JPS6276129A - Manufacture of electron-emitting substance for tubular bulb - Google Patents

Manufacture of electron-emitting substance for tubular bulb

Info

Publication number
JPS6276129A
JPS6276129A JP21465085A JP21465085A JPS6276129A JP S6276129 A JPS6276129 A JP S6276129A JP 21465085 A JP21465085 A JP 21465085A JP 21465085 A JP21465085 A JP 21465085A JP S6276129 A JPS6276129 A JP S6276129A
Authority
JP
Japan
Prior art keywords
carbonate
alkaline earth
earth metal
powder
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21465085A
Other languages
Japanese (ja)
Inventor
Takashi Yorifuji
孝 依藤
Hidehiko Sunada
砂田 英彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HARRISON DENKI KK
Toshiba Corp
Original Assignee
HARRISON DENKI KK
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HARRISON DENKI KK, Toshiba Corp filed Critical HARRISON DENKI KK
Priority to JP21465085A priority Critical patent/JPS6276129A/en
Publication of JPS6276129A publication Critical patent/JPS6276129A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an electron-emitting substance with superior electron emission which consists of a highly chemically active carbonate powder with small variation in particle size by blowing carbonic acid gas into an aqueous suspension of a powder of the hydroxide of an alkaline earth metal to deposit a micropowder of the carbonate of the alkaline earth metal. CONSTITUTION:A highly chemically active homogeneous powder of the carbonate of an alkaline earth metal with sufficiently small particle size is produced by blowing carbonic acid gas into an aqueous suspension of a powder of the hydroxide of an alkaline earth metal. Adding carbonate ions to a dilute aqueous solution of the hydroxide of an alkaline earth metal in discret amounts results in production of microcrystals of a carbonate. Since the solution is constantly agitated violently, crystals can not fuse each other resulting in dispersion of minute crystalline particles in the solution. Besides, since metallic ions are constantly supplied from the hydroxide powder, the concentration of metallic ions remains constant and crystallization conditions are maintained constant. Consequently, microcrystals with constant particle diameter are continuously formed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はネオンランプや蛍光ランプ、陰極線管など各種
管球に用いる高性能の電子放射性物質の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for producing high-performance electron radioactive materials for use in various tubes such as neon lamps, fluorescent lamps, and cathode ray tubes.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

ネオンランプや蛍光ランプにはアルカリ土類金属酸化物
からなる電子放射性物質(活性化物)が被着され、電極
からの電子放射を容易にしている。
Neon lamps and fluorescent lamps are coated with an electron-emitting substance (activated substance) made of an alkaline earth metal oxide to facilitate electron emission from the electrodes.

そうして、このような電子放射性物質(活性化物)はア
ルカリ土類金属炭酸塩の1種または複数種からなる微粉
末を電極に被着し、焼成してアルカリ土類金属炭酸塩を
酸化物に変成して得られる。
Then, such an electron radioactive substance (activated substance) is produced by depositing a fine powder consisting of one or more types of alkaline earth metal carbonates on an electrode and firing it to convert the alkaline earth metal carbonates into oxides. Obtained by transmuting into.

しかして、活性の良い電子放射性物質(活性化物)を得
るためにはアルカリ土類金属炭酸塩の粒径ができるだけ
小さく、かつ化学的活性に富むことが必要とされている
。そのため、従来、バリウム、ストロンチウム、カルシ
ウムなどの硝酸塩水溶液をアンモニア水で中和したうえ
で、炭酸ナトリウムや炭酸アンモニウムの水溶液を添加
して、アルカリ土類金属を炭酸塩として沈澱させ、この
沈澱物を洗浄し、ミリングして材料微粉末を得て、これ
を通常の方法でけん濁液に調製して電極に塗布していた
Therefore, in order to obtain a highly active electron-emitting substance (activated substance), it is necessary that the particle size of the alkaline earth metal carbonate be as small as possible and that it be highly chemically active. Therefore, conventionally, an aqueous solution of nitrates such as barium, strontium, and calcium is neutralized with aqueous ammonia, and then an aqueous solution of sodium carbonate or ammonium carbonate is added to precipitate the alkaline earth metal as a carbonate. The material was washed and milled to obtain a fine powder, which was prepared into a suspension using the usual method and applied to the electrode.

