JPS627681B2 - - Google Patents
Info
- Publication number
- JPS627681B2 JPS627681B2 JP53064812A JP6481278A JPS627681B2 JP S627681 B2 JPS627681 B2 JP S627681B2 JP 53064812 A JP53064812 A JP 53064812A JP 6481278 A JP6481278 A JP 6481278A JP S627681 B2 JPS627681 B2 JP S627681B2
- Authority
- JP
- Japan
- Prior art keywords
- humidity
- sensitive
- polyheteroacid
- acid
- electrical resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000463 material Substances 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 239000000126 substance Substances 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000013078 crystal Substances 0.000 claims description 3
- 239000002253 acid Substances 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- DHRLEVQXOMLTIM-UHFFFAOYSA-N phosphoric acid;trioxomolybdenum Chemical group O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.OP(O)(O)=O DHRLEVQXOMLTIM-UHFFFAOYSA-N 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 241001168730 Simo Species 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- VLAPMBHFAWRUQP-UHFFFAOYSA-L molybdic acid Chemical compound O[Mo](O)(=O)=O VLAPMBHFAWRUQP-UHFFFAOYSA-L 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- IYDGMDWEHDFVQI-UHFFFAOYSA-N phosphoric acid;trioxotungsten Chemical compound O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.OP(O)(O)=O IYDGMDWEHDFVQI-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
- Non-Adjustable Resistors (AREA)
Description
この発明は湿度感応体に関し、その目的はポリ
ヘテロ酸系物質を湿度感応成分(以下感湿成分を
略す。)とした湿度感応体を提供することにあ
る。
従来、相対湿度センサーとしては毛髪や植物繊
維の伸長変化、乾湿球の温度差あるいは水蒸気の
露点を測定するなどの物理現象を利用したセンサ
ー、電解質(例えばLicl)の電気伝導度変化やリ
ン酸溶液の電離度変化等の電気化学的現象を利用
したセンサー、赤外線吸光度を測定する光学的セ
ンサー、或いはセラミツク半導体やプラスチツク
などの表面電気抵抗変化や水晶発振子の共振周波
数変化を測定するなどの電気的センサーなどが広
く知られている。
これらのうち電気的センサーは一般にその装置
が小型でしかも操作が簡単なため取扱いの容易性
の点で他のセンサーに較べて優れているものであ
り、特にセラミツク半導体などを感応体とするも
のは量産化しやすく廉価であるという利点があ
る。
ところがこの種セラミツク系などの感応体は表
面電気抵抗が一般に103〜108(Ωcm)と大きく、
そのため表面に水蒸気が露結、付着すれば電気抵
抗がこの付着水により容易に変化して感湿能に悪
影響を与える弊害がある。
そこでこの発明者らは上記事情に鑑み、小型で
取扱いが容易であつてかつ廉価であるという上記
セラミツク系センサーの利点をもち、しかも表面
付着水の影響による測定誤差が生じないすなわち
電気抵抗の小さい湿度感応体について鋭意検討を
続けた結果、感湿成分としてポリヘテロ酸系物質
が極めて優れていることを見い出しこの発明を完
成した。
図面はこの発明に係る湿度感応体を用いた湿度
センサーの一実施例を示すものであり、以下図面
に基いてこの発明を説明する。
図中1はカーボンなどからなる端子2(21,
22)で端持される感応成分たるポリヘテロ酸系
物質を所要の形態とした湿度感応体、3は電圧安
定のために回路に設けられた保護抵抗4および導
線5を介して感応体1に電場を与える交流電源で
あり、6は端子間(21,22)の電位差を計測
する電圧計である。この発明において感湿成分と
して使用するポリヘテロ酸系物質とは、化学式H
(8-o)〔XY12O40〕・mH2Oで示されるポリヘテロ
酸であつて、結晶水量mは湿度により12≦m≦30
をとりえ、Xは原子価nを有するSi,Pより選択
される元素、YはMoまたはWである。好適な具
体例としてはリンモリブデン酸(H3
〔PMo12O40〕・30H2O)、リンタングステン酸(H3
〔PW12O40〕・30H2O)、ケイ素モリブデン酸(H4
〔SiMo12O40〕・30H2O)、ケイ素タングステン酸
(H4〔SiW12O40〕・30H2O)などが挙げられる。
これらのポリヘテロ酸系物質は、一般に相対湿
度が70%程度もしくはそれ以上のときに結晶水数
を30程度持ち、相対湿度が低下して約50%前後に
なると結晶水数が12〜13程度までに漸次的に減少
