JPS6275236A - Surface inspection device - Google Patents

Surface inspection device

Info

Publication number
JPS6275236A
JPS6275236A JP21453585A JP21453585A JPS6275236A JP S6275236 A JPS6275236 A JP S6275236A JP 21453585 A JP21453585 A JP 21453585A JP 21453585 A JP21453585 A JP 21453585A JP S6275236 A JPS6275236 A JP S6275236A
Authority
JP
Japan
Prior art keywords
reflected
mask
inspected
light
lenses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21453585A
Other languages
Japanese (ja)
Inventor
Chiaki Fukazawa
深沢 千秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21453585A priority Critical patent/JPS6275236A/en
Publication of JPS6275236A publication Critical patent/JPS6275236A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details

Abstract

PURPOSE:To obtain a small-sized and high-performance inspecting device of simple constitution by guiding reflected and diffracted light from the entire scanning area to mask surfaces and eliminating an uninspected area. CONSTITUTION:Laser light outputted by a laser light source 20 is reflected and scanned by a rotary mirror 30 and then scanned on the inspected surface of a rolled steel plate 1. Spherical lenses 40a-40c as converging parts have end parts cut and are joined together on those cut surfaces, and those individual lenses operates as independent lenses having respective focuses, but function as one lens which provides convergence at any position in the direction of a laser scanning range L. Therefore, diffracted light is converged by the spherical lenses 40a-40c and image-formed on the mask surfaces 50a-50c wherever it is reflected in the scanning range L. Then, images of respective small image- formation areas are put together by optical fibers 81-83 arranged opposite behind the surfaces 50a-50c, converted 61-63 photoelectrically, and supplied to signal processing circuits 71-73, which perform signal processing required to discriminate the reflection and diffraction pattern.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、レーザ回折パターン方式を使用して板材等の
表面検査を行なう表面検査装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement in a surface inspection apparatus for inspecting the surface of a plate or the like using a laser diffraction pattern method.

〔発明の技術的背景〕[Technical background of the invention]

従来、この種の装置として例えば第3図に示す如きもの
がある。この装置は、複数(図では3個)のレーザ光源
2a、2b、2cから出力されたレーザ光を各々回転ミ
ラー3a、3b、3c’Q反射して検出対象物である例
えば圧延m仮1の表面上に走査する。そして、これらの
走査範囲La。
Conventionally, as an example of this type of apparatus, there is one shown in FIG. 3, for example. This device reflects the laser beams output from a plurality of (three in the figure) laser light sources 2a, 2b, and 2c, respectively, on rotating mirrors 3a, 3b, and 3c'Q to detect an object to be detected, for example, a rolled m temporary 1. Scan over the surface. And these scanning ranges La.

Lb、Lcにおける各反射回折光を各々球面レンズ4a
、4b、4cで集光してマスク面5a。
Each of the reflected and diffracted lights at Lb and Lc is transmitted through a spherical lens 4a.
, 4b and 4c to focus the light onto the mask surface 5a.

5b、5cの同一位置に結像させ、これらのマスク面5
a、5b、5cの所定の結像小領域にそれぞれ対向配設
した複数の光電変換器6a、6b。
5b and 5c, and these mask surfaces 5
A plurality of photoelectric converters 6a, 6b are arranged to face each other in predetermined imaging small areas a, 5b, 5c.

6Cにより上記結像を検出してその検出信号を各々信号
処理回路?a、7b、7cに供給する。そして、この信
号処理回路7a、7b、7cて所定の信号処理を行なっ
て反射回折パターンを検出し、この検出結果から上記圧
延鋼板1の表面状態を判別するようにしたものである。
6C detects the above image formation and sends the detection signal to each signal processing circuit. a, 7b, and 7c. The signal processing circuits 7a, 7b, and 7c perform predetermined signal processing to detect a reflected diffraction pattern, and the surface condition of the rolled steel plate 1 is determined from the detection results.