この方法では沈澱微粉末の粒径とそのばらつきが大きく
、特性が不安定で、長時間のミリングを施してもなお特
性にばらつきがあり、不満足であった・ これに対し、硝酸塩や炭酸塩の濃度、PH,温度、撹拌
条件など沈澱手段に種々の改良を試みたがいずれも充分
な結果が得られなかった。
This method was unsatisfactory because the particle size of the precipitated fine powder and its variations were unstable, and even after long-term milling, the properties remained inconsistent. Various attempts were made to improve the precipitation means, including concentration, pH, temperature, and stirring conditions, but no satisfactory results were obtained.

〔発明の目的〕[Purpose of the invention]

本発明は電子放射性物質調製用のアルカリ土類金属炭酸
塩の粒径が充分に小さく、かつ粒径が均一で活性に富み
良好な特性を発揮する管球用電子放射性物質の製造方法
を提供することを目的とする。
The present invention provides a method for producing an electron radioactive material for tubes, in which the particle size of the alkaline earth metal carbonate for preparing the electron radioactive material is sufficiently small, the particle size is uniform, and the particle size is rich and exhibits good properties. The purpose is to

〔発明の概要〕[Summary of the invention]

本発明はアルカリ土類金属の水酸化物の粉末をけん濁し
た水中に炭酸ガスを吹込むことにより。
The present invention is carried out by blowing carbon dioxide gas into water in which alkaline earth metal hydroxide powder is suspended.

充分粒径が小さくかつ均一で化学的活性に富むアルカリ
土類金属の炭酸塩を得る方法である。
This is a method for obtaining carbonates of alkaline earth metals with sufficiently small particle size, uniformity, and high chemical activity.

〔発明の実施例〕[Embodiments of the invention]

本発明の詳細を下記の実施例によって説明する。 The details of the invention are illustrated by the following examples.

まず、水酸化バリウム(Ba (OH)、 ・8H20
)粉末と水酸化ストロンチウム(Sr(OH)2・81
120)粉末を用意し。
First, barium hydroxide (Ba (OH), 8H20
) powder and strontium hydroxide (Sr(OH)2.81
120) Prepare powder.

モル比で1対1の割合いで取り、純水中に合計モル数が
0.56/ Qになるように配合し、液温を50±5℃
に保ち撹拌を行なう。このとき液中の水酸化物はけん濁
状態になっている。そこで、撹拌しながら、液中に炭酸
ガス(CO2)を吹込む。すると。
Take it at a molar ratio of 1:1, mix it in pure water so that the total number of moles is 0.56/Q, and keep the liquid temperature at 50±5℃.
Keep stirring. At this time, the hydroxide in the liquid is in a suspended state. Therefore, carbon dioxide gas (CO2) is blown into the liquid while stirring. Then.

反応が進むに従って水が白い雲のように濁ってくる。そ
うして、反応が進むに従って液のP Hが低下し、約2
時間牛後P H6゜5種度に到って安定する。そこで、
この雲状に沈澱した炭酸塩の微粉末を濾過し、ミリング
して分散し、通常の方法で電子放射性物質に構成する。
As the reaction progresses, the water becomes cloudy, resembling a white cloud. As the reaction progresses, the pH of the solution decreases to about 2
After hours, the pH reaches 6°5 and becomes stable. Therefore,
The fine carbonate powder precipitated in a cloud is filtered, milled, dispersed, and constituted into an electron-emissive material in the usual manner.

しかして、上述の沈澱反応を微視的に説明すれば次のと
おりである。アルカリ土類金属の水酸化物の水に対する
溶解度は50℃において次のとおりである。ただし、無
水物換算とする。
The above-mentioned precipitation reaction can be explained microscopically as follows. The solubility of alkaline earth metal hydroxide in water at 50°C is as follows. However, it is based on anhydrous equivalent.