する特性を持ちしかもこの結晶水数の変化は可逆
的かつその応答が迅速に行なわれるから、相対湿
度の値に応じて結晶水数が定まる。
このポリヘテロ酸系物質を感湿成分とした感応
体1に交流電源3(1KHz10V)から保護抵抗4
(10KΩ1w)を介して電流を流すと、この結晶水
数が電荷の移動量を相律して感応体1の電気抵抗
を相対湿度の値に応じて定め、その結果端子(2
1,22)間の電位差は相対湿度における感応体
の固有の値として電圧計6に表われて湿度が検知
される。
しかもポリヘテロ酸系物質は一般に電気抵抗が
小さいから感応体1の電気抵抗値は101〜104(Ω
cm)と実用的な小さい値を示し、空気中の水蒸気
が蒸着付着しても従来のように電気抵抗値が大き
く変化することはない。
この湿度感応体1を製造するには、通常ポリヘ
テロ酸系物質を加圧成形して、もしくはガラス不
織布等の基体にポリヘテロ酸系物質の水溶液を含
浸塗布乾燥した後加圧するなどの方法で方柱状、
円柱状等の所要の形態にすればよく次いで両末端
にカーボンなどの端子を取り付ければ電気的セン
サーに供するに望ましい端子付感応体となる。
尚、ポリヘテロ酸系物質単体を加圧成形した感
応体1は低湿度側では乾燥しやすく高湿度側では
潮解して壊れ易い傾向があるから相対湿度変化が
激しい場所においては基体に含浸してなる感応体
を用いる方が好ましい。
以上詳述したように、この発明に係る湿度感応
体は感湿成分であるポリヘテロ酸系物質は電気抵
抗が小さく実用性に優れているため、付着水が感
応体表面に蒸結しても感湿能に悪影響を及ぼす恐
れはなく、湿度センサーに供すれば簡易な装置で
取り扱い性に優れたセンサーが得られる。
次に実施例に基き更にこの発明を詳細に説明す
る。
実施例 1
リンモリブデン酸(H3PMo12O40・29H2O;米
山薬品工業社製)を0.5〜3mol/lの割合で純水
に溶解後、再結晶させ80℃、RH20%以下で3時
間乾燥して精製した。
この精製リンモリブテン酸を縦10mm横2mm長さ
20mmに成形圧5ton/cm2で加圧成形した後両末端に
カーボン端子を加圧成形して取り付け端子付き湿
度感応体を作つた。
実施例 2〜4
リンタングステン酸(H3PW12O40・29H2O)
(実施例2)、ケイ素モリブデン酸
(H4SiMo12O40・30H2O)(実施例3)、およびケ
イ素タングステン酸(H4SiW12O40・30H2O)(実
施例4)をそれぞれ実施例1と同様に処理して湿
度感応体を作つた。
実施例 5〜6
リンタングステン酸(実施例5)、リンモリブ
デン酸(実施例6)、を実施例1と同様に精製処
理した後、純水に2〜3mol/lの割合で溶解
し、この溶液を巾5mm長さ15mm厚み0.5mmのガラ
ス不織布に含浸塗布後80℃RH20%で3時間乾燥
し、更に500Kg/cm2で加圧した。次いで両末端に
カーボン端子を実施例1と同様にして取り付け端
子付き湿度感応体を作つた。
実施例1〜4で得た4種の感応体を図面で示す
回路に組み込み相対湿度50〜90%の各湿度に3時
間さらした後交流電圧(1KHz10V)を印加した時
の感応体の電気抵抗を計測した。
尚実施例1および2はそれぞれ計測時の温度を
15℃および35℃の2条件で、実施例3および4は
30℃の1条件で行なつた。結果を第1表に示す。
実施例5〜6で得た感応体を上記と同様に回路
に組み込み、交流電圧(前記と同条件)を印加し
た状態下相対湿度を50〜90%の範囲内で変化させ
て湿度変化に対する感応体の応答性を調べた。尚
温度は35℃とした。
結果を第2表及び第3表に示す。
The present invention relates to a humidity sensitive material, and an object thereof is to provide a humidity sensitive material containing a polyheteroacid-based material as a humidity sensitive component (hereinafter referred to as "humidity sensitive component"). Conventional relative humidity sensors have been based on physical phenomena such as changes in the elongation of hair or plant fibers, temperature differences between dry and wet bulbs, or the dew point of water vapor, changes in the electrical conductivity of electrolytes (such as LiCl), and phosphoric acid solutions. Sensors that utilize electrochemical phenomena such as changes in the ionization degree of Sensors are widely known. Among these, electrical sensors are generally superior to other sensors in terms of ease of handling because their devices are small and easy to operate, especially those that use ceramic semiconductors as their sensing bodies. It has the advantage of being easy to mass produce and being inexpensive. However, this type of ceramic-based sensitive material generally has a large surface electrical resistance of 10 3 to 10 8 (Ωcm).
Therefore, if water vapor condenses or adheres to the surface, the electrical resistance will easily change due to the adhered water, which has the disadvantage of adversely affecting the moisture sensitivity. In view of the above circumstances, the present inventors have developed a ceramic sensor that has the advantages of being small, easy to handle, and inexpensive, as well as eliminating measurement errors due to the influence of water adhering to the surface, i.e., having low electrical resistance. As a result of intensive research into humidity sensitive materials, the inventors discovered that polyheteroacid-based substances are extremely effective as humidity sensitive components, and completed this invention. The drawings show one embodiment of a humidity sensor using a humidity sensitive body according to the present invention, and the present invention will be explained below based on the drawings. In the figure, 1 is a terminal 2 (2 1 ,
2 2 ) is a humidity sensitive body in which a polyheteroacid-based substance as a sensitive component is in the required form; It is an AC power source that provides an electric field, and 6 is a voltmeter that measures the potential difference between terminals (2 1 , 2 2 ). The polyhetero acid-based substance used as a moisture-sensitive component in this invention has the chemical formula H
(8-o) [XY 12 O 40 ]・mH 2 O is a polyheteroacid, and the amount of crystal water m is 12≦m≦30 depending on the humidity.
, X is an element selected from Si and P having a valence of n, and Y is Mo or W. A preferred specific example is phosphomolybdic acid (H 3
[PMo 12 O 40 ]・30H 2 O), phosphotungstic acid (H 3
[PW 12 O 40 ]・30H 2 O), silicon molybdic acid (H 4
Examples include [SiMo 12 O 40 ]・30H 2 O), silicon tungstic acid (H 4 [SiW 12 O 40 ]・30H 2 O), and the like. These polyheteroacid-based substances generally have a water crystallization number of about 30 when the relative humidity is about 70% or higher, and when the relative humidity decreases to about 50%, the crystallization water number decreases to about 12 to 13. In addition, this change in the number of water of crystallization is reversible and the response is rapid, so the number of water of crystallization is determined according to the value of relative humidity. A protective resistor 4 is connected to an AC power source 3 (1KHz10V) to a sensitive body 1 containing this polyheteroacid-based substance as a moisture-sensitive component.
When a current is passed through the terminal (10KΩ1W), the number of crystal water regulates the amount of charge transfer and determines the electrical resistance of the sensitive element 1 according to the relative humidity value, and as a result, the terminal (2
The potential difference between 1 and 2 2 ) appears on the voltmeter 6 as a specific value of the sensitive body at relative humidity, and the humidity is detected. Moreover, since polyheteroacid-based materials generally have low electrical resistance, the electrical resistance value of the sensitive body 1 is 10 1 to 10 4 (Ω
cm), which is a small value for practical use, and even if water vapor in the air is deposited, the electrical resistance value does not change significantly like in the past. To manufacture this humidity sensitive body 1, a polyheteroacid material is usually pressure-molded, or a substrate such as a glass nonwoven fabric is impregnated with an aqueous solution of a polyheteroacid material, dried, and then pressurized. ,
It can be formed into a desired shape such as a cylinder, and then terminals made of carbon or the like can be attached to both ends to form a sensitive body with terminals suitable for use as an electrical sensor. Note that the sensitive material 1, which is formed by pressure molding a single polyheteroacid material, tends to dry out at low humidity and deliquesce and break at high humidity, so it should be impregnated into the substrate in places where the relative humidity changes drastically. It is preferable to use a sensitive body. As detailed above, the humidity sensitive material according to the present invention has a humidity sensitive component, which is a polyheteroacid material, which has low electrical resistance and is excellent in practical use. There is no risk of adversely affecting the moisture content, and if used in a humidity sensor, a sensor with excellent handling can be obtained with a simple device. Next, the present invention will be further explained in detail based on Examples. Example 1 Phosphormolybdic acid (H 3 PMo 12 O 40.29H 2 O; manufactured by Yoneyama Pharmaceutical Co., Ltd.) was dissolved in pure water at a ratio of 0.5 to 3 mol/l, and then recrystallized at 80°C and RH 20% or less. It was purified by drying for hours. This purified phosphomolybutenic acid is 10 mm long and 2 mm wide.
