JPS6276435A - Method for measuring bactericidal action power of leucocyte by chemiluminescence method - Google Patents

Method for measuring bactericidal action power of leucocyte by chemiluminescence method

Info

Publication number
JPS6276435A
JPS6276435A JP21845085A JP21845085A JPS6276435A JP S6276435 A JPS6276435 A JP S6276435A JP 21845085 A JP21845085 A JP 21845085A JP 21845085 A JP21845085 A JP 21845085A JP S6276435 A JPS6276435 A JP S6276435A
Authority
JP
Japan
Prior art keywords
fluorescent material
leucocyte
oxidation catalyst
bactericidal action
fluorescent substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21845085A
Other languages
Japanese (ja)
Other versions
JPH0457218B2 (en
Inventor
Haruo Watanabe
治夫 渡辺
Noboru Mitsuhida
光飛田 登
Minoru Ando
實 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP21845085A priority Critical patent/JPS6276435A/en
Publication of JPS6276435A publication Critical patent/JPS6276435A/en
Publication of JPH0457218B2 publication Critical patent/JPH0457218B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PURPOSE:To measure the bactericidal action power of leucocyte by acting a non-fluorescent material to H2O2 formed when the leucocyte develops the bactericidal action in the presence of an oxidation catalyst to convert the same to a fluorescent material, then bringing the fluorescent material into reaction with diesters of oxalic acid and separately added H2O2 under the condition to inhibit the oxidation catalyst and measuring the emission intensity thereof. CONSTITUTION:If opsonized zymosan is applied to the leucocyte, the phagositosis thereof is stimulated and is conducted to the state in which the macrophage and neutiocyte of leucocyte develop the bactericidal action. An NADPH oxidase system is activated and releases O2<-> as the bactericidal action in this case and the O2<-> is released in the form of H2O2 by the dismutase action into the system. If the non-fluorescent material is acted to the H2O2 in the presence of the oxidation catalyst, the material is converted to the fluorescent material and if the diesters of oxalic acid and H2O2 are acted thereto, the formed dioxycetanedion provides energy dislocation to the fluorescent material and the fluorescent material emits light.

Description

【発明の詳細な説明】 灰スーヒの利用分野 本発明は、化学発光法による白血球の殺菌作用能の測定
法、さらに詳しくは、白血球の殺菌作用(食作用)の発
現の際に生成される過酸化水素を化学発光法により定量
し、それによって白血球の殺菌作用能を測定する方法に
関する。
Detailed Description of the Invention Field of Application of Ash Suhi The present invention relates to a method for measuring the bactericidal activity of leukocytes by chemiluminescence, and more specifically, a method for measuring the bactericidal activity of leukocytes by chemiluminescence, and more specifically, a method for measuring the bactericidal activity of leukocytes by chemiluminescence. This invention relates to a method for quantifying hydrogen oxide by chemiluminescence and thereby measuring the bactericidal activity of leukocytes.

j(3人度 生体内に細菌などの異物が侵入して来た場合、白血球が
食作用によりそれら異物を細胞内に取り込んで殺菌作用
を発現することは周知である。すなわち、細菌などが侵
入すると白血球中のマクロファージや好中球がそれらを
貧食し、その際、殺菌作用物質として活性酵素(スーパ
ーオキサイド02−1過酸化水素H202、ヒドロキン
ラジカル0II−、ソングレットオキンジェン+02)
を放出し、このうち、O,′−は細胞中のスーパーオキ
サイドノスムタ〜ゼにより不均化され、速やかに820
2に転換されることが知られている。
It is well known that when foreign substances such as bacteria invade a living body, white blood cells take them into the cells through phagocytosis and exert a bactericidal effect. Then, macrophages and neutrophils in white blood cells phagocytose them, and at that time, active enzymes (superoxide 02-1 hydrogen peroxide H202, hydroquine radical 0II-, songlet oxidation +02) are used as bactericidal substances.
Of these, O,'- is disproportioned by superoxide nosmutase in the cell and promptly becomes 820
It is known that it can be converted into 2.