Ba(OH)、    11.61 g / 100 
g水溶液5r(OH)22.50 g / 100 g
水fj液Ca(Oll)、    0.097 g /
 100 g水溶液そうして、この溶解度は低温はど小
さく、またPHが大きいほど小さい。そうして、上述の
水酸化物の混合粉末はこの溶解度の数値よりはるかに大
量なので、大部分は同相状態で水中に分散し、溶解度に
相当する量だけ水に溶解している。しかも、反応中絶え
ず撹拌しなから液温を一定に保つので。
Ba(OH), 11.61 g/100
g aqueous solution 5r(OH) 22.50 g / 100 g
Water fj liquid Ca (Oll), 0.097 g /
100 g aqueous solutionThe lower the temperature, the lower the solubility, and the higher the pH, the lower the solubility. Since the amount of the above-mentioned hydroxide mixed powder is much larger than this solubility value, most of it is dispersed in water in the same phase state, and is dissolved in water in an amount corresponding to the solubility. Moreover, the temperature of the liquid is kept constant without constant stirring during the reaction.

溶液の濃度は一定である。また、水中の炭酸イオンは溶
解速度が遅くかつ遂次炭酸塩になって消耗されるので濃
度が小さい。
The concentration of the solution is constant. Furthermore, carbonate ions in water have a low concentration because their dissolution rate is slow and they are gradually converted into carbonates and consumed.

しかして、このようにアルカリ土類金属水酸化物の希薄
な水溶液に炭酸イオンを小量ずつ添加すれば生じた炭酸
塩の結晶は非常に細かいものとなり、しかも絶えず激し
く撹拌されているので、結晶相互が融合することもでき
ず、結局非常に細い結晶微粒子が水中に分散することに
なる。しかも、金属イオンは水酸化物粉末から絶えず供
給されるので、その濃度は一定で結晶条件が変ることが
なく、したがって一定粒径の微結晶が連続的に形成され
る。さらに、反応液が激しく撹拌されているので、水酸
化物粉末の表面に炭酸塩が沈澱することができず、した
がって、水酸化物は常に水中に露出した状態でけん濁し
ており、炭酸塩に包蔵されることがなく、最終的にはそ
の全量が反応する。
However, when carbonate ions are added little by little to a dilute aqueous solution of an alkaline earth metal hydroxide, the resulting carbonate crystals become extremely fine, and because they are continuously and vigorously stirred, the crystals become crystallized. They are unable to fuse with each other, and as a result, very thin crystalline particles are dispersed in the water. Moreover, since the metal ions are constantly supplied from the hydroxide powder, their concentration is constant and the crystal conditions do not change, so that microcrystals of a constant particle size are continuously formed. Furthermore, since the reaction solution is vigorously stirred, carbonate cannot precipitate on the surface of the hydroxide powder, so the hydroxide is always exposed and suspended in water, and the carbonate does not precipitate. There is no encapsulation, and the entire amount eventually reacts.

しかして、上述の理由によって反応中、水酸イオン濃度
も炭酸イオン濃度も理論上は一定であるはずであるが、
実際は種々の理由によってこれらイオンが次第に減少し
、これに従って、液のP Hはゆっくりと低下する。そ
うして、未反応の水酸化物が少なくなるとP Hが急激
に低下し、最終的には炭酸イオンのPHである6、5に
近ずく。 このような理由によって、液温とPHとを管
理することにより1反応法度と結晶粒径とを管理するこ
とができ、また1反応の終点を検知できる。この反応理
論はアルカリ土類金属が1種の場合も3種混合の場合に
も一様にあてはまる。この反応の進行とP Hの関係を
第1図に示す。図は温度を50±5℃に保ち、撹拌しな
がら炭酸ガスの吹込みを開始してからの反応の進行時間
を分の単位で横軸にとり、縦軸にP Hをとったもので
、−・−印の曲線はバリウム単独の場合、−〇−印の曲
線はバリウムとストロンチウム等モル比の場合、−×−
印の曲線はバリウム、ストロンチウ11およびカルシウ
ムの等モル比混合の場合の反応曲線を示す。図において
、成分によって曲線が異なるのは成分によって溶解度が
異なるためと思われる。この第1図によって、反応の進
行を管理できる。
Therefore, theoretically, both the hydroxide ion concentration and the carbonate ion concentration should be constant during the reaction for the reasons mentioned above, but
In reality, these ions gradually decrease for various reasons, and the pH of the liquid gradually decreases accordingly. Then, as the amount of unreacted hydroxide decreases, the pH rapidly decreases and eventually approaches 6.5, which is the pH of carbonate ions. For these reasons, by controlling the liquid temperature and pH, the degree of one reaction and the crystal grain size can be controlled, and the end point of one reaction can be detected. This reaction theory applies equally to both the case of one kind of alkaline earth metal and the case of a mixture of three kinds of alkaline earth metals. The relationship between the progress of this reaction and PH is shown in FIG. In the figure, the horizontal axis shows the reaction progress time in minutes after the temperature was maintained at 50 ± 5°C and carbon dioxide gas was started being introduced while stirring, and the vertical axis shows PH.・The curve marked with - is for barium alone, and the curve marked with -〇- is for the equimolar ratio of barium and strontium, -×-
The marked curve shows the reaction curve when barium, strontium 11 and calcium are mixed in equimolar ratios. In the figure, the curves differ depending on the component, probably because the solubility differs depending on the component. The progress of the reaction can be controlled using this FIG.