After pressure molding to 20 mm at a molding pressure of 5 ton/cm 2 , carbon terminals were pressure molded at both ends to create a humidity sensitive body with attachment terminals. Examples 2 to 4 Phosphortungstic acid (H 3 PW 12 O 40・29H 2 O)
(Example 2), silicon molybdic acid (H 4 SiMo 12 O 40 ·30H 2 O) (Example 3), and silicon tungstic acid (H 4 SiW 12 O 40 ·30H 2 O) (Example 4), respectively. A humidity sensitive material was prepared in the same manner as in Example 1. Examples 5 to 6 Phosphortungstic acid (Example 5) and phosphomolybdic acid (Example 6) were purified in the same manner as in Example 1, and then dissolved in pure water at a ratio of 2 to 3 mol/l. The solution was impregnated and coated on a glass nonwoven fabric with a width of 5 mm, a length of 15 mm, and a thickness of 0.5 mm, and then dried at 80° C. and RH 20% for 3 hours, and further pressurized at 500 kg/cm 2 . Next, carbon terminals were attached to both ends in the same manner as in Example 1 to produce a humidity sensitive body with terminals. The four types of sensitive bodies obtained in Examples 1 to 4 were assembled into the circuit shown in the drawings, exposed to relative humidity of 50% to 90% for 3 hours, and then AC voltage (1KHz 10V) was applied. Electrical resistance of the sensitive bodies. was measured. In Examples 1 and 2, the temperature at the time of measurement was
Examples 3 and 4 were carried out under two conditions: 15°C and 35°C.
The test was carried out under one condition: 30°C. The results are shown in Table 1. The sensitive bodies obtained in Examples 5 and 6 were assembled into a circuit in the same manner as above, and the relative humidity was varied within the range of 50 to 90% under the condition of applying an AC voltage (same conditions as above) to measure the sensitivity to humidity changes. We investigated the body's responsiveness. The temperature was 35°C. The results are shown in Tables 2 and 3.
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】
上記結果から明らなようにこの発明に係るポリ
ヘテロ酸系物質を感湿成分とする感応体は電気抵
抗値が101〜104Ωcmと小さく実用性に優れてお
り、しかも湿度変化に対する応答性が10%の増減
に対し略15分で平衡値に達する優れた湿度感応体
である。[Table] As is clear from the above results, the sensitive material according to the present invention, which has a polyheteroacid-based material as a moisture-sensitive component, has a small electrical resistance value of 10 1 to 10 4 Ωcm, which is excellent in practical use. It is an excellent humidity sensitive material whose responsiveness reaches an equilibrium value in about 15 minutes for a 10% increase/decrease.
図面はこの発明に係るポリヘテロ酸系物質から
なる湿度感応体を使用した湿度センサーの一実施
例の概略図である。
1……湿度感応体。
The drawing is a schematic diagram of an embodiment of a humidity sensor using a humidity sensitive body made of a polyheteroacid-based material according to the present invention. 1...Humidity sensitive body.
Claims (1)
結晶水量mは湿度により12≦m≦30をとりえ、X
は原子価nを有するSi,Pより選択される元素
を、YはMo,Wを、それぞれ意味する。)で表わ
されるポリヘテロ酸系物質を湿度感応成分として
使用することを特徴とする湿度感応体。[Claims] 1. Chemical formula H (8-o) [XY 12 O 40 ]・mH 2 O (however,
The amount of crystal water m can be 12≦m≦30 depending on the humidity, and
represents an element selected from Si and P having a valence of n, and Y represents Mo and W, respectively. ) A humidity-sensitive material characterized by using a polyheteroacid-based substance represented by the following as a humidity-sensitive component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6481278A JPS54156585A (en) | 1978-05-30 | 1978-05-30 | Humidity sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6481278A JPS54156585A (en) | 1978-05-30 | 1978-05-30 | Humidity sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54156585A JPS54156585A (en) | 1979-12-10 |
JPS627681B2 true JPS627681B2 (en) | 1987-02-18 |
Family
ID=13269021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6481278A Granted JPS54156585A (en) | 1978-05-30 | 1978-05-30 | Humidity sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS54156585A (en) |
-
1978
- 1978-05-30 JP JP6481278A patent/JPS54156585A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS54156585A (en) | 1979-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3058079A (en) | Hygrometer elements | |
JPH0340334B2 (en) | ||
US2609688A (en) | Humidity sensitive device | |
US4280115A (en) | Humidity sensor | |
JPS627681B2 (en) | ||
JPS627682B2 (en) | ||
JPH0215820B2 (en) | ||
JPS5897801A (en) | Moisture sensitive element | |
RU2096777C1 (en) | Humidity transducer | |
JPH0318750A (en) | Humidity sensor element | |
JPH0153483B2 (en) | ||
JP2898730B2 (en) | Moisture sensitive element | |
JPH0658901A (en) | Hygrometer | |
JPS60211346A (en) | Dew condensation sensor | |
JPH05119010A (en) | Moisture sensor | |
SU381014A1 (en) | AIR HUMIDITY SENSOR | |
JPS5910843A (en) | Dew condensation sensor | |
JPS5835901A (en) | Moisture sensitive element | |
SU437954A1 (en) | Gas humidity sensor | |
JPH0224463B2 (en) | ||
JPS6148860B2 (en) | ||
JPH05119009A (en) | Moisture sensor | |
JPH04152260A (en) | Humidity sensor | |
JPH05196591A (en) | Humidity sensor | |
JPH0447441B2 (en) |