JPS6276120A - 3-phase common tank type gas breaker - Google Patents

3-phase common tank type gas breaker

Info

Publication number
JPS6276120A
JPS6276120A JP21507485A JP21507485A JPS6276120A JP S6276120 A JPS6276120 A JP S6276120A JP 21507485 A JP21507485 A JP 21507485A JP 21507485 A JP21507485 A JP 21507485A JP S6276120 A JPS6276120 A JP S6276120A
Authority
JP
Japan
Prior art keywords
insulating tube
diameter
common tank
phase common
type gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21507485A
Other languages
Japanese (ja)
Inventor
正範 筑紫
橋本 斌
中川 由岐夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21507485A priority Critical patent/JPS6276120A/en
Publication of JPS6276120A publication Critical patent/JPS6276120A/en
Pending legal-status Critical Current

Links

Landscapes

  • Circuit Breakers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は三相共通タンク形ガス遮断器(G C13+に
係り、特に、太屯流遮断時の絶縁回復特注が優れた遮断
部構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a three-phase common tank type gas circuit breaker (GC13+), and particularly relates to a circuit breaker structure with excellent custom-made insulation recovery during Taitun flow circuit interruption.

〔発明の背景〕[Background of the invention]

43図は従来の三相共通タンク形GCHの遮断部タンク
l内構成を示す。電気的に絶縁さtした三相の遮断部2
,3.4が収納されている。(例えば特公昭57−18
291号公報参照)。第4図は第3図を軸方向上部から
見た図であり、三相の遮断部は遮断部タンクlに対して
ほぼ対称三角形状に配置されている。
Figure 43 shows the internal configuration of the shutoff tank l of a conventional three-phase common tank type GCH. Electrically insulated three-phase interrupter 2
, 3.4 are stored. (For example, Tokuko Sho 57-18
(See Publication No. 291). FIG. 4 is a view of FIG. 3 viewed from the top in the axial direction, and the three-phase shutoff section is arranged in a substantially symmetrical triangular shape with respect to the shutoff section tank l.

第5図は遮断部−相の縦断面図を示す。固定子5、可動
子6.ノズル7、バッファ/リンダ8よp々る通常のバ
ッファ形遮断部が絶縁筒9の中に収納されており、更に
、絶縁筒9の周囲に吐距岨線路故11(SLF)速断用
として並列コンデンサ10が配置されている。端部金具
11t/;j:各虜成体を支持固定するのに必要な径り
をもつ。そして。
FIG. 5 shows a longitudinal sectional view of the cut-off phase. Stator 5, mover 6. Normal buffer-type shut-off parts such as a nozzle 7 and a buffer/linda 8 are housed in an insulating tube 9, and furthermore, a line is connected in parallel around the insulating tube 9 for rapid disconnection of a line fault 11 (SLF). A capacitor 10 is arranged. End fittings 11t/;j: have a diameter necessary to support and fix each captive body. and.

第3図、第4図から明らかなように端部金具11の径す
法りは相間、対地の絶縁寸法に直後影響し、遮断部タン
クlの径寸法決定要因となり、端部金具11の犬ささが
三相共通タンク形(、)CBの寸法を決定している。従
って、端部金具11の僅の直径りは、出来る限り小ざい
方か良い。そのためには杷線埼9の住も出来る限り小さ
い方か良い。しかし、絶縁筒9の径を縮少すると、大電
流遮断性能、特に、大電流遮断直後に高電圧の印加され
る端子短絡故障(BTF’)遮断性能が1氏下する。
As is clear from FIGS. 3 and 4, the diameter of the end fitting 11 has an immediate effect on the insulation dimensions between the phases and the ground, and is a factor in determining the diameter of the cut-off tank l. Sasa determines the dimensions of the three-phase common tank type (,) CB. Therefore, the slight diameter of the end fitting 11 should be as small as possible. To that end, it would be best if the house in Hazensaki 9 was as small as possible. However, when the diameter of the insulating tube 9 is reduced, the large current interrupting performance, particularly the terminal short circuit fault (BTF') interrupting performance where a high voltage is applied immediately after the large current is interrupted, decreases by 1 degree.