このようにして得られた上記実施例のバリウム・ストロ
ンチウム混合炭酸塩の平均粒径は0.5〜1μで従来の
硝酸塩から沈澱したものの平均粒径が5〜8μであるの
に比較して格段に小さくなっていることが解る。しかも
第2図に示すように、本実施例のものは粒径分布がそろ
っていることも利点である。
The average particle size of the barium/strontium mixed carbonate of the above example thus obtained was 0.5 to 1 μm, which is much larger than the average particle size of conventional nitrates precipitated from 5 to 8 μm. It can be seen that it has become smaller. Moreover, as shown in FIG. 2, the particles of this example have the advantage of having a uniform particle size distribution.

このようにして得られた2成分炭酸塩からなる電子放射
性物質をネオンランプのニッケル電極に被着して始動電
圧とちらつき発生率とを調査した。
The electron radioactive material made of the two-component carbonate thus obtained was deposited on the nickel electrode of a neon lamp, and the starting voltage and flicker occurrence rate were investigated.

始動電圧は第3図に示すとおり、ばらつきが極めて少な
く、品質が良好である。また、光のちらつきは次表のと
おり、本実施例のものは極めて少ない。
As shown in FIG. 3, the starting voltage has very little variation and is of good quality. Furthermore, as shown in the following table, the flickering of light in this example is extremely low.

このように本実施例方法によって得られたものが優れて
いる理由はニッケル電極へ均一に被着でき、しかも活性
化後の仕事函数が優れているためと考えられる。
The reason why the product obtained by the method of this example is superior is considered to be that it can be uniformly deposited on the nickel electrode and has an excellent work function after activation.

つぎに蛍光ランプ用の電子放射性物質の製造方法につい
て述べる。この方法においては、原料物質は水酸化バリ
ウム(Ba(Oll)−・8H,0)水酸化ストロンチ
ウム(Sr(OH)2・811□0)および水酸化カル
シウム(Ca(Oll)、 ・81!、0)の3成分を
モル比でL:L:1の割合で配合したもので、この原料
を合計モル数で0.5モル/Qの割合いで水中に分散し
、液温を50±5℃に保ちながら激しく撹拌し、その間
炭酸ガスを吹込む。そうして、約3時間後洗澱物を濾過
し、ミリングし、通常の方法で電子放射物質に構成する
Next, a method for manufacturing an electron radioactive material for fluorescent lamps will be described. In this method, the raw materials are barium hydroxide (Ba(Oll)-.8H,0), strontium hydroxide (Sr(OH)2.811□0) and calcium hydroxide (Ca(Oll), .81!, 0) in a molar ratio of L:L:1.This raw material is dispersed in water at a total mole ratio of 0.5 mol/Q, and the liquid temperature is adjusted to 50±5°C. While stirring vigorously, blow in carbon dioxide gas. After about 3 hours, the wash is then filtered, milled and constituted into an electron-emitting material in the usual manner.

この製造方法も上述の反応原理によって生成し、得られ
た炭酸塩微粒子の粒径が小さく、均一でしかも活性が高
い。そうして、本実施例においても反応中液温とPHと
を管理することにより反応速度と結晶粒径とを管理でき
る。
This production method is also produced according to the above-mentioned reaction principle, and the obtained carbonate fine particles are small in particle size, uniform, and highly active. In this embodiment as well, the reaction rate and crystal grain size can be controlled by controlling the liquid temperature and pH during the reaction.

