 30.degree.
この銀担持炭素質メン7エーズ体をMO−ムiダとする
。スルフォン化炭素質メソフェーズ体のイオン交換容量
は、/、jmeq/Iであった。This silver-supported carbonaceous men-7-Aze body is referred to as MO-Mida. The ion exchange capacity of the sulfonated carbonaceous mesophase body was /,jmeq/I.
MO−A、9−の銀担持量および担持銀の平均粒子径は
それぞれ1o、33重1Xおよびコより^であった。こ
のようにあらかじめ炭素質メソフェーズ体にスルフォン
基を導入すると、実施例/および−の場合より硝酸銀水
溶液の濃度が低いにもかかわらす銀担持量が増大する。The amount of silver supported and the average particle diameter of the supported silver for MO-A and 9- were 1o, 33x1x, and ko, respectively. When a sulfone group is introduced into the carbonaceous mesophase body in advance in this manner, the amount of silver supported increases even though the concentration of the silver nitrate aqueous solution is lower than in Examples/and-.
尚、銀担持炭素質メソフェーズ体の銀粒子の分散状態に
つ−ては、炭素質メンフェーズ体の薄片検鏡体の調製が
困離であるので第−表に示すような方法で検鏡試料を調
製し、炭素と銀の反射電子および二次電子の強度差を利
用して走査電子顕微鏡によシ観察した。Regarding the dispersion state of the silver particles in the silver-supported carbonaceous mesophase material, since it is difficult to prepare a thin section specimen of the carbonaceous mesophase material, a specimen was prepared using the method shown in Table 1. was prepared and observed using a scanning electron microscope using the difference in intensity between reflected electrons and secondary electrons between carbon and silver.
試料l:アラルダイトlの割合で練シ試料ホルダー上に
接着硬化させる。Sample 1: Adhesively harden on a sample holder at a ratio of 1 araldite.
↓
エメリーで研磨し、次に716400までのバフ研磨を
行う、
↓
研磨面をjKV、コ00μムで約、、20分間ムr−イ
オンエツチングする。↓ Polish with emery, and then buff to 716400. ↓ Perform Mur-ion etching on the polished surface with jKV and 00 μm for about 20 minutes.
カーボン蒸着
第7図にMO−klコのバルク内の銀粒子の分散状態を
示す走査電子顕微鏡写真を示す。Carbon Vapor Deposition FIG. 7 shows a scanning electron micrograph showing the state of dispersion of silver particles in the bulk of MO-kl.
i/図ではイオンスパッタリングによシ銀の粒子が大き
く成長しているが、少なくとも銀粒子が炭素質メソフェ
ーズ体のバルク内に担持分散されていることは明白であ
る。このような観察方法によれげ、いずれの実施例のM
e−ムlにおいても銀粒子が炭素質メソフェーズ体のバ
ルク内に担持分散されている。In Figure i/, silver particles have grown large due to ion sputtering, and it is clear that at least the silver particles are supported and dispersed within the bulk of the carbonaceous mesophase body. Depending on this observation method, the M of any of the examples
Also in e-mul, silver particles are supported and dispersed within the bulk of the carbonaceous mesophase body.
参考例
医療排水中の放射性1”ニー あるいは特に半減期の長
い原子炉排水中の129ニー イオンの除去は重要な問
題であシ、そこで、銀担持炭素質メツフェーズをニーイ
オンの吸着剤に応用した。Reference Example Removal of radioactive 1" ions from medical wastewater or 129 ions from nuclear reactor wastewater, which has a particularly long half-life, is an important issue, so silver-supported carbonaceous metphase was applied as an adsorbent for ions.
比較的高濃度領域の吸着測定については、試料0・ig
に対して所定の濃度のに工水溶液100−を加え、25
℃でコゼ時間攪拌し、溶液中のニー イオン量をイオン
電極法により#1足し、溶液中のニー イオン減少量か
ら吸着量を求めた。For adsorption measurements in relatively high concentration areas, sample 0・ig
Add 100 - of industrial water solution to the specified concentration, and add 25
The mixture was stirred at ℃ for a long time, and the amount of knee ions in the solution was added by #1 using the ion electrode method, and the amount of adsorption was determined from the amount of decrease in knee ions in the solution.
その結果を第3表に示す。The results are shown in Table 3.