第6図を用いてその理由を説明する。第6図は大電流遮
断直後の状態を示すものでるり、1.!!J中の矢印は
アークで加熱された高温排気ガス(ホットガス)の流れ
を示す。絶縁筒9の径を縮少すると。
The reason will be explained using FIG. 6. Figure 6 shows the state immediately after a large current is cut off.1. ! ! The arrow in J indicates the flow of high-temperature exhaust gas (hot gas) heated by the arc. When the diameter of the insulating cylinder 9 is reduced.

ホットガスは図示するように軸方向に沿って排気源ノす
る。絶縁筒9の無い相分離されたタンクの遮断部で主じ
る径方向の排気(図中破線の矢印)が無い5 このため
、ホントガス排気が遅れて遮断性能が低下する。その対
策として第6図に示すように絶縁筒9の中央部任を端部
より大径化した構造が提案されている(特開昭58−3
2319号公報)。
The hot gas is exhausted along the axial direction as shown. There is no main radial exhaust (dashed line arrow in the figure) at the shutoff part of a phase-separated tank without an insulating cylinder 9.5 As a result, the actual gas exhaust is delayed and the shutoff performance is degraded. As a countermeasure to this problem, a structure has been proposed in which the diameter of the central portion of the insulating tube 9 is made larger than that of the end portions, as shown in FIG.
Publication No. 2319).

このようなりI造は遮断性能上はある程度有効であるが
、遮断部の大径化が生じ、特に、第5図に示すような並
列コンデンサ10を凸己随する場合、遮断部の大径化は
単に絶縁筒9のみならず並列コンデンサ10の支持用の
端部金具11の大径化となるので1,18縁設計上、遮
断部タンク1を大径化せざるを得なくなり、GCBの大
形化の主因となる問題点があった。又、並列コンデンサ
10の位置を変更すること1%に、軸方向位置を変更す
ることは、遮断部極間の電界分布に影響し、変更位置に
よっては、進み小電流遮断性等の高′酊界下での遮断性
能に影響及ぼすことが考えられ、好ましくない。
Although such an I structure is effective to some extent in terms of interrupting performance, the diameter of the interrupter becomes larger, especially when a parallel capacitor 10 as shown in FIG. 5 is attached. This simply means increasing the diameter of not only the insulating cylinder 9 but also the end fitting 11 for supporting the parallel capacitor 10. Therefore, due to the design of the edges 1 and 18, the diameter of the cut-off tank 1 has to be increased, which increases the size of the GCB. There was a problem that was the main cause of the change in form. In addition, changing the position of the parallel capacitor 10 in the axial direction affects the electric field distribution between the poles of the interrupting part, and depending on the changed position, it may cause high voltage disturbances such as advanced small current interrupting performance. This is undesirable because it may affect the blocking performance in the field.

、〔発明の目的〕 本発明の目的は、三相共通タンク形GCBの遮断部最大
径を絶縁設計上問題となるように増大させずに、大電流
遮断後の絶縁回復性能の向上を図る。
, [Object of the Invention] An object of the present invention is to improve the insulation recovery performance after a large current interruption without increasing the maximum diameter of the interruption part of a three-phase common tank type GCB so as to cause problems in terms of insulation design.

〔発明の概要〕[Summary of the invention]

大電流遮断後の絶縁回復に最も重要な因子は固定子5の
近傍のガス密度であることが本発明者等の実験及び理論
解析よシ明らかとなった。すなわち、固定子5の先端部
のホットガスをすみやかに排除し、バッファシリンダ8
から密度の高いコールドガスを吹き付は置換することに
より、絶縁回復が早くなることが明らかとなつ乏。この
士めには、固定子5の近傍、特に、先端部のホットガス
をすみやかに除去することが最も重要であり、固定子5
近傍の径方向のホットガス排気を早めることが効果があ
ると判った。そのためには、絶縁筒9の固定子5の近傍
部に排気孔を設ければ、絶縁筒9の径を増大せずとも良
く、並列コンデンサ1゜の位置も大巾に変更せずとも良
い。
Experiments and theoretical analyzes conducted by the present inventors have revealed that the most important factor for insulation recovery after a large current interruption is the gas density near the stator 5. In other words, the hot gas at the tip of the stator 5 is quickly removed and the buffer cylinder 8 is removed.
It is clear that insulation recovery can be accelerated by replacing the air with high-density cold gas. For this purpose, it is most important to quickly remove the hot gas near the stator 5, especially at the tip.
It has been found that accelerating hot gas exhaust in the radial direction of the vicinity is effective. For this purpose, if an exhaust hole is provided in the vicinity of the stator 5 of the insulating cylinder 9, the diameter of the insulating cylinder 9 does not need to be increased, and the position of the parallel capacitor 1° does not need to be changed significantly.

