JPS6278437A - Exhaust temperature control system for gas turbine - Google Patents

Exhaust temperature control system for gas turbine

Info

Publication number
JPS6278437A
JPS6278437A JP21768085A JP21768085A JPS6278437A JP S6278437 A JPS6278437 A JP S6278437A JP 21768085 A JP21768085 A JP 21768085A JP 21768085 A JP21768085 A JP 21768085A JP S6278437 A JPS6278437 A JP S6278437A
Authority
JP
Japan
Prior art keywords
temperature
flow rate
water
exhaust temperature
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21768085A
Other languages
Japanese (ja)
Inventor
Yukisumi Tani
谷 幸純
Shigeki Adachi
足立 茂樹
Yasumasa Nishijima
庸正 西嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21768085A priority Critical patent/JPS6278437A/en
Publication of JPS6278437A publication Critical patent/JPS6278437A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To improve the output of a gas turbine by controlling an exhaust temperature according to a combustor gas temperature on the basis of both the amount of water or steam injection to prevent decrease in the maximum output of the gas turbine caused by increase in delivery pressure and air-fuel ratio, when water or steam is injected into the combustor. CONSTITUTION:Air-fuel ratio is obtained by a computing element 10 operating on detecting signals delivered by a fuel flow rate detector 8 in a gas turbine combustor and an air flow rate detector 9 in a compressor. Mw/Mf is obtained by a multiplier 13 operating on detecting signals delivered by the fuel flow rate detector 8 and a water or steam flow rate detector 11, and a temperature drop in exhaust temperature is calculated by the multiplier 13 on the output of both the computing element 10, 12. Secondly, after compensated by a computing element 15 for the output of the delivery pressure detector 14 of the compressor, the exhaust temperature is compensated for the above temperature drop by a multiplier 16, and established as its set value A. Thus deviation between the set value A and the exhaust temperature detected by a detector 17 is obtained by an adder 18, and used as a control signal for the regulating valve 6 of fuel flow rate through a proportional integrator 19.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はガスタービンの排気温度制御方式に係り、特に
、排気温度の設定を空燃比及び水又は蒸気流量を制御パ
ラメータとして、水又は蒸気噴射流量いかんにかかわら
ず最高温度に設定するガスタービンの排気温度制御方式
に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to an exhaust temperature control method for a gas turbine, and in particular, the exhaust temperature is set by controlling the water or steam injection flow rate by using the air-fuel ratio and the water or steam flow rate as control parameters. This invention relates to a gas turbine exhaust temperature control method that sets the temperature to the maximum regardless of the situation.

〔発明の背景〕[Background of the invention]

ガスタービンの出力は燃焼ガス温度が高くなるほど上昇
するが、高温燃焼ガスに対する高温部材(燃焼器、ター
ビン動、靜翼9の耐性により燃焼ガス温度がある許容値
を越え乙と、高温部材の寿命が実用として使えない水準
にまで低下する。従ってガスタービンの最高出力制御を
燃焼ガス最高温度で制御すれば良いことになるが、燃焼
ガス温度を直接測定しても測定部での燃焼ガス温度の分
布が大きくばらつく(一般KI 000以上)ため。
The output of a gas turbine increases as the combustion gas temperature increases, but due to the resistance of high-temperature components (combustor, turbine drive, and silent blade 9) to high-temperature combustion gas, if the combustion gas temperature exceeds a certain allowable value, the lifespan of the high-temperature components may increase. Therefore, the maximum output of the gas turbine should be controlled using the maximum temperature of the combustion gas, but even if the combustion gas temperature is directly measured, the temperature of the combustion gas at the measuring part will be Because the distribution varies widely (general KI 000 or more).

平均的な燃焼温度を測定することは困難である。Measuring the average combustion temperature is difficult.

このため特公昭46−18203号公報に記載されてい
るようにこの最高温度ル11仰として、タービン排気温
度と圧縮機吐出圧力とを検知し、これにより燃焼ガス温
度を間接的に求め、許容値に達した時PCは出力を抑制
する制御を行っている。
For this reason, as described in Japanese Patent Publication No. 46-18203, the turbine exhaust temperature and compressor discharge pressure are detected using this maximum temperature rule, and the combustion gas temperature is thereby indirectly determined and the allowable value is determined. When this is reached, the PC performs control to suppress the output.

一方、近年公害対策としであるいは出力増大対策として
、燃焼器内に水又は蒸気を噴射する水又は蒸気噴射式の
ガスタービンが実用化されている。
On the other hand, in recent years, water or steam injection type gas turbines that inject water or steam into a combustor have been put into practical use as a measure against pollution or to increase output.

水噴射法を採用した装置は、第3図に示されるように、
噴射ノズルの中心部に水噴射孔100を設けてあり、水
は燃料102が噴霧され粒子となって流れの内側から噴
霧され、微粒子となって火炎を冷却するようになってい
る。この燃料噴射ノズ′ルによる火炎の形成状態と水噴
射による冷却状況が第4図に示されている。第4図にお
ける実線が火炎即ち燃料粒子群の流れであり、破線が微
粒子化された水の流れである。又第4図のA部及びB部
が高温部である。
As shown in Figure 3, the device that uses the water injection method is
A water injection hole 100 is provided in the center of the injection nozzle, and the water is sprayed from inside the flow of fuel 102 in the form of particles, so that the water becomes fine particles and cools the flame. FIG. 4 shows the state of flame formation by this fuel injection nozzle and the state of cooling by water injection. The solid line in FIG. 4 is the flow of flame, that is, the fuel particle group, and the broken line is the flow of atomized water. Also, parts A and B in FIG. 4 are high temperature parts.

これにより、水滴が火炎と同じように流れ、高温部分を
冷却し、このため主として高温部分の温度に支配される
NOx生成量が低減される。
This causes the water droplets to flow like a flame and cool the hot parts, thereby reducing the amount of NOx produced, which is mainly dominated by the temperature of the hot parts.

次に、水噴射による温度降下と水噴射水量との関係を第
5図に基づいて説明する。
Next, the relationship between the temperature drop due to water injection and the amount of water injected will be explained based on FIG. 5.

水噴射による温度降下の算出は噴射された水が全て燃焼
器内で蒸発すると仮定し、熱エネルギーのバランスから
求め、温度降下は空燃比(空気と燃料の比)と噴射水量
によって定まることを示している。
Calculating the temperature drop due to water injection assumes that all of the injected water evaporates in the combustor, and calculates it from the thermal energy balance. It shows that the temperature drop is determined by the air-fuel ratio (ratio of air and fuel) and the amount of injected water. ing.

しかしながら、最高温度制御に関しては、従来方式と同
様なため、水噴射により温度降下が生じ効率が下がると
いう問題がめった。以下に従来の制御方式について述べ
る。
However, since the maximum temperature control is the same as the conventional method, there is a frequent problem that the water injection causes a temperature drop and the efficiency decreases. The conventional control method will be described below.

第6図にはガスタービン発電所の主要機器構成が示され
ている。図において、大気より流入した空気は圧縮機1
によって圧縮され燃焼器2に導かれる。ここで燃料調整
弁より導かれた燃料を点火して燃焼させる。公害規制な
どで付加された水又は蒸気は水(蒸気)噴射調整弁7を
介して燃焼器2に導かれ、タービン3で膨張し、このエ
ネルギーは直結した発1!機4に伝達され、ii!気エ
ネルギーに変換されて遮断器5を介して系統へ送電され
る構成となっている。又、ガスタービンを制御するに際
しては第7図に示されるようにガスタービンの起動から
定格速度に至るまでの制御を行う起動制御と、負荷運転
時の制御を行う速度、負荷制御及びガスタービン燃焼ガ
ス温度許容値範囲内で運転するよう保護的要素をもつ排
気温度制御の3つの制−モードの中から1つの制御モー
ドを選択して燃料調整弁を制御するようになっている。
FIG. 6 shows the main equipment configuration of the gas turbine power plant. In the figure, the air flowing in from the atmosphere is compressor 1.
is compressed by the combustor 2 and introduced into the combustor 2. Here, the fuel introduced from the fuel regulating valve is ignited and combusted. Water or steam added due to pollution control etc. is guided to the combustor 2 via the water (steam) injection regulating valve 7, expanded by the turbine 3, and this energy is directly connected to the combustion engine 1! Transmitted to machine 4, ii! The energy is converted into air energy and transmitted to the grid via the circuit breaker 5. In addition, when controlling a gas turbine, as shown in Fig. 7, there is startup control that controls the gas turbine from startup to rated speed, and speed, load control, and gas turbine combustion that controls during load operation. The fuel regulating valve is controlled by selecting one control mode from three control modes of exhaust temperature control that have protective elements so as to operate within a gas temperature tolerance range.