試 料 初濃度 吸着量
MO−ムIi/ AXlo−” 10M0−A
ll J 2XIO−” 20+ 1Ixi
o−” 3゜
AXlo−” 40
Mo−A、9f LXlo−” /!;0−20
0比較的低濃度領域における吸着量11足については、
””X−イ# 7濃11 Q/、’14 X 10−”
39/z のHa 1*l工 水溶液コOゴを試料
に加え、吸着時間を−を時間(内振とう時間を7λ時間
とした)とし共存塩としてNa0Iを0 、 / j
m O1/L加え、pHを7として測定した。Sample Initial concentration Adsorption amount MO-Ii/AXlo-” 10M0-A
ll J 2XIO-” 20+ 1Ixi
o-” 3゜AXlo-” 40 Mo-A, 9f LXlo-” /!;0-20
0 Regarding the adsorption amount of 11 feet in a relatively low concentration area,
””X-I# 7 Thick 11 Q/,'14
An aqueous solution of 39/z was added to the sample, the adsorption time was set to - (the internal shaking time was set to 7λ hours), and Na0I was added as a coexisting salt to 0, /j.
m O1/L was added and the pH was set to 7 and measured.
その場合、試料の量を任意に変化させることによシ吸溜
平衡濃度を変化させた。また、疲度測定にはシンチレー
ションカウンターを使用した。その結果を第一図に示す
。In that case, the absorption equilibrium concentration was changed by arbitrarily changing the amount of sample. In addition, a scintillation counter was used to measure fatigue. The results are shown in Figure 1.
尚、比較のために、銀を0.5重量%添着させた活性炭
の吸着結果も挙げる。For comparison, the adsorption results of activated carbon impregnated with 0.5% by weight of silver are also listed.
第2図中において、/はMO−Ap/、コはMO−hp
λ、3はMO−fi、iグ、弘/lは銀添着活性炭をそ
れぞれ用いた場合の吸着等温線を示したものである。In Figure 2, / is MO-Ap/, ko is MO-hp
λ, 3 shows the adsorption isotherm when MO-fi, ig and Hiroshi/l use silver-impregnated activated carbon, respectively.
第7図は実施例−によシ得られた銀担持炭素メソフェー
ズ体の粒子構造を示す走査電子顕微鏡写真であシ、第一
図は実施fil/、実施例a及び実施例グ、更に比較の
ため銀担持活性炭を用いた場合のニーイオンの吸着量を
示した図である。FIG. 7 is a scanning electron micrograph showing the particle structure of the silver-supported carbon mesophase material obtained in Example-1. FIG. 3 is a diagram showing the adsorption amount of knee ions when silver-supported activated carbon is used.
Claims (1)
とを特徴とする金属担持炭素質メソフェーズ体(1) A metal-supported carbonaceous mesophase body characterized by supporting a metal component on the carbonaceous mesophase body
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21875285A JPH072951B2 (en) | 1985-10-01 | 1985-10-01 | Method for producing metal-supported carbonaceous mesophase body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21875285A JPH072951B2 (en) | 1985-10-01 | 1985-10-01 | Method for producing metal-supported carbonaceous mesophase body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6279289A true JPS6279289A (en) | 1987-04-11 |
JPH072951B2 JPH072951B2 (en) | 1995-01-18 |
Family
ID=16724858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21875285A Expired - Lifetime JPH072951B2 (en) | 1985-10-01 | 1985-10-01 | Method for producing metal-supported carbonaceous mesophase body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH072951B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62191040A (en) * | 1986-02-17 | 1987-08-21 | Nippon Denso Co Ltd | Adsorbable carbon material and its production |
JP2003528419A (en) * | 1998-08-27 | 2003-09-24 | スーペリア マイクロパウダーズ リミテッド ライアビリティ カンパニー | Metal-carbon composite powder, method for producing the powder, and apparatus produced from the powder |
US7150920B2 (en) | 1998-02-24 | 2006-12-19 | Cabot Corporation | Metal-carbon composite powders |
US7288502B2 (en) * | 2002-08-27 | 2007-10-30 | Honda Giken Kogyo Kabushiki Kaisha | Catalyst particle usable for dehydrogenation of alcohols |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1318541C (en) * | 2005-06-07 | 2007-05-30 | 中国科学院山西煤炭化学研究所 | Tantalum charcoal material precursor preparation method |
CN106457217B (en) | 2014-04-29 | 2019-07-02 | 阿彻丹尼尔斯米德兰公司 | The base molded porous product of carbon black |
US11253839B2 (en) | 2014-04-29 | 2022-02-22 | Archer-Daniels-Midland Company | Shaped porous carbon products |
US10722867B2 (en) | 2015-10-28 | 2020-07-28 | Archer-Daniels-Midland Company | Porous shaped carbon products |
US10464048B2 (en) | 2015-10-28 | 2019-11-05 | Archer-Daniels-Midland Company | Porous shaped metal-carbon products |
-
1985
- 1985-10-01 JP JP21875285A patent/JPH072951B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62191040A (en) * | 1986-02-17 | 1987-08-21 | Nippon Denso Co Ltd | Adsorbable carbon material and its production |