したがって、このような白血球の食作用発現系における
H t Otを測定すれば白血球の殺菌作用能が測定で
きる。しかしながら、このH2O2の生成はきわめて微
量であるため、■202検出系がきわめて高感度である
ことが要求される。そのような高感度のH3O2の測定
法としては、ルミノール−ペルオキシダーゼによる化学
発光法[ローレンスら、ジエイ0イムン(Lawren
ce、 R,et al、  J 。
Therefore, by measuring H t Ot in such a leukocyte phagocytic expression system, the bactericidal activity of leukocytes can be measured. However, since the amount of H2O2 produced is extremely small, the 202 detection system is required to have extremely high sensitivity. Such a highly sensitive method for measuring H3O2 is the chemiluminescence method using luminol-peroxidase [Lawrence et al.
ce, R, et al, J.

I mmun、)、129.1589−1593(19
82);デスコンブーラッチャら、アン・イムノ(Dc
scomps−Latscha、 B、 et at、
 Anntmmun、)、133.349−364(1
982);デ・ソールら、アドブ・イクスブ・メト・パ
イオル(De 5ole、 P、 et al、 Ad
v、 Exp、 Med。
Immun, ), 129.1589-1593 (19
82); Descombouracha et al., An Immuno (Dc
scomps-Latscha, B, et at,
Anntmmun, ), 133.349-364 (1
982); De Sole, P. et al., Ad.
v, Exp, Med.

Biol、 )、上A±、591−Go l(1982
)。
Biol, ), A±, 591-Gol (1982
).

諏訪邦彦&田中茂、医学のあゆみ、131巻。Kunihiko Suwa & Shigeru Tanaka, History of Medicine, Volume 131.

ioo〜104頁(1984)’]、ルシゲニンーベル
オキシダーゼによる化学発光法[ミンケルヘルグおよび
フェルバー、ジエイ・イムツル・メソツズ(!viin
kenberg、  T 、 &  Perber、 
E、 J。
ioo ~ p. 104 (1984)'], Chemiluminescence method using lucigenin-peroxidase [Minkelherg and Felber, J.I.
Kenberg, T., & Perber,
E, J.

Immunol、 Methods) 、 71 、6
1−67(1984)コ、さらに、ホモバニリン酸−ベ
ルオキシダーゼによる蛍光法[ラックら、ジエイ・イム
ツル・メソッズ(Ruch、 W、 et al、 J
 、  I mmunol。
Immunol, Methods), 71, 6
1-67 (1984), and a fluorescence method using homovanillic acid-peroxidase [Ruch, W., et al., J.
, Immunol.

Methods)、63,347−357(1983)
]などが知られている。
Methods), 63, 347-357 (1983)
] etc. are known.

しかしながら、ルミノールやルシゲニンによる化学発光
は細胞や細胞由来の蛋白質によって発光が著しく減弱さ
れる欠点を有している。また蛍光法による検出系では、
蛍光強度を標鋸液との対比で相対的に測定するため、測
定毎に標準曲線を用なしなければならず、きわめて煩R
Eである。しかし光励起による測光法であるため、存在
する細胞による光散乱により測定感度が低下する可能性
がある。さらに、蛍光法は発光法に比べて感度が1〜2
オーダー低いという欠点を有している。
However, chemiluminescence using luminol or lucigenin has the drawback that the luminescence is significantly attenuated by cells or cell-derived proteins. In addition, in the detection system using fluorescence method,
In order to measure the fluorescence intensity relative to the standard liquid, a standard curve must be used for each measurement, which is extremely cumbersome.
It is E. However, since this is a photometric method based on light excitation, measurement sensitivity may decrease due to light scattering by existing cells. Furthermore, the sensitivity of the fluorescence method is 1 to 2 times higher than that of the luminescence method.
It has the disadvantage of being low in order.

発明の目的 以上のような情況のちとに、本発明考らは、より安定で
高感度に白血球の殺菌作用能を測定する方法を見出すべ
く種々研究を重ねた結果、白血球が殺菌作用を発現する
際に生成するH 、 O、に、酸化触媒の存在下に、非
蛍光物質を作用させて蛍光物質に転換させ、ついて酸化
触媒の阻害条件下に、該蛍光物質を修酸ジエステル類お
よび別途加えた1(totと反応させて発光させ、その
発光強度を測定することによりきわめて高感度にH、0
2が定量でき、それによって白血球の殺菌作用能を測り
得ることを見出し、本発明を完成するに至った。
Purpose of the Invention After the above-mentioned circumstances, the inventor of the present invention has conducted various studies to find a more stable and highly sensitive method for measuring the bactericidal activity of leukocytes, and as a result, it has been found that leukocytes exhibit bactericidal activity. In the presence of an oxidation catalyst, a non-fluorescent substance is applied to the H, O, produced during the reaction to convert it into a fluorescent substance, and then, under conditions of inhibition of the oxidation catalyst, the fluorescent substance is added to oxalic acid diesters and separately. H, 0
The present inventors have discovered that 2 can be quantified, and thereby the bactericidal activity of leukocytes can be measured, leading to the completion of the present invention.

発明の構成 白血球に、オプソナイズされたチモーゲンを与えるとそ
の貧食能が刺戟され、白血球のマクロファージ、好中球
が殺菌作用を発現する状態に導かれる。この場合、殺菌
作用としてNADPHオキシダーゼ系が活性化され、0
2− を放出し、これはジスムターゼ作用でHt Ot
となって系中に放出される。
When opsonized zymogen is given to the leukocytes constituting the invention, their phagocytosis is stimulated, and the leukocytes' macrophages and neutrophils are brought into a state where they exhibit bactericidal activity. In this case, the NADPH oxidase system is activated as a bactericidal action, and 0
2- is released, which is converted into HtOt by dismutase action.
and is released into the system.

このように生成された1−+ 20.に、酸化触媒の存
在下に、非蛍光物質を作用させると非蛍光物質が蛍光物
質に転換され、これに、酸化触媒阻害条件下に、修酸ジ
エステル類および1−ttot(別途加える)を作用さ
せると生成したジオキシセタンジオンが該蛍光物質にエ
ネルギー転位をもたらし、蛍光物質が発光する。したか
って、白血球の殺菌作用発現により放出されたI−12
0、および0th−は発光におけるピーク値を測定する
ことにより定量され、さらには、H20、定量値にらと
づいて白血球の殺菌作用能が算出される。
1-+ thus generated 20. When a non-fluorescent substance is applied in the presence of an oxidation catalyst, the non-fluorescent substance is converted to a fluorescent substance, and oxalic acid diesters and 1-ttot (added separately) are applied to this under conditions that inhibit the oxidation catalyst. When this is done, the generated dioxycetanedione causes energy transfer to the fluorescent substance, causing the fluorescent substance to emit light. Therefore, I-12 released by the expression of bactericidal action of leukocytes
0 and 0th- are quantified by measuring the peak value in luminescence, and further, the bactericidal activity of leukocytes is calculated based on the H20 and quantified value.

上記の反応について反応式で示せば下記のとおりである
The reaction formula for the above reaction is as follows.

白血球殺菌作用+0.→−HzOt(Ot−)   (
1)Ht Ot+非蛍光物質−1111=蛍光物質+2
1−120  (2) 蛍光物質+修酸ジエステル+HzOz−hv+2CCL
+生成物 (3) 反応式(2)における非蛍光物質は酸化触媒の存在下に
Ht Otと反応して酸化されるか、または酸化型(縮
)合して蛍光性物質に転換される。
Leukocyte bactericidal action +0. →-HzOt(Ot-) (
1) Ht Ot + non-fluorescent substance - 1111 = fluorescent substance + 2
1-120 (2) Fluorescent substance + oxalic acid diester + HzOz-hv + 2CCL
+Product (3) The non-fluorescent substance in reaction formula (2) is oxidized by reacting with Ht 2 Ot in the presence of an oxidation catalyst, or converted into an oxidized (condensed) substance into a fluorescent substance.

このような非蛍光物質は蛍光物質に転換されたのち、修
酸ジエステル類、I−I 202の作用で微量でも高感
度に発光するような物質であることが要求される。かか
る非蛍光物質としては、例えば、2″、7°−ジクロロ
フルオレシンジアセテート、p−クレゾールなどが挙げ
られる。この非蛍光物質の使用量は通常0001〜5 
mMである。
Such a non-fluorescent substance is required to be a substance that, after being converted into a fluorescent substance, emits light with high sensitivity even in a trace amount due to the action of oxalic acid diesters, I-I 202. Examples of such non-fluorescent substances include 2'', 7°-dichlorofluorescin diacetate, p-cresol, etc. The amount of this non-fluorescent substance used is usually 0001 to 5.
It is mM.

酸化触媒としては、ペルオキシダーゼ、ミクロペルオキ
シダーゼ、ミエロペルオキシダーゼ、カタラーゼなどの
酵素類、フェリンアンカリウムなどの化学的酸化剤が挙
げられる。その使用量は、酵素類では通常1−100単
位であり、化学的酸化剤では通常l〜100mMである
Examples of the oxidation catalyst include enzymes such as peroxidase, microperoxidase, myeloperoxidase, and catalase, and chemical oxidizing agents such as ferrin ampotassium. The amount used is usually 1-100 units for enzymes, and usually 1-100 mM for chemical oxidants.

反応式(3)で用いられる修酸ノエステルとしては、H
t Otとの反応で安定なジオキノセタンジオンを形成
するものが好ましく、その好適な例は、ビス(2,4,
6−)リクロロフェニル)修酸、ビス(2,4−ジニト
ロフェニル)修酸などが挙げられ、その使用量は、通常
、01〜50mMである。
As the oxalic acid noester used in reaction formula (3), H
It is preferable to use a compound that forms a stable dioquinosetanedione upon reaction with tOt, and a suitable example thereof is bis(2,4,
Examples include 6-)lichlorophenyl)oxalic acid, bis(2,4-dinitrophenyl)oxalic acid, and the amount used is usually 01 to 50mM.

別途加えられるL(202は通常0.1〜50mtvi
の範囲で用いられる。
L added separately (202 is usually 0.1 to 50 mtvi
Used within the range of

なお、反応式(3)の反応は酸化触媒が阻害される条件
下に行う必要がある。もし、失活されない酸化触媒が存
在すると、反応式(3)の反応において別途添加された
HzOtと残存する非蛍光物質とが反応して余分な蛍光
物質が生成され、測定値に誤差を生じるため好ましくな
い。このような酸化触媒阻害条件は、シアン化カリウム
、シアン化ナトリウム、ナトリウムアジド、スルファイ
ド、フルオライド、フェロシアナイド、ヒドロキシフェ
ニルヒドラノン、2.3−ジメルカプトプロパノールな
どの阻害剤を添加するか、アセトン、酢酸エチル、アセ
トニトリルなどの有機溶媒を用いて行なう。とくに、有
機溶媒を用いると、酸化触媒の阻害作用のほか反応式(
3)の発光反応をより効率的に行ない得るため好ましい
Note that the reaction of reaction formula (3) needs to be carried out under conditions where the oxidation catalyst is inhibited. If there is an oxidation catalyst that is not deactivated, the separately added HzOt and the remaining non-fluorescent substance will react in the reaction of reaction formula (3), producing an extra fluorescent substance and causing an error in the measured value. Undesirable. Such oxidation catalyst inhibition conditions include adding inhibitors such as potassium cyanide, sodium cyanide, sodium azide, sulfide, fluoride, ferrocyanide, hydroxyphenylhydranone, and 2,3-dimercaptopropanol, or adding inhibitors such as acetone, ethyl acetate, This is carried out using an organic solvent such as acetonitrile. In particular, when an organic solvent is used, it not only inhibits the oxidation catalyst but also inhibits the reaction equation (
This is preferable because the luminescence reaction of 3) can be carried out more efficiently.

反応式(1)の反応では、血液より採取した白血球、と
くに好中球を適当な緩衝液、例えば、食塩添加リン酸緩
衝液(p+45〜9)に浮遊させ、これにオプソナイズ
したチモーゲンまたはホルボールミリステートアセテー
トを添加して白血球の食細胞を刺戟させる。この添加尼
はとくに制限されないが、通常、11g−100mg/
m児の範囲である。
In the reaction of reaction formula (1), leukocytes, especially neutrophils, collected from blood are suspended in an appropriate buffer, such as a phosphate buffer (p+45 to 9) containing salt, and opsonized zymogen or phorbol is added to the suspension. Myristate acetate is added to stimulate leukocyte phagocytes. This additive amount is not particularly limited, but is usually 11g-100mg/
This is the range of m children.

反応式(2)の反応も一般に適当な水系緩衝液中で行な
われ、約20〜40℃、1)H5〜9で行なわれる。こ
の反応系には、10−5〜10−’Mのシクロデキスト
リンを添加することにより非蛍光物質の安定化ならびに
生成した蛍光物質の発光性を増加し得る。また、非蛍光
物質の酸化を防ぐために、硫酸亜鉛7水和物を約0 、
04 mg/m、M添加するのが好ましい。
The reaction of reaction formula (2) is also generally carried out in a suitable aqueous buffer at about 20-40°C and 1) H5-9. By adding 10-5 to 10-'M cyclodextrin to this reaction system, it is possible to stabilize the non-fluorescent substance and increase the luminescence of the produced fluorescent substance. In addition, to prevent oxidation of non-fluorescent substances, zinc sulfate heptahydrate was added to
It is preferable to add 04 mg/m, M.

反応式(3)の反応は、前述したような有機溶媒中(水
を倉荷)で行なうのが好ましく、有機溶媒は単独でらま
た2種以上混合して用いてもよい。この反応は通常約2
0〜406Cで約30秒間行なわれる。
The reaction of reaction formula (3) is preferably carried out in an organic solvent as described above (water is used as a carrier), and the organic solvents may be used alone or in combination of two or more. This reaction usually takes about 2
It is carried out for about 30 seconds at 0 to 406C.

上記のようにして生成した発光活性は通常の測定法、例
えば、ピークの発光量をルミフォトメーターTD400
0(ラボサイエンス社製)にてカウントすることにより
測定できる。その発光値は常に反応の時間当りで示され
るため、それが反応速度をら示すことになる。しかして
、反応式(3)の反応系から経時的にサンプリングして
発光強度を測定することにより、蛍光物質の増加にもと
づいてH2O2放出の初期速度を知ることができ、また
、発光のピーク値の高さにより、放出されたI−1、0
The luminescence activity generated as described above can be measured using the usual method, for example, by measuring the peak luminescence amount using a Lumiphotometer TD400.
It can be measured by counting at 0 (manufactured by Labo Science). Since the luminescence value is always expressed per reaction time, it also indicates the reaction rate. Therefore, by sampling the reaction system of reaction formula (3) over time and measuring the luminescence intensity, it is possible to know the initial rate of H2O2 release based on the increase in fluorescent substance, and also to determine the peak value of luminescence. Due to the height of the released I-1,0
.

(0,)のmを測定することができ、ひいては、白血球
の殺菌作用能が算出される。なお、発光量の測定に際し
ては、標準H202液について同様に処理して発光量を
測定し、標亭液の14202検量線を調製しておき、そ
れとの比較において実測1−110、量が計算される。
m of (0,) can be measured, and as a result, the bactericidal activity of leukocytes can be calculated. In addition, when measuring the amount of luminescence, treat the standard H202 solution in the same way and measure the amount of luminescence, prepare a 14202 calibration curve for the standard solution, and compare it with the actual measurement 1-110 and calculate the amount. Ru.

発明の効果 本発明の方法によれば、生体試料中に存在する蛋白質の
、昆入によっても発光が妨害されず、濁った試料でも発
光強度が減弱することはないため、きわめて高感度で測
定できる。または蛍光物質に転換したのち発光量を測定
するため、白血球による影響を受けることなく、ごく微
量の生成H,02でも高感度に定量されるため、白血球
の殺菌作用能が正確かつ高感度で測れる。しかも、発光
反応は5秒以内にピーク値に達するので、ピーク値を測
定すれば極めて短時間で測定が可能である。かくして、
本発明方法により、生体中の白血球が充分な食作用を示
すか否か座折てきる。
Effects of the Invention According to the method of the present invention, the luminescence of proteins present in a biological sample is not hindered even by particles, and the luminescence intensity does not decrease even in a turbid sample, making it possible to measure with extremely high sensitivity. . Or, since the amount of luminescence is measured after converting to a fluorescent substance, even a very small amount of produced H,02 can be quantified with high sensitivity without being affected by white blood cells, so the bactericidal activity of white blood cells can be measured accurately and with high sensitivity. . Furthermore, since the luminescent reaction reaches its peak value within 5 seconds, the peak value can be measured in an extremely short time. Thus,
The method of the present invention determines whether leukocytes in a living body exhibit sufficient phagocytosis.

つぎに実施例を挙げて本発明方法をさらに具体的に説明
する。
Next, the method of the present invention will be explained in more detail with reference to Examples.

実施例 (+)白血球細胞(好中球)殺菌作用液の調製ヘパリン
(5I U/ mjL)を用いて採取した健康人の静脈
血からデキストラン、バーコル・ハイバークにて好中球
を分取する。この好中球を0.9mMcac47.0.
5 mMMgc児、およびグルコース(Ig/lを含む
食塩添加リン酸緩衝液(p+−r7.OX以下、P B
 S / Ca/ Mg/グルコースと略す)に浮遊さ
せる(好中球数:2XIO5CeLム/mR,) 。こ
の浮遊液1  mlに新鮮ヒト血清でオプソナイズした
ヂモーザン(100μg/J)の水溶液1  ml−を
添加し、37℃で1時間反応させたのち、EDTA−グ
リノン緩衝液1mlを加えて反応を停止させ、2000
Xgで10分間遠心後、弱塩酸で中和して試験用白血球
殺菌作用液を調製する。
Example (+) Preparation of a white blood cell (neutrophil) bactericidal solution Neutrophils are separated from the venous blood of a healthy person collected using heparin (5 IU/mjL) using dextran and Barcol High Bark. The neutrophils were collected at 0.9mMcac47.0.
5 mM Mgc, and glucose (Ig/l in saline phosphate buffer (p+-r7.OX or less, P B
(abbreviated as S/Ca/Mg/glucose) (Neutrophil count: 2XIO5CeL/mR,). To 1 ml of this suspension, 1 ml of an aqueous solution of Dimosan (100 μg/J) opsonized with fresh human serum was added, and the mixture was allowed to react at 37°C for 1 hour, and then 1 ml of EDTA-glinone buffer was added to stop the reaction. , 2000
After centrifuging at Xg for 10 minutes, neutralize with weak hydrochloric acid to prepare a test leukocyte bactericidal solution.

(2)H202検出量の作製 P B S / Ca/ M4グルコース液に所定量の
H2O2を溶解させ、各1  malについて以下のよ
うにしてHzOt検量線を作製する。
(2) Preparation of detected amount of H202 A predetermined amount of H2O2 is dissolved in the PBS/Ca/M4 glucose solution, and a HzOt calibration curve is prepared for each 1 mal as follows.

(i)蛍光試薬の調製:ロイコジアセチル−2゜7−ジ
クロロフルオレセイン5mgをエタノール10 mlに
溶解させ、0. 01 NNa0I−140Jを加えて
脱アセチル化して活性化された2゛、7゜〜ジクロロフ
ルオレノンノアセテートとし、これに2%β−シクロデ
キストリンを含む25mMリン該緩衝液(pH7)75
m児を加えて撹拌する。
(i) Preparation of fluorescent reagent: Dissolve 5 mg of leucodiacetyl-2゜7-dichlorofluorescein in 10 ml of ethanol. 01 Add NNa0I-140J to deacetylate activated 2゛,7゜-dichlorofluorenone noacetate, and add 25mM phosphorus buffer (pH 7) containing 2% β-cyclodextrin to this 75
Add m children and stir.

これに25mMリン酸緩衝e、(pi−17)75 m
l−をさらに加えて全量200Jとする。
This was added with 25mM phosphate buffer e, (pi-17) 75m
Further add l- to make the total amount 200J.

(ii)発光試薬の調製:0.5mMヒス(2,4゜6
−ドリクロロフエニル)修酸と2 mMi−(20tを
混合し、アセトニトリルで5倍希釈して発光試薬を調製
する。
(ii) Preparation of luminescence reagent: 0.5mM His (2.4°6
-Dolichlorophenyl) oxalic acid and 2 mMi-(20t) are mixed and diluted 5 times with acetonitrile to prepare a luminescent reagent.

(iii)酸化酵素液の調製:ペルオキソダーゼを5U
/mflとなるように25mMリン酸緩衝液(pH7)
に溶解する。
(iii) Preparation of oxidizing enzyme solution: 5 U of peroxodase
/mfl 25mM phosphate buffer (pH 7)
dissolve in

(iV)I(102検量線の作製 上記調製しに発光試薬3 malに5U/mflペルオ
キシダーゼitmJ2.を加え、その混液に各濃度のH
2O,液各1m克を加え、30°Cで1時間反応させ、
そのサンプル0. 5 mflをとり、これに発光試薬
0.5mjJを加え、そのピーク値をルミフォトメータ
ーTD4000を用いて測定する。
(iV) Preparation of I(102 calibration curve) Add 5 U/mfl peroxidase itmJ2. to 3 mal of the luminescence reagent prepared above, and add H2 at each concentration to the mixture.
Add 1 m each of 2O and liquid and react at 30°C for 1 hour.
The sample 0. Take 5 mfl, add 0.5 mjJ of luminescence reagent to it, and measure its peak value using Lumiphotometer TD4000.

この測定値に基づいてグラフを描いて10”−”M−1
0’MH,0,で直線を示す検量線が得られる。
Draw a graph based on this measurement and calculate 10"-"M-1
A calibration curve showing a straight line at 0'MH, 0, is obtained.

(3)好中球の1420.放出能の測定前記(+)のよ
うにして調製した白血球殺菌作用液1mを、前記(2X
i)および(ii)で調製した蛍光試薬3 mflおよ
び酸化酵素I  Jならびにポリスヂレンビーズ1gと
混合し、30°Cで1時間発蛍光反応に付す。この反応
液0.5 mlをとり、これに前記(2)(iii)で
調製した発光試薬0.5mflを加え、そのピーク値を
ルミフォトメーターTD4000を用いて測定する。
(3) Neutrophil 1420. Measurement of release ability 1 m of the leukocyte bactericidal solution prepared as described above (+) was added to the above (2X
Mix with 3 mfl of the fluorescent reagent prepared in i) and (ii), oxidase IJ, and 1 g of polystyrene beads, and subject to a fluorescence reaction at 30°C for 1 hour. Take 0.5 ml of this reaction solution, add 0.5 mfl of the luminescence reagent prepared in (2) (iii) above, and measure the peak value using a Lumiphotometer TD4000.

Claims (1)

【特許請求の範囲】[Claims] 白血球の食作用発現の際生成した過酸化水素に、酸化触
媒の存在下に非蛍光物質を作用させて蛍光物質に転換さ
せ、ついで酸化触媒の阻害条件下に、該蛍光物質を修酸
ジエステル類および過酸化水素と反応させて生成する発
光強度を測定することにより過酸化水素量を測定し、そ
れによって白血球の殺菌作用能を換算することを特徴と
する化学発光法による白血球の殺菌作用能の測定方法。
Hydrogen peroxide produced during phagocytosis of leukocytes is converted into a fluorescent substance by the action of a non-fluorescent substance in the presence of an oxidation catalyst, and then the fluorescent substance is converted into an oxalic acid diester under conditions where the oxidation catalyst is inhibited. The amount of hydrogen peroxide is measured by measuring the luminescence intensity produced by reacting with hydrogen peroxide, and the bactericidal ability of leukocytes is calculated by the chemiluminescence method. Measuring method.
JP21845085A 1985-09-30 1985-09-30 Method for measuring bactericidal action power of leucocyte by chemiluminescence method Granted JPS6276435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21845085A JPS6276435A (en) 1985-09-30 1985-09-30 Method for measuring bactericidal action power of leucocyte by chemiluminescence method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21845085A JPS6276435A (en) 1985-09-30 1985-09-30 Method for measuring bactericidal action power of leucocyte by chemiluminescence method

Publications (2)

Publication Number Publication Date
JPS6276435A true JPS6276435A (en) 1987-04-08
JPH0457218B2 JPH0457218B2 (en) 1992-09-10

Family

ID=16720094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21845085A Granted JPS6276435A (en) 1985-09-30 1985-09-30 Method for measuring bactericidal action power of leucocyte by chemiluminescence method

Country Status (1)

Country Link
JP (1) JPS6276435A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013528793A (en) * 2010-04-30 2013-07-11 アボット ポイント オブ ケア インコーポレイテッド Reagents for reducing leukocyte interference in immunoassays

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013528793A (en) * 2010-04-30 2013-07-11 アボット ポイント オブ ケア インコーポレイテッド Reagents for reducing leukocyte interference in immunoassays

Also Published As

Publication number Publication date
JPH0457218B2 (en) 1992-09-10

Similar Documents

Publication Publication Date Title
Homan-Müller et al. Production of hydrogen peroxide by phagocytizing human granulocytes
Cheson et al. The origin of the chemiluminescence of phagocytosing granulocytes.
Lundqvist et al. Isoluminol-enhanced chemiluminescence: a sensitive method to study the release of superoxide anion from human neutrophils
Burow et al. Flow-cytometric characterization of stimulation, free radical formation, peroxidase activity and phagocytosis of human granulocytes with 2, 7-dichlorofluorescein (DCF)
Böger et al. Supplementation of hypercholesterolaemic rabbits with L-arginine reduces the vascular release of superoxide anions and restores NO production
Weber The measurement of oxygen-derived free radicals and related substances in medicine
Faulkner et al. Luminol and lucigenin as detectors for O2ṡ−
JP3184894B2 (en) Haloperoxidase acid optimal chemiluminescence analysis system
US4647532A (en) Method for determination of hydrogen peroxide by chemiluminescence analysis
Stolarek et al. Breath analysis of hydrogen peroxide as a diagnostic tool
JPH05509399A (en) How to analyze antioxidant capacity
Edwards The O− 2Generating NADPH Oxidase of Phagocytes: Structure and Methods of Detection
Mueller et al. Fast and sensitive chemiluminescence determination of H2O2 concentration in stimulated human neutrophils
US20220308046A1 (en) Oxidase-based chemiluminescence assay of phagocytic leukocytes in whole blood and body fluids applicable to point-of-care (poc) diagnostic testing point-of-care (poc) measurement of absolute neutrophil function (anf)
Clifford et al. [51] Measurement of oxidizing radicals by polymorphonuclear leukocytes
Fair et al. Detection by fluorescence of structural changes accompanying the activation of Hageman factor (factor XII)
Aasen et al. Lucigenin-dependent chemiluminescence in mononuclear phagocytes. Role of superoxide anion
Benbarek et al. Experimental model for the study by chemiluminescence of the activation of isolated equine leucocytes
Tomisek et al. Fluorometry of Citrate in Serum, with Use of Citrate (pro-3 S)-Lyase
JPS6276435A (en) Method for measuring bactericidal action power of leucocyte by chemiluminescence method
Ninnemann et al. The superoxide anion as electron donor to the mitochondrial electron transport chain
Vladimirov et al. Chemiluminescence as a method for detection and study of free radicals in biological systems
Honold et al. Production and excretion of nitrate by human newborn infants: neonates are not little adults
Pascual et al. Effect of antioxidants on induction time of luminol luminescence elicited by 3‐morpholinosydnonimine (SIN‐1)
Bertina et al. New method for the rapid detection of vitamin K deficiency