次にガスタービンの熱力学的サイクルを第8図に示す。Next, the thermodynamic cycle of the gas turbine is shown in FIG.

第8図において、吸気された大気は圧縮されることによ
って温度が上昇する。そして燃焼器2で爆発したガスは
高温ガスとなって燃焼器2出口側へ移行し、タービン3
で膨張したガスは排気される。従って、燃焼器出口側の
温度から排気温度への移行量がガスタービンの仕事i:
(出力)となり、許容燃焼温度T3が高いほど出力が増
加することになる。この時吸気温度がA−+B−+Cと
低下するに従って燃焼器出口側の温度から排気温度への
移行量が増加することになる。
In FIG. 8, the temperature of the inhaled air increases as it is compressed. Then, the gas that exploded in the combustor 2 becomes high-temperature gas and moves to the combustor 2 outlet side, and the turbine 3
The expanded gas is exhausted. Therefore, the amount of transition from the temperature on the combustor outlet side to the exhaust temperature is the work of the gas turbine i:
(output), and the higher the allowable combustion temperature T3, the more the output increases. At this time, as the intake air temperature decreases to A-+B-+C, the amount of transition from the temperature on the combustor outlet side to the exhaust temperature increases.

次に2圧縮機吐出圧力P2と排気温度設定T4sとの関
係を第9図に示す。第9図において、吸気温度によりガ
スタービンの熱力学的サイクルは変わるため、大気の変
化を圧縮機1の吐出圧力を検知することによって、この
値をパラメータとして許容燃焼温度T3を一定とし、第
8図より排気温度T4を求めた特性が第9図の特性であ
る。従って、第9図より圧縮機吐出圧力P2に対して排
気温度を設定し、これを越えないようにするのが第7図
に示す排気温度制御である。
Next, FIG. 9 shows the relationship between the second compressor discharge pressure P2 and the exhaust temperature setting T4s. In FIG. 9, since the thermodynamic cycle of the gas turbine changes depending on the intake air temperature, the change in the atmosphere is detected by the discharge pressure of the compressor 1, and this value is used as a parameter to keep the allowable combustion temperature T3 constant. The characteristic of the exhaust gas temperature T4 obtained from the figure is the characteristic shown in FIG. Therefore, the exhaust gas temperature control shown in FIG. 7 sets the exhaust temperature with respect to the compressor discharge pressure P2 from FIG. 9 and prevents it from exceeding this value.

次に、第10図及び第11図に水又は蒸気の噴射量を次
第に増加させた場合の最大許容燃焼ガス温度での圧縮機
吐出圧力及び排気温度の変化を示す。
Next, FIGS. 10 and 11 show changes in compressor discharge pressure and exhaust temperature at the maximum allowable combustion gas temperature when the amount of water or steam injected is gradually increased.

第1O図において、大気温度Bのとき水又は蒸気の噴射
量をイ→口→/・と増すと、圧縮機吐出圧力P2がイ′
→ロ′→ハ′の如く上昇し、排気温度T4がイ“→口“
→・Jの如く下降する。これは燃焼器内に噴射された水
が水蒸気化されて燃焼ガスに混合されるため、結果的に
は燃焼ガス流量が増大し、これが吐出圧力の増大(イ′
→ロ′→ハ′)?もたらすことによる。
In Fig. 1O, when the atmospheric temperature is B, when the amount of water or steam injected is increased from I to mouth to /..., the compressor discharge pressure P2 increases to
The exhaust temperature T4 increases as shown in →B'→C'.
→・It descends like J. This is because the water injected into the combustor is vaporized and mixed with the combustion gas, resulting in an increase in the combustion gas flow rate, which causes an increase in the discharge pressure (i'
→Ro′→Ha′)? By bringing.

大気Bのとき得られた472口′、・・′及びイ“。472 mouths', .

口“、ハ”、を第9図にあてはめ、又同様にして大気温
度A及びBの場合の各点を第9図にあてはめたのが第1
1図である。
Figure 1 shows the results by applying ``, `` to Figure 9, and similarly applying each point in the case of atmospheric temperatures A and B to Figure 9.
Figure 1.

第11図において、水又は蒸気噴射量がイ→ロ→ハと増
大すると、排気温度設定T4sは高くなることになる。
In FIG. 11, as the water or steam injection amount increases from A to B to C, the exhaust temperature setting T4s becomes higher.

このように従来の装置においては排気温度制御の如く、
水又は蒸気の流量がない時の制御では。
In this way, in conventional equipment, such as exhaust temperature control,
For control when there is no flow of water or steam.

例えばイで設定した場合、水又は蒸気噴射量が口又はハ
であってもイの制御線で制御されることにかりガスター
ビンの最高燃焼温度に達する前に燃料が抑制されるとい
う欠点があった。
For example, if the setting is set in (a), even if the amount of water or steam injected is 1 or 3, it will be controlled by the control line in (a), which has the disadvantage that the fuel will be suppressed before the maximum combustion temperature of the gas turbine is reached. Ta.

〔発明の目的〕[Purpose of the invention]

本発明は、前記従来の課題に鑑みて為されたものであり
、その目的は燃焼器のガス温度に応じてガスタービンの
出力増加を図ることができるガスタービンの排気温度制
御方式を提供することにある。
The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to provide an exhaust gas temperature control system for a gas turbine that can increase the output of the gas turbine according to the gas temperature of the combustor. It is in.

〔発明の概要〕[Summary of the invention]

前記目的を達成するために1本発明は、水又は蒸気の噴
射時、吐出圧力の上昇によりガスタービン最大出力降下
を防止するための水又は蒸気噴射量と空燃比を基に燃焼
器ガス温度に応じて排気温度制御を行うことを特徴とす
る。
In order to achieve the above object, the present invention provides a method for adjusting the combustor gas temperature based on the amount of water or steam injection and the air-fuel ratio in order to prevent a drop in the maximum output of the gas turbine due to an increase in discharge pressure when water or steam is injected. The feature is that the exhaust temperature is controlled accordingly.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明の好適な実施例を図面に基づいて説明する
A preferred embodiment of the present invention will be described below with reference to the drawings.

第1図には1本発明の好適な実施例の構成が示されてい
る。第1図において、燃料流量検出器8にて検出された
信号と、流量検出器9で検出された信号により、演算器
10で空燃比を求める。一方、燃料流量検出器8及び水
又は蒸気流量検出器11にて検出された信号と、燃料流
量信号により。
FIG. 1 shows the configuration of a preferred embodiment of the present invention. In FIG. 1, an air-fuel ratio is determined by a calculator 10 based on a signal detected by a fuel flow rate detector 8 and a signal detected by a flow rate detector 9. On the other hand, based on the signals detected by the fuel flow rate detector 8 and the water or steam flow rate detector 11, and the fuel flow rate signal.

演算器12でMW/Mfを求め、演算器10.12の信
号を掛算器13で演算し、第5図に示されるような排気
温度降下温度を算出する。
The arithmetic unit 12 calculates MW/Mf, and the multiplier 13 calculates the signal from the arithmetic unit 10.12 to calculate the exhaust gas temperature drop as shown in FIG.

又、圧縮機吐出圧検出器14で検出した信号により演算
器15で排気温度に対する補正を行い。
Further, based on the signal detected by the compressor discharge pressure detector 14, the arithmetic unit 15 corrects the exhaust temperature.

掛算器16で、掛算器13よりの水噴射流量による温度
低下分を補正し、これを排気温度制御(最大許容出力)
の設定とする。
The multiplier 16 corrects the temperature drop due to the water injection flow rate from the multiplier 13, and uses this to control the exhaust temperature (maximum allowable output).
The settings are as follows.

又、排気温度検出器17より検出された信号を加算器1
8でつき合わせ、比例積分器19で燃料流量g幡弁の制
御信号とする。この時、掛算器16の出力信号A(排気
温度設定値)と、フィードバック信号との制御特性を第
2図に示す。
Further, the signal detected by the exhaust temperature detector 17 is sent to the adder 1.
8, and a proportional integrator 19 uses the fuel flow rate g as a control signal for the valve. At this time, the control characteristics of the output signal A (exhaust temperature set value) of the multiplier 16 and the feedback signal are shown in FIG.

圧縮機吐出圧力Pに対して、水又は蒸気噴射流量MW、
空気流量M a+燃料流量Mfにより水噴射をすること
による出力低下を、排気温度設定を高くすることで最高
出力を可能とする。
Water or steam injection flow rate MW with respect to compressor discharge pressure P,
Although the output decreases due to water injection due to the air flow rate Ma+fuel flow rate Mf, the maximum output can be achieved by increasing the exhaust temperature setting.

〔発明の効果〕 以上説明したように1本発明によれば、水又は蒸気噴射
量にかかわらず、燃焼温度が最大許容値となるため、ガ
スタービンの出力を最大限に引き出すことができるとい
う優れた効果が得られる。
[Effects of the Invention] As explained above, according to the present invention, the combustion temperature becomes the maximum allowable value regardless of the amount of water or steam injected, so the output of the gas turbine can be maximized. You can get the same effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2図は圧縮
機吐出圧力と排気温度設定との関係を示す線図、第3図
は従来の水噴射用燃料ノズルの断面図、第4図は従来の
燃料ノズルによる火炎形成と水滴粒子の流れを説明する
ための図、第5図は水噴射による温度降下を説明するた
めの線図、第6図は従来の装置の要部構成図、第7図は
従来の装置の制菌方法を説明するための図、第8図はエ
ンタルピと温度との関係を示す線図、第、9図は圧縮機
吐出圧力と排気温度設定との関係を示す線図。 第10図はエンタルピと温度との関係を示す線図。 第11図は圧縮機吐出圧力と排気温度設定との関係を示
す線図である、 1・・・圧縮機、2・・・燃焼器、3・・・タービン、
4・・・発電機、5・・・遮断器、6・・・燃料調整弁
、7・・・水又は蒸気噴射調整弁、8・・・燃料流量検
出器、9・・・空気流量検出器、10・・・演算器、1
1・・・水又は蒸気流量検出器、12・・・演算器、1
3・・・掛算器、14・・・圧縮機吐出圧力検出器、1
5・・・演算器、16・・・掛算器、17・・・排気温
度検出器、18・・・加算器。 19・・・比例積分器。
FIG. 1 is a configuration diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing the relationship between compressor discharge pressure and exhaust temperature setting, and FIG. 3 is a sectional view of a conventional water injection fuel nozzle. Figure 4 is a diagram to explain the flame formation and flow of water droplets by a conventional fuel nozzle, Figure 5 is a diagram to explain the temperature drop due to water injection, and Figure 6 is the main part of the conventional device. The configuration diagram, Figure 7 is a diagram for explaining the conventional antibacterial method, Figure 8 is a diagram showing the relationship between enthalpy and temperature, and Figures 9 and 9 are diagrams showing the relationship between compressor discharge pressure and exhaust temperature settings. Diagram showing the relationship between. FIG. 10 is a diagram showing the relationship between enthalpy and temperature. FIG. 11 is a diagram showing the relationship between compressor discharge pressure and exhaust temperature setting, 1...Compressor, 2...Combustor, 3...Turbine,
4... Generator, 5... Circuit breaker, 6... Fuel regulating valve, 7... Water or steam injection regulating valve, 8... Fuel flow rate detector, 9... Air flow rate detector , 10... Arithmetic unit, 1
1... Water or steam flow rate detector, 12... Arithmetic unit, 1
3... Multiplier, 14... Compressor discharge pressure detector, 1
5... Arithmetic unit, 16... Multiplier, 17... Exhaust temperature detector, 18... Adder. 19...Proportional integrator.