尚、上記各光電変換器6a、6b、6cのマスク面5a
、5b。
In addition, the mask surface 5a of each of the photoelectric converters 6a, 6b, 6c
, 5b.

5Cに対する対向位置は、マスク面5a、5b。Opposing positions to 5C are mask surfaces 5a and 5b.

5Cに結像される反射回折パターンの形状に応じて設定
される。例えば、圧延鋼板1の表面に傷が無いとすれば
反射回折パターンは例えば第4図(a)のイのようにマ
スク面の中央部に集中したものとなり、また擦傷等があ
ると反射回折パターンは第4図(b)のように例えば細
長いものとなるので、これらを検出するために各光電変
換器6a、6b、6cは第4図(a)、(b)の破線5
1.52.53に示す結像小領域の結像を検出できるよ
うに位置決めすればよい。
It is set according to the shape of the reflection diffraction pattern imaged on 5C. For example, if there are no scratches on the surface of the rolled steel plate 1, the reflected diffraction pattern will be concentrated in the center of the mask surface, as shown in FIG. For example, the photoelectric converters 6a, 6b, and 6c are elongated as shown in FIG. 4(b), so in order to detect them, each photoelectric converter 6a, 6b, and 6c is connected to the broken line 5 in FIG. 4(a), (b).
It is only necessary to position it so that the imaging of the small imaging area shown in 1.52.53 can be detected.

この様な装置を使用すれば、圧延鋼板1の搬送速度に比
べて各レーザ光の走査繰返し速度を高速に設定すること
により、圧延鋼板1の表面の傷の有無、その種類等をむ
らなく正確に検査することができ、極めて有用である。
If such a device is used, by setting the scanning repetition rate of each laser beam higher than the conveyance speed of the rolled steel plate 1, the existence and type of scratches on the surface of the rolled steel plate 1 can be uniformly and accurately detected. It is extremely useful.

〔背景技術の問題点〕[Problems with background technology]

ところがこの様な従来の装置は、被検査面に対するレー
ザ光の各走査範囲La、Lb、Lc毎に球面レンズ4a
、4b、4cを個別に設けて反射回折光の集光を行なっ
ているため、各球面レンズはそれぞれ正反射光ばかりで
なく例えば第5図に示すような乱反射光も集光しなけれ
ばならず、このため走査範囲La、Lb、Lcの長さよ
りも長さの長いものを必要とする。したがって、各球面
レンズ4a、4b、4cで集光可能な走査範囲は自ずと
球面レンズの大きさよりも小さい範囲に限定されること
になり、これにより例えば第5図に示す如く各走査範囲
La、Lb間の領域Wはたとえレーザ光で走査したとし
ても検査することができず、このため被検査面に不検査
領域が発生する欠点があった。また、上記不検査領域を
無くすために2台の検査装置を設けることが考えられて
いるが、このようにすると装置が非常に大形化して高価
になる欠点があり、実用に適さなかった。
However, in such a conventional device, a spherical lens 4a is provided for each scanning range La, Lb, and Lc of the laser beam on the surface to be inspected.
, 4b, and 4c are individually provided to collect the reflected and diffracted light, each spherical lens must collect not only the specularly reflected light but also the diffusely reflected light as shown in FIG. 5, for example. , therefore, a length longer than the scanning ranges La, Lb, and Lc is required. Therefore, the scanning range that can be focused by each spherical lens 4a, 4b, 4c is naturally limited to a range smaller than the size of the spherical lens, and as a result, as shown in FIG. 5, each scanning range La, Lb The region W in between cannot be inspected even if it is scanned with a laser beam, and this has the disadvantage that an uninspected region occurs on the surface to be inspected. Further, it has been considered to provide two inspection devices in order to eliminate the above-mentioned non-inspection area, but this has the disadvantage that the device becomes extremely large and expensive, and is not suitable for practical use.