このようにして得られた3成分炭酸塩の平均粒径は0.
3〜0.7μで従来の硝酸塩から沈澱したものが平均粒
径が5〜10μであるのに比較して格段に小さくなって
いることが解る。また、第4図に示すように粒度分布も
そろっている。
The average particle size of the three-component carbonate thus obtained was 0.
It can be seen that the average particle diameter of the particles precipitated from conventional nitrates at 3 to 0.7 microns is much smaller than the average particle size of 5 to 10 microns. Furthermore, as shown in FIG. 4, the particle size distribution is also uniform.

このようにして得られた3成分電子放射性物質をフィラ
メント電極に塗布して20W直管形蛍光ランプに構成す
れば、第5図に示すとおり、始動電圧が低く、かつその
ばらつきも小さい。これは。
If a 20 W straight tube fluorescent lamp is constructed by applying the thus obtained three-component electron emissive material to a filament electrode, the starting voltage will be low and its variation will be small, as shown in FIG. this is.

炭酸塩の粒径と、そのばらつきが小さくかつ活性が高い
ため、活性後の仕事函数が優れておりそのばらつきが小
さいためと思われる。
This is thought to be due to the particle size of the carbonate, its small dispersion, and its high activity, resulting in an excellent work function after activation and a small dispersion.

そうして、本発明はアルカリ土類金属の任意の1種また
は複数種の水酸化物から炭酸塩を得る場合に適用でき、
いずれの場合にも得られる炭酸塩の粒径とそのばらつき
が小さく、かつ活性が高く。
Thus, the present invention can be applied to obtain carbonate from any one or more hydroxides of alkaline earth metals,
In either case, the particle size of the carbonate obtained and its variation are small and the activity is high.

高性能が得られることは同様である。Similarly, high performance can be obtained.

そうして、本発明方法に用いるアルカリ土類金属の水酸
化物粉末はどのような方法で得られたものでもかまわな
い。
The alkaline earth metal hydroxide powder used in the method of the present invention may be obtained by any method.

また1本発明において、機械的撹拌によらず、炭酸ガス
の吹込みを激しくして液を撹拌してもよい。そうして、
本発明方法によって得られた電子放射性物質は各種放電
管のほか陰極線管やX線管などの陰極物質としても使用
できる。
In addition, in the present invention, the liquid may be stirred by vigorously blowing carbon dioxide gas instead of using mechanical stirring. Then,
The electron radioactive material obtained by the method of the present invention can be used as a cathode material for various discharge tubes as well as cathode ray tubes and X-ray tubes.

〔発明の効果〕〔Effect of the invention〕

本発明の管球用電子放射性物質の製造方法はアルカリ土
類金属の水酸化物の粉末をけん濁した水中に炭酸ガスを
吹込んでアルカリ土類の炭酸塩の微粉末を沈澱させるの
で、粒径とそのばらつきが小さく、かつ化学的活性の高
い炭酸塩粉末が得られ、電子放射特性の優れた電子放射
性物質が製造できる利点がある。
The method for producing an electron radioactive material for tubes of the present invention involves blowing carbon dioxide gas into water in which alkaline earth metal hydroxide powder is suspended to precipitate fine powder of alkaline earth carbonate. This method has the advantage that a carbonate powder with small variations in carbonate and high chemical activity can be obtained, and an electron-emitting substance with excellent electron-emitting properties can be produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の管球用電子放射性物質の製造方法にお
ける反応時間による反応液のPHの変化を示すグラフ、
第2図は同じく得られた炭酸塩微粉末の粒径分布を示す
グラフ、第3図は本実施例による電子放射性物質を用い
たネオンランプの特性のばらつきを従来方法によるもの
と比較したグラフ、第4図は他の実施例による炭酸塩微
粉末の粒径分布を示すグラフ、第5図は他の実施例によ
る電子放射性物質を用いた蛍光ランプの特性のばらつき
を従来方法によるものと比較したグラフである。 代理人  弁理士  井 上 −男 /a稜 (μ) 第  2  図 茹動屯足(V) 第  3  図 (:l  o  ()  C)  ロ CJ  O(:
)  C)さQト喝〈神℃N1 廼穿← 袋 宕     ロ ー       勺 鰺@埜
FIG. 1 is a graph showing changes in the pH of the reaction solution depending on the reaction time in the method for producing an electron radioactive material for tubes of the present invention;
FIG. 2 is a graph showing the particle size distribution of the carbonate fine powder obtained in the same manner, and FIG. 3 is a graph comparing the variation in characteristics of the neon lamp using the electron radioactive material according to this example with that of the conventional method. Fig. 4 is a graph showing the particle size distribution of carbonate fine powder according to another example, and Fig. 5 is a graph showing the variation in characteristics of a fluorescent lamp using an electron radioactive material according to another example, compared with that of a conventional method. It is a graph. Agent Patent Attorney Inoue-M/a-Ryo (μ) 2nd figure 茹萯孯 (V) 3rd figure (:l o () C) ro CJ O(:
) C) Sa Q to cheer〈God ℃N1 廼pier← Fukurogo Low Tsujiiji@Nono

Claims (1)

【特許請求の範囲】[Claims] アルカリ土類金属の水酸化物の粉末をけん濁した水中に
炭酸ガスを吹込んで、上記アルカリ土類金属の炭酸塩の
微粉末を沈澱させ、この沈澱した微粉末を用いて電子放
射性物質を得ることを特徴とする管球用電子放射性物質
の製造方法。
Carbon dioxide gas is blown into water in which alkaline earth metal hydroxide powder is suspended to precipitate the alkaline earth metal carbonate fine powder, and the precipitated fine powder is used to obtain an electron radioactive substance. A method for producing an electron radioactive material for tubes, characterized in that:
JP21465085A 1985-09-30 1985-09-30 Manufacture of electron-emitting substance for tubular bulb Pending JPS6276129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21465085A JPS6276129A (en) 1985-09-30 1985-09-30 Manufacture of electron-emitting substance for tubular bulb

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21465085A JPS6276129A (en) 1985-09-30 1985-09-30 Manufacture of electron-emitting substance for tubular bulb

Publications (1)

Publication Number Publication Date
JPS6276129A true JPS6276129A (en) 1987-04-08

Family

ID=16659276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21465085A Pending JPS6276129A (en) 1985-09-30 1985-09-30 Manufacture of electron-emitting substance for tubular bulb

Country Status (1)

Country Link
JP (1) JPS6276129A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645909A (en) * 1987-06-29 1989-01-10 Sakai Chemical Industry Co Carbonate of alkaline-earth metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645909A (en) * 1987-06-29 1989-01-10 Sakai Chemical Industry Co Carbonate of alkaline-earth metal

Similar Documents

Publication Publication Date Title
JP2000087121A (en) Metal powder, its production and electrically conductive paste
US6677262B2 (en) Rare earth oxide, basic rare earth carbonate, making method, phosphor, and ceramic
US6033280A (en) Method for manufacturing emitter for cathode ray tube
JPS6276129A (en) Manufacture of electron-emitting substance for tubular bulb
KR100309707B1 (en) Process for Preparing Oxidized Phosphor Particles by Spray Pyrolysis Employing Flux
JP2005306640A (en) Method for manufacturing crystal of alkaline earth metal carbonate and crystal of alkaline earth metal carbonate
KR100200661B1 (en) Cathode for electron tube
US4272397A (en) Method of preparing flake-like ceramic particle of zinc sulfide phosphor
JP3407333B2 (en) Method for producing carbonate for electron tube cathode
KR100309706B1 (en) Process for Preparing Aluminate Phosphor Particles by Spray Pyrolysis
KR100371053B1 (en) Process for Preparing Complex Fluorescent Particles by Colloid Spray Pyrolysis
KR100390775B1 (en) Preparation of red phosphor particles for PDP by spray pyrolysis
CN102234126A (en) Synthesizing method of nano-sized granular barium carbonate, strontium carbonate, and calcium carbonate ternary salt
JPH06318432A (en) Manufacture of carbonate for electron tube cathode
CN100431084C (en) Method for synthesizing thermionic emission materials
JPH0228218B2 (en)
KR100200664B1 (en) Cathode for electron tube
JP3551428B2 (en) Method for producing rare earth element-containing BaFI prismatic crystal
JP3367359B2 (en) Phosphor and its manufacturing method
JPH03280322A (en) Alkaline earth carbonate for emitter
KR100192035B1 (en) Manufacturing method of cathode
KR100198909B1 (en) Cathode for electron tubes
US2831137A (en) Cathode coating
KR920004550B1 (en) Manufacturing method oxide cathode
JPS60189832A (en) Preparation of alkaline-earth carbonate