〔発明の実施例〕[Embodiments of the invention]

以下2本発明の一実施例を第1図、第2図を用イテKQ
BAする。第1図で並列コンデンサ10、固定子5、絶
縁筒9等は、第5図の従来例とほぼ同−配I斤となって
いる。本実施例では絶縁筒9の側部の一部にホットガス
排気孔12が設けである。
The following two embodiments of the present invention are shown in Fig. 1 and Fig. 2.
BA. In FIG. 1, the parallel capacitor 10, stator 5, insulating tube 9, etc. have almost the same arrangement as in the conventional example shown in FIG. In this embodiment, a hot gas exhaust hole 12 is provided in a part of the side of the insulating cylinder 9.

ホットガス排気孔の位置の例を第1図のII −II矢
視断面である第2図に示す。並列コンデンサ10の配置
道の間にホットガス排気孔が開口している。
An example of the position of the hot gas exhaust hole is shown in FIG. 2, which is a cross section taken along the line II--II in FIG. 1. A hot gas exhaust hole is opened between the parallel capacitors 10.

第1図で、絶縁筒9の上部外局部にはホットガス排気孔
12からの径方向排気流を軸方向・\変更するフローガ
イド13が設けられており、ホットガス流の相聞・\の
拡散を防止している。
In Fig. 1, a flow guide 13 is provided in the upper outer part of the insulating cylinder 9 to change the radial exhaust flow from the hot gas exhaust hole 12 in the axial direction. is prevented.

第1図から明らかなように、フローガイド13ノ外径は
、分圧コンデンサ10の外径とほぼ同一寸法に設定する
ことも可能であシ、従って、遮断部の大径化とならない
。フローガイド13の材質は1分圧コVデンサ10との
交叉部分でのコンデンサの電位等を考慮した上で、金属
又は絶縁物のどちらを使用しても本発明の目的は達せら
れる。
As is clear from FIG. 1, the outer diameter of the flow guide 13 can be set to be approximately the same as the outer diameter of the partial pressure capacitor 10, so that the diameter of the blocking portion does not become large. The object of the present invention can be achieved by using either a metal or an insulator as the material for the flow guide 13, taking into consideration the potential of the capacitor at the intersection with the 1-part voltage capacitor 10.

第7図は本発明の変形例を示す。第1図では。FIG. 7 shows a modification of the invention. In Figure 1.

分圧コンデンサ10の上端部にホットガスが吹き付けら
れる可能性もある。対策としてホットガス排気孔12の
開ロ位置又、フローガイド13内のガス流制却でも対処
可能であるが、第7図は、ホットガス流路と分圧コンデ
ンサ10を完全に分離した構成でるる。排気孔12の個
々に排気筒14を設けている。第8図は第7図の■−■
矢視断面図であり、分圧コンデンサlOと排気筒14を
交互に配置しである。このような配置とすることにより
、分圧コンデンサ10の保護支持筒を部分的にも耐ホツ
トガス性の材質で構成しなくとも良くコストダウンを可
能とし、又、保護支持筒の肉厚も薄く出来るので1遮断
部径の縮少にも効果カニめる。
There is also a possibility that hot gas is blown onto the upper end of the partial pressure capacitor 10. Countermeasures can be taken by opening the hot gas exhaust hole 12 or controlling the gas flow within the flow guide 13, but Fig. 7 shows a configuration in which the hot gas flow path and the partial pressure condenser 10 are completely separated. Ruru. An exhaust tube 14 is provided for each exhaust hole 12. Figure 8 shows ■-■ of Figure 7.
It is a sectional view taken in the direction of arrows, and shows that the partial pressure capacitor lO and the exhaust pipe 14 are arranged alternately. By adopting such an arrangement, the protective support tube of the partial pressure capacitor 10 does not need to be partially made of a hot gas-resistant material, making it possible to reduce costs, and the thickness of the protective support tube can also be made thinner. Therefore, it is also effective in reducing the diameter of the blocking part.