〔発明の目的〕[Purpose of the invention]

本発明は、全走査領域の反射回折光をもれなくマスク面
に導けるようにして不検査領域をなくし、しかもこれを
複数の装置を使用することなく1台の装置で行ない得る
ようにし、これにより構成が簡単かつ小形で検査性能の
高い表面検査装置を提供することを目的とする。
The present invention eliminates uninspected areas by guiding the reflected and diffracted light of the entire scanning area to the mask surface, and also enables this to be done with a single device without using multiple devices. The purpose of the present invention is to provide a surface inspection device that is simple, compact, and has high inspection performance.

〔発明の概要〕[Summary of the invention]

本発明は、上記目的を達成するために、被検査面のスポ
ット光走査位置とマスク面との間に、上記スポット光の
走査方向に端部を互いに線接触させた状態で配設された
複数の球面レンズを自゛する集光光学系を介在配置し、
上記各球面レンズにより被検査面の全走査範囲による反
射回折光を集光して各々対応するマスク面に静止結像さ
せるようにしたものである。
In order to achieve the above object, the present invention provides a plurality of light beams arranged between the spot light scanning position of the surface to be inspected and the mask surface with their ends in line contact with each other in the scanning direction of the spot light. A condensing optical system with a spherical lens is interposed,
The above-mentioned spherical lenses condense reflected diffraction light from the entire scanning range of the surface to be inspected, and form a stationary image on each corresponding mask surface.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例における表面検査装置の構成
を示すもので、20はレーザ光源を示している。このレ
ーザ光源20から出力されたレーザ光は、回転ミラー3
0で反射走査されたのち平面鏡32および凹面鏡33で
それぞれ反射されて圧延鋼板1の被検査面上に走査され
る。尚、Lは上記レーザ光の走査範囲を示すもので、図
では圧延鋼板1の全幅に渡って走査される場合を示して
いる。
FIG. 1 shows the configuration of a surface inspection apparatus according to an embodiment of the present invention, and 20 indicates a laser light source. The laser light output from this laser light source 20 is transmitted to the rotating mirror 3
After being reflected and scanned at 0, it is reflected by the plane mirror 32 and the concave mirror 33 and scanned onto the surface to be inspected of the rolled steel plate 1. Note that L indicates the scanning range of the laser beam, and the figure shows the case where the entire width of the rolled steel plate 1 is scanned.

一方、圧延鋼板1の上記走査範囲りの斜め上方には、集
光光学系としての球面レンズ40a。
On the other hand, diagonally above the scanning range of the rolled steel plate 1, there is a spherical lens 40a as a condensing optical system.

40b、40cおよびマスク面50a、50b。40b, 40c and mask surfaces 50a, 50b.

50Cがそれぞれ配設しである。このうち各球面レンズ
40a、40b、40cは、それぞレレーザ光の走査方
向の両端部を所定の位置で切断し、その切断面を接合部
として隣接するものどうしを接合して一体化したもので
、上記被検査面の全走査範囲りによる反射回折光をもれ
なく集光して対応するマスク面50a、50b、50c
に結像させる。これらのマスク面50a、50b、50
cの背面側には、それぞれ予め設定した結像小領域に光
ファイバ81,82.83の光導入端が対向配設してあ
り、これらの光ファイバ81,82゜83により上記各
マスク面50a、50b、50Cの共通する結像小領域
毎に結像がまとめられて光7u変換器61,62.63
に導かれている。そして上記各結像は、各光電変換器6
1.62゜63で光電変換されたのち信号処理回路71
゜72.73に供給され、これらの回路で反射回折パタ
ーンを識別するために必要な信号処理がなされる。
50C are arranged respectively. Of these, each of the spherical lenses 40a, 40b, and 40c is made by cutting both ends in the scanning direction of laser light at a predetermined position, and using the cut surfaces as joints, adjacent lenses are joined and integrated. , the reflected and diffracted light from the entire scanning range of the surface to be inspected is focused without exception to the corresponding mask surfaces 50a, 50b, 50c.
to form an image. These mask surfaces 50a, 50b, 50
On the back side of C, the light introduction ends of optical fibers 81, 82, 83 are disposed opposite to each other in preset imaging small areas, and these optical fibers 81, 82, 83 are arranged to face each mask surface 50a. .
guided by. Each of the above images is formed by each photoelectric converter 6.
After photoelectric conversion at 1.62°63, the signal processing circuit 71
72 and 73, and these circuits perform the signal processing necessary to identify the reflected diffraction pattern.