Claims (1)

【特許請求の範囲】[Claims] 1、水又は蒸気を燃焼器に噴射する装置を有するガスタ
ービンにおいて、圧縮機の吐出圧力からガスタービンを
最高出力に維持するための排気温度の設定値を定め、空
燃比と水又は蒸気の流量から水又は蒸気の噴射に伴なう
排気温度の降下温度を求め、この温度から降下した排気
温度を設定値まで高めるための燃料流量を求め、この燃
料流量を基にガスタービンを運転することを特徴とする
ガスタービンの排気温度制御方式。
1. For gas turbines that have a device that injects water or steam into the combustor, determine the set value of the exhaust temperature to maintain the gas turbine at maximum output from the discharge pressure of the compressor, and determine the air-fuel ratio and the flow rate of water or steam. Find the temperature at which the exhaust temperature drops due to water or steam injection, find the fuel flow rate to raise the exhaust temperature that has dropped from this temperature to the set value, and operate the gas turbine based on this fuel flow rate. Characteristic gas turbine exhaust temperature control method.
JP21768085A 1985-09-30 1985-09-30 Exhaust temperature control system for gas turbine Pending JPS6278437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21768085A JPS6278437A (en) 1985-09-30 1985-09-30 Exhaust temperature control system for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21768085A JPS6278437A (en) 1985-09-30 1985-09-30 Exhaust temperature control system for gas turbine

Publications (1)

Publication Number Publication Date
JPS6278437A true JPS6278437A (en) 1987-04-10

Family

ID=16708032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21768085A Pending JPS6278437A (en) 1985-09-30 1985-09-30 Exhaust temperature control system for gas turbine

Country Status (1)

Country Link
JP (1) JPS6278437A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057942U (en) * 1991-07-16 1993-02-02 三菱重工業株式会社 Turbine inlet temperature limit control circuit
JP2009079550A (en) * 2007-09-26 2009-04-16 Hitachi Ltd Water or steam injection type gas turbine and its control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057942U (en) * 1991-07-16 1993-02-02 三菱重工業株式会社 Turbine inlet temperature limit control circuit
JP2009079550A (en) * 2007-09-26 2009-04-16 Hitachi Ltd Water or steam injection type gas turbine and its control method

Similar Documents

Publication Publication Date Title
US8141369B2 (en) Method of regulation of the temperature of hot gas of a gas turbine
US9995223B2 (en) Combustor and method of fuel supply and converting fuel nozzle for advanced humid air turbine
EP1231369B1 (en) Gas turbine control system compensating water content in combustion air
US20060005526A1 (en) Combustor controller
CA1210447A (en) Rapid power response turbine
CN103195587B (en) Fuel flow control method and fuel flow control system of gas turbine combustor for humid air gas turbine
US4550565A (en) Gas turbine control systems
JPH08218898A (en) Operating method of gas turbo device group
JP2008051099A (en) Gas turbine, and system for operating gas turbine
JP2015503059A (en) Gas component control in gas turbine generators using flue gas recirculation.
JP4895465B2 (en) Flame temperature control and adjustment system for single shaft gas turbine
JPS6278437A (en) Exhaust temperature control system for gas turbine
Rowen Operating characteristics of heavy-duty gas turbines in utility service
JPS61286537A (en) Exhaust gas temperature control method of gas turbine
JPH0670380B2 (en) Combustion turbine fuel flow rate adjustment method and device, ignition temperature excess prevention method and device, and control method and device
JP3537835B2 (en) Gas turbine control method
JP3811033B2 (en) Control device for gas turbine equipment
ITMI20090766A1 (en) DEVICE AND METHOD TO CHECK THE TEMPERATURE AT THE DISCHARGE OF A GAS TURBINE OF AN ENERGY PRODUCTION PLANT
JP2692978B2 (en) Start-up operation method of combined cycle plant
JP2021095854A (en) Steam injection gas turbine
JPH01116205A (en) Output control device for compound power plant
JP2004176582A (en) Gas turbine power plant, control method of the same, and gas turbine control device
FI102692B (en) Methods of operation of a gas turbine plant for simultaneous production of electricity electricity and heat and gas turbine plant for the practice of the method
Malakhov et al. Heat Characteristics of V94. 2 Gas-Turbine Units Operating at the PGU-450T Combined-Cycle Plant of the North-West Cogeneration Plant of St. Petersburg
JPH11182811A (en) Pressurized fluidized bed combustion plant