第9図は、大容量−照明GCBが並列コンデンサ無しで
開発可能となった場合の本発明の適用について検討した
例である。
FIG. 9 is an example in which the application of the present invention was studied in the case where a large-capacity lighting GCB could be developed without a parallel capacitor.

並列コンデンサ不要となれば、その寸法分絶縁筒9の径
を増大することによりBTF遮断遮断曲内上は図れる。
If the parallel capacitor is not needed, the BTF cutoff curve can be improved by increasing the diameter of the insulating cylinder 9 by the same size.

しかし、従来通りの絶縁筒で構成出来れば、避断部夕7
り径の紬少が可能となり。
However, if it could be constructed with a conventional insulating tube,
It is now possible to reduce the diameter of the pongee.

父、迩断部の設計変更も最少限に押えられる等。Changes in the design of the connecting section can also be kept to a minimum.

多くの利点がめる。本発明はこの目的を達成させるため
にも適用出来る。第1O図は、第4図と同じく、遮断部
夕/りlと越断部2,3,4配直を軸方向位置から見た
図である。円筒形状の中に正三角形配置を行なうことに
より、杷は上の桁間の大きい開所が必然的に生じる。こ
の位置に排気筒14を設けることによす魂断部タンク径
の増大無しに排気筒を設けることが出来る。第9図は第
7図で述べた排気筒14の他に通気筒15を設けたもの
である。この通気筒15の効果を以下に述べる。遮断動
作で破線で示す投入位置にあったノくンファノリンダ8
は急速に下方に移動し、絶縁筒9の内径とバッファシリ
ンダ8の外径差が小さい場合、領域Cが封入ガス圧力よ
りも負圧となる。このため、ノズル7から排気されたホ
ットガスが、この領域に流れ込みホットガスの排気を遅
らせ。
It has many advantages. The present invention can also be applied to achieve this objective. FIG. 1O, like FIG. 4, is a view of the cut-off portion 2, 3, and 4 as seen from the axial position. By creating an equilateral triangular arrangement within a cylindrical shape, the loquat inevitably creates a large opening between the upper girders. By providing the exhaust pipe 14 at this position, the exhaust pipe can be provided without increasing the diameter of the soul-cut tank. In FIG. 9, a vent pipe 15 is provided in addition to the exhaust pipe 14 described in FIG. 7. The effect of this ventilation cylinder 15 will be described below. Nokunfanorinda 8 was in the closing position shown by the broken line during the shutoff operation.
moves rapidly downward, and if the difference between the inner diameter of the insulating cylinder 9 and the outer diameter of the buffer cylinder 8 is small, the pressure in the region C becomes more negative than the pressure of the sealed gas. Therefore, the hot gas exhausted from the nozzle 7 flows into this region and the exhaustion of the hot gas is delayed.

最悪の場合、この領域で絶縁破壊が生じる。通気筒15
は、領域Cでの負圧の程度を継減し、更に領域Cに流れ
込むホットガスを排気する効果があり迩断曲能同上に貢
献する。
In the worst case, dielectric breakdown occurs in this area. Ventilation cylinder 15
This has the effect of reducing the degree of negative pressure in region C and further exhausting hot gas flowing into region C, contributing to the bending performance.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、三相共通タンク形GCBの遮断部?3
縁筒の径の増大無しに遮断回能上有効なガス排気路を増
設出来るので、遮断部タンク径の増大無しに遮断容量の
増大が可能となる。
According to the present invention, the interrupting part of the three-phase common tank type GCB? 3
Since a gas exhaust passage that is effective in terms of shutoff performance can be added without increasing the diameter of the edge cylinder, it is possible to increase the shutoff capacity without increasing the diameter of the shutoff section tank.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の三相共通タンク形GCBの
避断部構造図、第2図は第1図のIf−n矢視断面図、
第3図、第4図は従来の三相共通タンク形GCHの断面
図、第5図、第6図は従来の遮断部構造図、第7図は本
発明の変形例の断面図。 第8図は第7図の■−■矢視断面9.第9図、第10図
は本発明に係る池の実施例の断面図である。 5・・・固定子、9・・・絶@筒、10・・・並列コン
デンサ、12・・・排気孔、13・・・フロラガイド。
FIG. 1 is a structural diagram of a three-phase common tank type GCB according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along the If-n arrow in FIG. 1.
FIGS. 3 and 4 are sectional views of a conventional three-phase common tank type GCH, FIGS. 5 and 6 are structural diagrams of a conventional shutoff part, and FIG. 7 is a sectional view of a modification of the present invention. FIG. 8 is a cross section 9 taken along the line ■-■ in FIG. 9 and 10 are cross-sectional views of an embodiment of a pond according to the present invention. 5... Stator, 9... Absolute @ tube, 10... Parallel capacitor, 12... Exhaust hole, 13... Flora guide.

Claims (1)

【特許請求の範囲】[Claims] 1、各相各々を開離可能な固定接触子、可動接触子、前
記可動接触子と一体に構成された絶縁ノズルとバッファ
シリンダ等よりなるアーク消弧部、前記アーク消弧部を
包囲して構成される絶縁筒よりなる三相共通タンク形ガ
ス遮断器において、前記絶縁筒の側面に前記絶縁筒内外
のガス空間を結ぶ連通孔を設け、前記連通孔は前記絶縁
筒の外局に設けたフローガイドにより、前記絶縁筒の端
部近傍で、前記絶縁筒の軸方向で外部に開口することを
特徴とする三相共通タンク形ガス遮断器。
1. An arc extinguishing section consisting of a fixed contact for each phase, a movable contact, an insulating nozzle and a buffer cylinder integrally constructed with the movable contact, and surrounding the arc extinguishing section. In a three-phase common tank type gas circuit breaker consisting of an insulating tube, a communication hole is provided on a side surface of the insulating tube to connect the gas space inside and outside the insulating tube, and the communicating hole is provided at an outer station of the insulating tube. A three-phase common tank-type gas circuit breaker, characterized in that a flow guide opens to the outside in the axial direction of the insulating tube near an end of the insulating tube.
JP21507485A 1985-09-30 1985-09-30 3-phase common tank type gas breaker Pending JPS6276120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21507485A JPS6276120A (en) 1985-09-30 1985-09-30 3-phase common tank type gas breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21507485A JPS6276120A (en) 1985-09-30 1985-09-30 3-phase common tank type gas breaker

Publications (1)

Publication Number Publication Date
JPS6276120A true JPS6276120A (en) 1987-04-08

Family

ID=16666320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21507485A Pending JPS6276120A (en) 1985-09-30 1985-09-30 3-phase common tank type gas breaker

Country Status (1)

Country Link
JP (1) JPS6276120A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133843U (en) * 1989-04-12 1990-11-07

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133843U (en) * 1989-04-12 1990-11-07

Similar Documents

Publication Publication Date Title
US6689980B2 (en) Circuit breaker having hybrid arc extinguishing function
EP0468294B1 (en) Puffer type gas-insulated circuit breaker
JPS6276120A (en) 3-phase common tank type gas breaker
JP2007035518A (en) Gas circuit breaker
US4020304A (en) Two-material vapor shield for vacuum-type circuit interrupter
US4661665A (en) Vacuum interrupter and method of modifying a vacuum interrupter
JP2003217411A (en) Gas circuit breaker
US10410813B1 (en) Vacuum switching apparatus and electrical contact therefor
JP2016127744A (en) Vacuum circuit breaker
JP3031174B2 (en) Gas circuit breaker
US11804346B2 (en) Vacuum interrupter and vacuum breaker
EP3748663B1 (en) Gas circuit breaker
JPH0626093B2 (en) 3-phase batch type gas circuit breaker
KR100379570B1 (en) vacuum interrupter
JPH0864088A (en) Buffer type gas-blast circuit-breaker
JPH0487126A (en) Gas circuit breaker
US3949341A (en) Power vacuum fuse using coaxial cylinders
JPH08115642A (en) Grounded tank type gas-blast circuit breaker
KR20220065168A (en) Electrodes for mitigating the electric field of vacuum interrupters
RU2148281C1 (en) Arc-control device of self-compression gas-filled high-voltage switch
KR200465840Y1 (en) Vacuum interupter for a vacuum circuit breaker
JP2003092052A (en) Gas circuit breaker
JP2003331699A (en) Vacuum valve
JP2000050433A (en) Gas insulated on/off device
JPS5956334A (en) Buffer type gas breaker