この様な構成であるから、圧延鋼板1の被検査面に対し
、投光光学系によりレーザ光を走査すると、被検査面で
その表面状態に応じて反射光の回折が起り、この反射回
折光はその反射位置に応じて対応する球面レンズ40 
a、  40 b、  40 cで集光され、マスク面
50 a、  50 b、  50 cに反射回折パタ
ーンとして結像される。尚、このとき上記球面レンズ4
0a、40b、40cと被検査面上のレーザ走査範囲り
との間の距離および球面レンズ40 a、  40 b
、  40 cとマスク面50a。
With such a configuration, when the surface to be inspected of the rolled steel plate 1 is scanned with laser light by the projection optical system, the reflected light is diffracted on the surface to be inspected depending on the surface condition, and this reflected diffracted light corresponds to the spherical lens 40 according to its reflection position.
The light is focused on the mask surfaces 50a, 50b, 50c as a reflection diffraction pattern. At this time, the spherical lens 4
The distance between 0a, 40b, 40c and the laser scanning range on the surface to be inspected and the spherical lenses 40a, 40b
, 40c and the mask surface 50a.

50b、50cとの間の距離は、それぞれ球面レンズ4
0a、40b、40cの焦点距離に設定しである。この
ため、上記被検査面により生じた反射回折光は、各マス
ク面50a、50b、50cに静止回折パターンとして
結像される。
The distance between 50b and 50c is spherical lens 4, respectively.
The focal lengths are set to 0a, 40b, and 40c. Therefore, the reflected diffraction light generated by the surface to be inspected is imaged as a static diffraction pattern on each mask surface 50a, 50b, 50c.

ところで、集光部としての上記球面レンズ40a、40
b、40cは、先に述べたように端部を切断してこの切
断面で相互に接合したものとなっている。このため、球
面レンズ40a、40b。
By the way, the above-mentioned spherical lenses 40a and 40 as light condensing parts
b and 40c have their ends cut off and joined together at the cut surfaces, as described above. For this reason, the spherical lenses 40a, 40b.

40cは、それぞれ個々には焦点を有する独立したレン
ズとして作用するが、レーザ走査範囲り方向については
如何なる位置であっても集光作用を有する1枚のレンズ
として作用する。したがって、レーザ走査範囲して反射
された回折光は、走査範囲りの如何なる位置で反射され
たものであっても、もれなく球面レンズ40 a、  
40 b、  40 cで集光されてマスク面50 a
、  50 b、  50 cに結像することになる。
Each of the lenses 40c acts as an independent lens having a focal point, but it acts as a single lens having a condensing effect at any position in the direction of the laser scanning range. Therefore, the diffracted light reflected within the laser scanning range is always reflected by the spherical lens 40a, no matter where it is reflected within the scanning range.
40 b and 40 c are focused on the mask surface 50 a
, 50 b, and 50 c.

第2図はその様子を示したものである。また、本装置で
は走査範囲り中の位置によっては、その反射回折光が集
光されるマスク面が従来とは異なる場合がある。例えば
、走査範囲中の任意の点Pにおいて反射された回折光■
1は、従来の装置では第5図に示す如く球面レンズ4a
により集光されてマスク面5aの結像位置Paに結像さ
れるが、本実施例の装置では第2図に示す〜  如く球
面レンズ40bで集光されてマスク面50bの結像位置
Pb’ に結像される。しかし、このように結像するマ
スク面が異なっても、マスク面上の結像位置は互いに等
しく、上記結像は光ファイバによりまとめられて結果的
に共通の光電変換器で光電変換されることになるので、
同等不具合は生じない。
Figure 2 shows this situation. Furthermore, in this apparatus, depending on the position within the scanning range, the mask surface on which the reflected and diffracted light is focused may be different from that of the conventional mask. For example, the diffracted light reflected at any point P in the scanning range ■
1 is a spherical lens 4a as shown in FIG.
In the apparatus of this embodiment, the light is focused by a spherical lens 40b and focused at an image position Pb' on the mask surface 50b, as shown in FIG. 2. is imaged. However, even if the mask surfaces on which the images are formed differ in this way, the image formation positions on the mask surfaces are the same, and the images are grouped together by an optical fiber and are ultimately photoelectrically converted by a common photoelectric converter. So,
Similar problems will not occur.

このように本実施例の装置であれば、被検査面を全幅に
渡って走査した場合でも、その全範囲で反射された回折
光がもれなく球面レンズ40a。
As described above, with the apparatus of this embodiment, even when scanning the entire width of the surface to be inspected, all of the diffracted light reflected over the entire width is reflected by the spherical lens 40a.

40b、40cで集光されてマスク面50a。The light is focused by 40b and 40c onto the mask surface 50a.

50b、50Cに結像することになり、この結果1台の
装置を用意するだけで被検査面の全範囲の検査を行なう
ことが可能となって、構成簡単にして高能力の検査を行
なうことができる。また本実施例では、各球面レンズ4
0a、40b、40cを相互に接合して一体化している
ので、被検査面に対する位置合せを簡単に行なえるとと
もに、震動等に対してレンズ相互が位置ずれを起こすこ
とがないことから信頼性が高くまたマウント構造の簡単
な装置を提供することができる。
50b and 50C, and as a result, it is possible to inspect the entire range of the surface to be inspected by preparing one device, making it possible to perform high-capacity inspection with a simple configuration. I can do it. Furthermore, in this embodiment, each spherical lens 4
Since 0a, 40b, and 40c are bonded together and integrated, it is easy to align them with respect to the surface to be inspected, and the lenses do not shift relative to each other due to vibrations, which increases reliability. It can also provide a simple device with a high mounting structure.

尚、本発明は上記実施例に限定されるものではない。例
えば、球面レンズは相互に接合しなくても接触させただ
けでマウントしてもよい。また、投光光学系は1組のレ
ーザ光源20.回転ミラー30および反射光学系により
構成する以外に、第3図に示したように複数組のレーザ
光源と回転ミラーとを用いて走査を行なうように構成し
てもよい。さらに、受光検出部につ、いても各マスク面
の共通する結像小領域の像をまとめて光電変換器で検出
するもの以外に、第3図のように各マスク面毎に光電変
換器を設けて検出するように構成してもよい。その他、
球面レンズの形状や大きさ、配設数、接合手段等につい
ても、本発明の要旨を逸脱しない範囲で種々変形して実
施できる。
Note that the present invention is not limited to the above embodiments. For example, spherical lenses may be mounted by simply contacting them without bonding them together. Further, the projection optical system includes a set of laser light sources 20. In addition to the configuration using the rotating mirror 30 and the reflective optical system, a configuration may be adopted in which scanning is performed using a plurality of sets of laser light sources and rotating mirrors, as shown in FIG. Furthermore, as for the light receiving detection section, in addition to the one that uses a photoelectric converter to collectively detect the images of a small imaging area common to each mask surface, a photoelectric converter is installed for each mask surface as shown in Figure 3. It may also be configured to be provided and detected. others,
The shape, size, number of spherical lenses, bonding means, etc. of the spherical lenses can be modified in various ways without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明によれば、被検査面のスポッ
ト光走査位置とマスク面との間に、上記スポット光の走
査方向に端部を互いに線接触させた状態で配設された複
数の球面レンズを有する集光光学系を介在配置し、上記
各球面レンズにより披検査面の全走査範囲による反射回
折光を集光して各々対応するマスク面に静止結像させる
ようにしたことによって、全走査領域の反射回折光をも
れなくマスク面に導くことができ、これにより不検査領
域をなくし、しかもこれを複数の装置を使用することな
く1台の装置で行ない得て、構成が簡11かつ小形で検
査性能の高い表面検査装置を提供することができる。
As described in detail above, according to the present invention, a plurality of light beams are arranged between the spot light scanning position of the surface to be inspected and the mask surface with their ends in line contact with each other in the scanning direction of the spot light. A condensing optical system having spherical lenses is interposed, and the reflected and diffracted light from the entire scanning range of the inspection surface is condensed by each of the spherical lenses, and a static image is formed on each corresponding mask surface. , it is possible to guide all the reflected and diffracted light from the entire scanning area to the mask surface, thereby eliminating uninspected areas, and this can be done with one device without using multiple devices, and the configuration is simple. Moreover, it is possible to provide a surface inspection device that is small and has high inspection performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における表面検査装置の構成
を示す斜視図、第2図は同装置の作用説明に用いるため
の球面レンズに対する反射回折光の通過位置を示す模式
図、第3図は従来の表面検査装置の構成を示す斜視図、
第4図(a)、(b)はマスク面における反射回折パタ
ーンおよび結像小領域の位置の一例を示す拡大図、第5
図は従来装置の球面レンズに対する反射回折光の通過位
置を示す模式図である。 1・・・圧延鋼板、20・・・レーザ光源、30・・・
回転ミラー、32・・・平面鏡、33・・・凹面鏡、4
0a94Qb、40C−’球面レンズ、50a、50b
。 50c・・・マスク面、61,62.63・・・光電変
換器、71,72.73・・・信号処理回路、81゜8
2.83・・・光ファイバ、L・・・走査範囲。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 第3!0 (a)              (b)第4図 第5図 手続補正書 昭和60年5月8日
FIG. 1 is a perspective view showing the configuration of a surface inspection device according to an embodiment of the present invention, FIG. 2 is a schematic diagram showing the passing position of reflected diffracted light with respect to a spherical lens used to explain the operation of the device, and FIG. The figure is a perspective view showing the configuration of a conventional surface inspection device.
4(a) and 4(b) are enlarged views showing an example of the position of the reflection diffraction pattern and the imaging small area on the mask surface;
The figure is a schematic diagram showing the passage position of reflected diffracted light with respect to a spherical lens of a conventional device. 1... Rolled steel plate, 20... Laser light source, 30...
Rotating mirror, 32... Plane mirror, 33... Concave mirror, 4
0a94Qb, 40C-' spherical lens, 50a, 50b
. 50c...Mask surface, 61,62.63...Photoelectric converter, 71,72.73...Signal processing circuit, 81°8
2.83...Optical fiber, L...Scanning range. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3!0 (a) (b) Figure 4 Figure 5 Procedural amendment May 8, 1985

Claims (2)

【特許請求の範囲】[Claims] (1)検査対象物の被検査面に対しスポット光を走査す
る投光光学系と、前記スポット光の走査方向に端部を互
いに線接触させた状態で配設された複数の球面レンズを
有しこれらの球面レンズにより前記被検査面の全走査範
囲による反射回折光を集光してそれぞれ対応するマスク
面に結像させる集光光学系と、前記各マスク面の予め設
定された結像小領域の結像を抽出し光電変換器で検出す
る受光検出部と、前記光電変換器の検出出力を導入して
所定の信号を処理を行なう信号処理回路とを具備したこ
とを特徴とする表面検査装置。
(1) It has a projection optical system that scans a spot light on the surface to be inspected of an object to be inspected, and a plurality of spherical lenses arranged with their ends in line contact with each other in the scanning direction of the spot light. and a condensing optical system that condenses the reflected diffraction light from the entire scanning range of the surface to be inspected using these spherical lenses and forms an image on the corresponding mask surface, and a preset imaging aperture for each of the mask surfaces. A surface inspection characterized by comprising: a light reception detection section that extracts an image of an area and detects it with a photoelectric converter; and a signal processing circuit that processes a predetermined signal by introducing the detection output of the photoelectric converter. Device.
(2)集光光学系の各球面レンズは、スポット光の走査
方向の端部をそれぞれ所定の位置で切断してこの切断面
を接合面として接合し一体化したものである特許請求の
範囲第(1)項記載の表面検査装置。
(2) Each spherical lens of the condensing optical system is formed by cutting the end portion of the spot light in the scanning direction at a predetermined position, and joining the cut surfaces together as a bonding surface to integrate them. The surface inspection device described in (1).
JP21453585A 1985-09-30 1985-09-30 Surface inspection device Pending JPS6275236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21453585A JPS6275236A (en) 1985-09-30 1985-09-30 Surface inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21453585A JPS6275236A (en) 1985-09-30 1985-09-30 Surface inspection device

Publications (1)

Publication Number Publication Date
JPS6275236A true JPS6275236A (en) 1987-04-07

Family

ID=16657339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21453585A Pending JPS6275236A (en) 1985-09-30 1985-09-30 Surface inspection device

Country Status (1)

Country Link
JP (1) JPS6275236A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0360232A2 (en) * 1988-09-20 1990-03-28 Kabushiki Kaisha Toshiba A surface inspection apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5059081A (en) * 1973-09-26 1975-05-22
JPS54154341A (en) * 1978-02-27 1979-12-05 Sick Optik Elektronik Erwin Optical monitor
JPS56126745A (en) * 1980-03-10 1981-10-05 Matsushita Electric Works Ltd Automatic inspecting device for surface of plate material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5059081A (en) * 1973-09-26 1975-05-22
JPS54154341A (en) * 1978-02-27 1979-12-05 Sick Optik Elektronik Erwin Optical monitor
JPS56126745A (en) * 1980-03-10 1981-10-05 Matsushita Electric Works Ltd Automatic inspecting device for surface of plate material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0360232A2 (en) * 1988-09-20 1990-03-28 Kabushiki Kaisha Toshiba A surface inspection apparatus

Similar Documents

Publication Publication Date Title
US6671042B1 (en) Multiple beam scanner for an inspection system
US4251129A (en) Photoelectric detecting device
US4301363A (en) Alignment device
US6124924A (en) Focus error correction method and apparatus
JPH0141249B2 (en)
JP2920194B2 (en) Optical scanning device
JP2510786B2 (en) Object shape detection method and apparatus
JPS63765B2 (en)
US4563094A (en) Method and apparatus for automatic alignment
JPS5860593A (en) Method and device for detecting shape
US20030058455A1 (en) Three-dimensional shape measuring apparatus
JPS6275236A (en) Surface inspection device
JPH08323477A (en) Device for detecting seam center in manufacturing welded tube and manufacture of welded tube
JPS62144050A (en) Surface inspection apparatus
JPS58151544A (en) Defect inspecting device by dark view field
JPS6275235A (en) Surface inspection device
JPS59225320A (en) Scanning beam diameter measuring apparatus
JP7107434B2 (en) Interference imaging device
JPS63184045A (en) Flaw detection sensor
JP2526794B2 (en) Tilt detection device
JP3174615B2 (en) Projection optical system in defect inspection equipment
JPH095045A (en) Photo/detector
JP2636017B2 (en) Tilt detection head
JPS6269104A (en) Edge detecting device
JPH0333714A (en) Scanner