US7150920B2 (en) | 1998-02-24 | 2006-12-19 | Cabot Corporation | Metal-carbon composite powders |
US7517606B2 (en) | 1998-02-24 | 2009-04-14 | Cabot Corporation | Fuel cells and batteries including metal-carbon composite powders |
JP2003528419A (en) * | 1998-08-27 | 2003-09-24 | スーペリア マイクロパウダーズ リミテッド ライアビリティ カンパニー | Metal-carbon composite powder, method for producing the powder, and apparatus produced from the powder |
EP1358124A2 (en) * | 1998-08-27 | 2003-11-05 | Superior Micropowders LLC | Metal-carbon composite powders, methods for producing powders and devices fabricated from same |
EP1358124A4 (en) * | 1998-08-27 | 2006-07-26 | Cabot Corp | Metal-carbon composite powders, methods for producing powders and devices fabricated from same |
JP4704563B2 (en) * | 1998-08-27 | 2011-06-15 | キャボット コーポレイション | Metal-carbon composite powder, method for producing the powder, and apparatus produced from the powder |
US7288502B2 (en) * | 2002-08-27 | 2007-10-30 | Honda Giken Kogyo Kabushiki Kaisha | Catalyst particle usable for dehydrogenation of alcohols |
Also Published As
Publication number | Publication date |
---|---|
JPH072951B2 (en) | 1995-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3709267B2 (en) | Mesopore carbon and method for producing the same | |
Zhang et al. | Pd–Ag/SiO 2 bimetallic catalysts prepared by galvanic displacement for selective hydrogenation of acetylene in excess ethylene | |
US5208207A (en) | Electrocatalyst | |
US2563650A (en) | Method of hardening bauxite with colloidal silica | |
Chang et al. | Application of graphene as a sorbent for preconcentration and determination of trace amounts of chromium (III) in water samples by flame atomic absorption spectrometry | |
JP2021168300A (en) | Surface functional and acidification metal oxide material synthesized for use of energy storage, catalyst, photovoltaic cell, and sensor | |
Wang et al. | Toward Metal–Organic‐Framework‐Based Supercapacitors: Room‐Temperature Synthesis of Electrically Conducting MOF‐Based Nanocomposites Decorated with Redox‐Active Manganese | |
Kim et al. | Conventional and photoinduced radioactive 137Cs removal by adsorption on FeFe, CoFe, and NiFe Prussian blue analogues | |
JPS5916543A (en) | Silver catalyst and production thereof | |
Lindquist et al. | High energy resolution x-ray photoelectron spectroscopy studies of tetracyanoquinodimethane charge transfer complexes with copper, nickel, and lithium | |
JPS6279289A (en) | Carbonaceous mesophase material supporting metal | |
KR102407233B1 (en) | Composite Body in which Nanoparticles are uniformly dispersed in nanosized Pores of a Support and Method of manufacturing the same | |
Sun et al. | Surface-enhanced Raman spectroscopy of surfactants on silver electrodes | |
JP6315831B2 (en) | Method for hydrolysis of cellulose | |
Jia et al. | Adsorption of silver onto activated carbon from acidic media: Nitrate and sulfate media | |
JP2874593B2 (en) | Buffer material and method of manufacturing the same | |
Bajpai et al. | Adsorption techniques-a review | |
Ma et al. | Novel One‐Pot Solvothermal Synthesis of High‐Performance Copper Hexacyanoferrate for Cs+ Removal from Wastewater | |
Zhai et al. | Pyrolysis of self-assembled iron (III) porphyrin on carbon toward efficient oxygen reduction reaction | |
JPH04135642A (en) | Platinum alloy catalyst and its production | |
KR20190044490A (en) | Amorphous Nanostructure made up of Inorganic Polymer and Method of manufacturing the same | |
JP2018075566A (en) | Method for producing lithium-adsorbing material and lithium-adsorbing material | |
Liu et al. | Preparing high-loaded potassium cobalt hexacyanoferrate/silica composite for radioactive wastewater treatment | |
Kubota et al. | Combination of n’-n’-di-n-hexyl-thiodiglycolamide and 2, 2’-[(2-ethylhexyl) imino] bis [n, n-bis (2-ethylhexyl) acetamide] for the enhanced adsorption of palladium ions from simulated high-level liquid waste | |
JP2004091276A (en) | Activated carbon for adsorption of arsenic and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |