JPS6274455A - Hydrodesulfurizing and hydrocracking catalyst - Google Patents

Hydrodesulfurizing and hydrocracking catalyst

Info

Publication number
JPS6274455A
JPS6274455A JP60217146A JP21714685A JPS6274455A JP S6274455 A JPS6274455 A JP S6274455A JP 60217146 A JP60217146 A JP 60217146A JP 21714685 A JP21714685 A JP 21714685A JP S6274455 A JPS6274455 A JP S6274455A
Authority
JP
Japan
Prior art keywords
alumina
catalyst
carrier
radius
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60217146A
Other languages
Japanese (ja)
Other versions
JPH0628738B2 (en
Inventor
Kazuhiko Konuma
和彦 小沼
Tadashi Suzuki
忠 鈴木
Tadashi Kito
木藤 忠
Yukinori Hataya
畑谷 行徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asia Oil Co Ltd
Mitsubishi Kasei Corp
Original Assignee
Asia Oil Co Ltd
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asia Oil Co Ltd, Mitsubishi Kasei Corp filed Critical Asia Oil Co Ltd
Priority to JP60217146A priority Critical patent/JPH0628738B2/en
Publication of JPS6274455A publication Critical patent/JPS6274455A/en
Publication of JPH0628738B2 publication Critical patent/JPH0628738B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To enhance hydrodesulfurizing and hydrocracking activity, by supporting a metal of the VIb group of the Periodic Table, a ferrous metal of the Group VIII and a platinum group metal by a carrier comprising alumina or the like and specifying the specific surface area and pore volume, etc., of said carrier. CONSTITUTION:A metal of the Group VIb of the Periodic Table,a ferrous metal of the Group VIII and a platinum group metal are supported by a carrier comprising a mixture consisting of alumina, amorphous silica/alumina and Y-type zeolite to form a hydrodesulfurizing/hydrocracking catalyst. This catalyst has a specific surface area of 300-500m<2>/g and pore distribution such that the volume of pores with a pore radius of 20-300Angstrom is 0.35ml/g or more and there are one clear peaks respectively at a pore radius of 20-40Angstrom and a pore radius of 50-100Angstrom . Further, the volume of pores with a pore radius of 20-45Angstrom is 15-40% of that of pores with a pore radius of 20-300Angstrom .

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアルミナ、非結晶シリカ・アルミナおよびY型
ゼオライトの混合物からなる担体に、周期律表vIb族
金属および■族金属を担持した重質油の水素化脱硫・水
素化分解処理に対してすぐれた活性を有する触媒に関す
るものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a heavy metal carrier comprising a mixture of alumina, amorphous silica/alumina, and Y-type zeolite, carrying metals of group VIb and group II of the periodic table. The present invention relates to a catalyst having excellent activity for hydrodesulfurization and hydrocracking treatment of oil.

〔従来の技術および発明が解決しようとする問題点〕[Problems to be solved by conventional technology and invention]

世界的に原油が重質化する傾向にあるのに引き替え、石
油製品の需要はますます、中、軽質化する傾向にある。
While crude oil is becoming heavier worldwide, demand for petroleum products is increasingly becoming lighter and medium-sized.

このため重質油を高価値の中、軽質油に転化させる分解
プロセスはその重要性が一段と高まっている。石油精裏
業では、これに対応するため様々な対策を講じているが
、そのひとつに、既存の水素化脱硫装置を分解型装置に
転換する方法が行なわれている。即ち、水素化脱硫を行
なうとともに、同時に水素化分解も行ない、中、軽質分
を高収率で生成させる方法である。
For this reason, the cracking process that converts heavy oil into high-value light oil is becoming increasingly important. The petroleum refinery industry is taking various measures to deal with this, and one of them is converting existing hydrodesulfurization equipment to cracking equipment. That is, this is a method in which hydrodesulfurization is carried out and hydrocracking is also carried out at the same time to produce medium and light components in high yield.

常圧残油、減圧軽油、減圧残油等の所謂重質油の水素化
脱硫触媒としてはアルミナ担体にモリブデン等の周期律
表■b族金属およびコバルト、ニッケル等の■族金属を
担持した触媒が知られており、このタイプの触媒は高い
脱硫活性を示し、水素化脱硫触媒としては好適であるが
、分解活性は低いため、高収率で中、軽質分を得るには
高反応温度または低液空間速度の採用などといった過酷
な反応条件を必要とする。一方水素化分解触媒としては
従来から数多く提案されている。即ち酸性度の高いシリ
カ・アルミナ。
Hydrodesulfurization catalysts for so-called heavy oils such as atmospheric residual oil, vacuum gas oil, vacuum residual oil, etc. are catalysts in which group II metals of the periodic table, such as molybdenum, and metals of group II, such as cobalt and nickel, are supported on an alumina carrier. This type of catalyst shows high desulfurization activity and is suitable as a hydrodesulfurization catalyst, but its cracking activity is low, so high reaction temperatures or high reaction temperatures are required to obtain medium and light components in high yield. Requires harsh reaction conditions such as low liquid hourly space velocity. On the other hand, many hydrocracking catalysts have been proposed so far. In other words, silica and alumina have high acidity.

シリカ・マグネシア、アルミナ・チタニア、アルミナ・
ボリアなど固体酸性を有する担体に■b族金属および1
族金属を担持してなる触媒による分解能の向上が試みら
れている。これら酸性度の高い担体を用いた触媒はアル
ミナ担体の触媒に比べて、分解活性はある程度の好結果
をもたらすが、未だ充分な分解活性は発揮し得ず、また
脱硫活性は低い。
Silica/Magnesia, Alumina/Titania, Alumina/
■B group metal and 1 on solid acidic carrier such as boria
Attempts have been made to improve the resolution using catalysts supported on group metals. Catalysts using these highly acidic carriers have better cracking activity to some extent than catalysts using alumina carriers, but they still cannot exhibit sufficient cracking activity and have low desulfurization activity.

さらに、近年、上記した如きタイプの触媒の水素化分解
活性を改善する目的で、ゼオライトを混合した水素化分
解触媒が開発されている。
Furthermore, in recent years, hydrocracking catalysts containing zeolite have been developed for the purpose of improving the hydrocracking activity of the above-mentioned types of catalysts.

このゼオライト含有触媒はゼオライトを含まない触媒に
比べ、高い分解活性を示し、比較的温和な反応条件で重
質油を水素化分解する能力を備えているが、灯油および
軽油等の中間留分に対する選択性に乏しく、生成物の大
半がナフサとガスで占められるという欠点がある。
This zeolite-containing catalyst exhibits higher cracking activity than catalysts that do not contain zeolite, and has the ability to hydrocrack heavy oil under relatively mild reaction conditions. It has the disadvantage of poor selectivity and the majority of the product is naphtha and gas.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、上記した如き従来触媒の問題点を改善す
べく、種々検討を重ねた結果、重質油の水素化脱硫およ
び中間留分を高収率で生成する水素化分解双方に高い活
性を有する触媒として、アルミナと非結晶質シリカ・ア
ルミナと比表面1)<3o o−s o orrL′/
yの触媒であって、特定の細孔分布を有する触媒を見出
し、本発明に到達したものである。
In order to improve the problems of conventional catalysts as described above, the present inventors have conducted various studies, and as a result, we have found that a catalyst with high efficiency is effective for both hydrodesulfurization of heavy oil and hydrocracking to produce middle distillates in high yields. As active catalysts, alumina, amorphous silica/alumina, and specific surface 1) <3o o-s o orrL'/
The present invention was achieved by discovering a catalyst having a specific pore distribution.

以下に不発明の詳細な説明する。The non-invention will be explained in detail below.

本発明の水素化脱硫・水素化分解触媒はアルミナと非結
晶質シリカ・アルミナとY型ゼオラ当該担体のアルミナ
に■b族金属の少なくとも1種および■族金属の鉄族金
属の少なくとも1種を担持してなり、当該担体の非結晶
質シリカ・アルミナに■族金属の白金族金属の少なくと
も/81を担持してなる、比表面積JOO−30θm″
/y−の触媒であって、 ■ 半径−〇〜3ooXの細孔の容積がθ、3j−71
以上であシ、 ■ 半径コo −tIo Xおよび半径!θ〜io。
The hydrodesulfurization/hydrocracking catalyst of the present invention includes alumina, amorphous silica, alumina, and Y-type zeola, and at least one metal of the group ■B group and at least one metal of the iron group of group ■ metals in the alumina of the support. specific surface area JOO-30θm''
/y- catalyst, ■ The volume of pores with radius -〇~3ooX is θ, 3j-71
That's all, ■ Radius -tIo X and radius! θ~io.

又にそれぞれ一つずつ明瞭なピークを有する細孔分布を
示し、 ■ 半径ユo −a s Xの細孔の容積が半径コ03
ooXの細孔の容積の15〜qo%の範囲にあり、半径
95〜/!ONの細孔の容積が半径コoP−JooXの
細孔の容積のss〜tsチの範囲であること を特徴とする。
In addition, each shows a pore distribution with one clear peak, and ■ the volume of the pore with radius 0 -a s is the radius 03
It is in the range of 15 to qo% of the pore volume of ooX, and the radius is 95 to /! It is characterized in that the volume of the pores of ON is in the range of ss to ts of the volume of pores of radius oP-JooX.

なお、本発明において「明瞭なピークを有する細孔分布
」とは、累積細孔容量を細孔半径について微分した値を
、半径に対してプロットした、いわゆる細孔分布曲線が
明瞭な極大値を有することを意味する。特定のコ領域て
それぞれ1つずつ明瞭なピークを有する細孔分布は、ノ
(イモ−ダルな(blmodal )な細孔分布として
知られているものである(例えば、「触媒」第27巻第
5号第J/&頁〜Jug頁参照)。
In the present invention, "pore distribution with a clear peak" refers to a pore distribution curve in which the value obtained by differentiating the cumulative pore volume with respect to the pore radius is plotted against the radius, and the so-called pore distribution curve has a clear maximum value. It means to have. A pore distribution having one distinct peak in each specific co-region is known as a blmodal pore distribution (see, for example, Catalyst, Vol. 27). (See No. 5, pages J/& to Jug).

本発明の水素化脱硫・水素化分解触媒に於いて、担体は
アルミナと非結晶質シリカ・アルミナとy、lゼオライ
トの混合物で構成され、アルミナは実質的に脱硫活性を
担い、非結晶質シリカ・アルミナおよびY型ゼオライト
は冥質的に分解活性を担っている。
In the hydrodesulfurization/hydrocracking catalyst of the present invention, the carrier is composed of a mixture of alumina, amorphous silica/alumina, and Y and L zeolites, and the alumina substantially carries the desulfurization activity, and the amorphous silica・Alumina and Y-type zeolite are responsible for the decomposition activity in a pneumatic manner.

通當、当該触媒の担体に於いて、アルミナの配合針は3
0〜6θwt%、好ましくはダ0−50wt%の範囲で
使用され、非結晶質シリカ・アルミナの配合量およびY
型ゼオライトの配合量は各々−〇z(10wt%の範囲
で使用され、かつ、非結晶質シリカ・アルミナおよびY
型ゼオライトの合計の配合量がqo〜70 wtl、好
ましくはSO〜& Owtlの範囲で使用される。アル
ミナの配合量が少なすぎるとアルミナに期待する脱硫活
性が充分に発揮されず、逆に多すぎるとにある。
Generally, in the carrier of the catalyst, the alumina compounding needle is 3.
It is used in the range of 0 to 6θwt%, preferably 0 to 50wt%, and the blending amount of amorphous silica/alumina and Y
The blending amount of the type zeolite is -〇z (10 wt%), and the amount of amorphous silica/alumina and Y
The total blending amount of the zeolite type is used in the range of qo to 70 wtl, preferably SO to &0.0 wtl. If the amount of alumina blended is too small, the desired desulfurization activity of alumina will not be fully exhibited, whereas if it is too large.

本発明で使用されるアルミナは、比表面積はljθ〜、
700 rrl / 9−を示し半径ユO〜73000
又の全細孔の容積がo、b〜t、oml/Pであって、
かつ半径xi s −t s o Xの細孔の容積が全
細孔の容積の少なくともgs%であり、半径20〜tI
sXの細孔の容積が全細孔の容積のto%以下であり、
半径!0%10OXに明瞭なピークを有する細孔分布を
示し、半径5θ〜1ooXの細孔容積がo、r−o、ざ
rnt/9−であることを満足することが望ましい。本
条件を満足するアルミナは、公知の細孔調節方法を用い
て製造でき、例えばアルミニウムアルコキシドの加水分
解で生成されるベーマイトを水および無機酸もしくは有
機酸並びに塩基性窒素化合物を添加し可及的均一に混合
混練し、所望の形状と寸法に成型した後乾燥し、500
〜t、oocの温度で焼成することにより製造すること
ができる。
The alumina used in the present invention has a specific surface area of ljθ~,
700 rrl / 9- indicates radius Yu~73000
The total pore volume is o, b to t, oml/P,
and the volume of the pores with radius xi s −t s o X is at least gs% of the total pore volume, and the radius
The pore volume of sX is to% or less of the total pore volume,
radius! It is desirable that the pore distribution has a clear peak at 0%10OX, and that the pore volumes with a radius of 5θ to 1OOX are o, r-o, zarnt/9-. Alumina that satisfies this condition can be produced using a known pore control method, for example, by adding water, an inorganic acid or an organic acid, and a basic nitrogen compound to boehmite produced by hydrolysis of aluminum alkoxide. After uniformly mixing and kneading and molding into the desired shape and dimensions, drying
It can be produced by firing at a temperature of ~t, ooc.

本発明では触媒の水嵩化分解活性を改善するため、上記
し九アルミナに比較的温和な固体酸性物質として非結晶
質シリカ・アルミナと強い固体酸性を有するYfMゼオ
ライトを混合して触媒担体とする。
In the present invention, in order to improve the water volumization decomposition activity of the catalyst, amorphous silica/alumina as a relatively mild solid acidic substance and YfM zeolite having strong solid acidity are mixed with the above-mentioned nine alumina to form a catalyst carrier.

非結晶質シリカ・アルミナは、一般に比較的高い酸性度
と高表面積を有し、QO−90w*%のシリカおよび/
Q〜60 wtlのアルミナからなる。さらに詳しくは
、本発明の非結晶質シリカ・アルミナは、比表面積3s
o−Aso、172を示し、半径コ0〜qsoooXの
全細孔の容積が0.11−0.g d/ Ii’であっ
て、かつ半径20〜tsoooXの全細孔の容積に対し
て、半径コ0〜p、tXの細孔の容積がgs%以上お−
よび半径aS〜tsoXの細孔の容積が10%以下であ
とが望まれる。
Amorphous silica-alumina generally has relatively high acidity and high surface area, QO-90w*% silica and/or
Consists of Q~60 wtl alumina. More specifically, the amorphous silica-alumina of the present invention has a specific surface area of 3s
o-Aso, 172, and the volume of all pores with a radius of 0 to qsoooX is 0.11-0. g d/Ii', and the volume of pores with a radius of 0 to p, tX is gs% or more with respect to the volume of all pores with a radius of 20 to tsoooX.
It is desirable that the volume of pores with radius aS to tsoX be 10% or less.

上記の非結晶質シリカ・アルミナは水素化分解すべき比
較的大きな分子は細孔内に侵入できるが、アスファルテ
ンのような巨大分子は細孔内に侵入できないので、巨大
分子の分解による炭素質物質の生成および重金属、窒素
化合物の蓄積が抑制され、結果として高分解活性が保た
れ、中間留分収率も高い。この非結晶質シリカ・アルミ
ナの細孔半径を限度以上に小さくすると、水素化分解す
べき分子が細孔内−\拡散することが困難になるので、
分解反応は抑制され、分解活性は低下し、加えて細孔内
の分子拡散が遅くなることに起因して過分解が生じ、中
間留分収率も低下するので好ましくない。上記条件を満
足する非結晶質シリカ・アルミナは合成シリカ・アルミ
ナ分解触媒の製造法として当業者に知られた方法と同様
の通常法によって調製することができる。例えば水ガラ
スを硫酸と混合してシリカヒドロゲルを作り、次に硫酸
アルミニウムとアンモニアを加え、シリカヒドロゲルに
アルミナを沈着させる。このシ11力・アルミナヒドロ
ゲルを濾過洗浄後、所望の形状と寸法に成型し、乾燥、
焼成によって上記条件を満足する非結晶質シリカ・アル
ミナを得ることができる。さらに本発明の非結晶質シリ
カ・アルミナには市販のシリカ・アルミナ分解触媒も上
記条件を満足すれば使用できる。これら市販のシリカ・
アルミナ分解触媒は通常微細粒子もしくは成型体として
入手できる。微細粒子はこれをそのまま本発明の非結晶
質シリカ・アルミナ担体として用いることもできるが、
比較的大きな微細粒子および成型体は粒子の粒径を例え
ば湿潤ボールミル、乾燥衝撃ミル、コロイドミル等によ
る粉砕によって小さくし、小さい粒子径で使用する方が
機械的強度および耐摩耗性にすぐれた担体が得られ、好
ましい。
In the above-mentioned amorphous silica/alumina, relatively large molecules to be hydrogenated can enter the pores, but macromolecules such as asphaltene cannot enter the pores, so carbonaceous materials due to the decomposition of macromolecules generation and the accumulation of heavy metals and nitrogen compounds, resulting in high decomposition activity and a high middle distillate yield. If the pore radius of this amorphous silica/alumina is made smaller than the limit, it becomes difficult for molecules to be hydrogenolyzed to diffuse into the pores.
This is undesirable because the decomposition reaction is suppressed, the decomposition activity is reduced, and in addition, over-decomposition occurs due to slow molecular diffusion within the pores, and the yield of the middle distillate is also reduced. Amorphous silica-alumina satisfying the above conditions can be prepared by conventional methods similar to those known to those skilled in the art for producing synthetic silica-alumina decomposition catalysts. For example, water glass is mixed with sulfuric acid to make a silica hydrogel, then aluminum sulfate and ammonia are added to deposit alumina on the silica hydrogel. After filtering and cleaning this alumina hydrogel, it is molded into the desired shape and dimensions, dried,
By firing, amorphous silica/alumina that satisfies the above conditions can be obtained. Furthermore, commercially available silica/alumina decomposition catalysts can also be used in the amorphous silica/alumina of the present invention as long as they satisfy the above conditions. These commercially available silica
Alumina decomposition catalysts are usually available as fine particles or molded bodies. Although the fine particles can be used as they are as the amorphous silica/alumina support of the present invention,
For relatively large fine particles and molded bodies, the particle size of the particles is reduced by pulverization using a wet ball mill, dry impact mill, colloid mill, etc., and using a small particle size results in a carrier with superior mechanical strength and wear resistance. is obtained, which is preferable.

本発明では上記の比較的温和な固体酸性である非結晶質
シリカ・アルミナに分解活性の一部を担わせると同時に
、固体酸的性質がより強いY型ゼオライトにも分解活性
を担わせている。
In the present invention, the above-mentioned amorphous silica and alumina, which are relatively mild solid acids, are responsible for part of the decomposition activity, and at the same time, Y-type zeolite, which has stronger solid acid properties, is also responsible for the decomposition activity. .

この非結晶質シリカ・アルミナおよびY型ゼオライトを
併用することによって、例えばゼオライトのみに分解活
性を担わせた触媒に比べ、ガス状成分の副生量が少なく
、中間留分の選択性が高く、しかも高分解である結果が
得られる。
By using this amorphous silica/alumina and Y-type zeolite in combination, for example, compared to a catalyst in which only zeolite has decomposition activity, the amount of gaseous components by-produced is small, and the selectivity for middle distillates is high. Moreover, high resolution results can be obtained.

ユ 不発明で用いられるY型ゼオライトはオニオンカーバイ
ド社のSK−’70で代表され、公知の方法で製造する
ことができる。例えば「化学と工業」、コ1%lコ4I
−コ(196g)にはY型ゼオライトの製造法が述べら
れている。このY型ゼオライトをそのまま本発明の担体
成分として使用することができるが、より好ましくは、
Y型ゼオライトの交換し得るアルカリ金属イオンのでき
る限シ全てを通常のイオン交換法によりアンモニウムお
よび/またはランタン、セリウム等の希土類金属イオン
で交換し、Y型ゼオライトのアルカリ金属イオンの含有
量を/ wt%以下に低減させて使用することが望まし
い。さらに本発明のY型ゼオライトとしては超安定質Y
型ゼオライトも採用することができる。超安定質Y型ゼ
オライトはアンモニウム交換Y型ゼオライトを例えばg
DTA等を用いて脱アルミニウムして安定化する方法、
スチーミング処理して安定化する方法、高温焼成および
イオン交換をくり返して安定化する方法、鉱醗処理して
安定化する方法等によって製造することができる。
The Y-type zeolite used in the invention is typified by Onion Carbide's SK-'70, and can be produced by a known method. For example, "chemistry and industry", ko1%lko4i
-Co (196g) describes a method for producing Y-type zeolite. This Y-type zeolite can be used as it is as a carrier component in the present invention, but more preferably,
All of the exchangeable alkali metal ions of the Y-type zeolite are exchanged with ammonium and/or rare earth metal ions such as lanthanum and cerium by a normal ion exchange method to reduce the alkali metal ion content of the Y-type zeolite. It is desirable to use it by reducing it to below wt%. Furthermore, the Y-type zeolite of the present invention is ultra-stable Y-type zeolite.
type zeolite can also be employed. Ultra-stable Y-type zeolite is ammonium-exchanged Y-type zeolite, for example g
A method of stabilizing by dealumination using DTA etc.
It can be produced by a method of stabilizing by steaming, a method of stabilizing by repeating high-temperature firing and ion exchange, a method of stabilizing by treating with mineral powder, etc.

かくして得られる超安定質Y型ゼオライトはそのまま本
発明の担体として使用することができ。
The ultra-stable Y-type zeolite thus obtained can be used as it is as a carrier in the present invention.

さらに、上述したランタン、セリウム等の希土類金視イ
オンでイオン交換した超安定質Y型ゼオライトとして使
用することもできる。
Furthermore, it can also be used as an ultra-stable Y-type zeolite that has been ion-exchanged with rare earth metal ions such as lanthanum and cerium.

本発明の触媒担体は、上述したアルミナと非結晶質シリ
カ・アルミナとY型ゼオライトを所定の割合で混合し、
球状、円柱状、タブレット状など所望の形状に成型し、
乾燥した後、SOO〜6θO℃の温度で/−/ Q時間
焼成することにより製造される。かくして得られた担体
は、高い比表面積と半径−〇〜3ooXの範囲の細孔分
布に於いて、半径コθ〜4ts’hK多量の非結晶質シ
リカ・アルミナ細孔およびys−is。
The catalyst carrier of the present invention is prepared by mixing the above-mentioned alumina, amorphous silica/alumina, and Y-type zeolite in a predetermined ratio,
Molded into desired shape such as spherical, cylindrical, tablet, etc.
After drying, it is manufactured by firing at a temperature of SOO to 6θO<0>C for /-/Q hours. The support thus obtained has a high specific surface area and a pore distribution ranging from -0 to 3ooX, with a large amount of amorphous silica-alumina pores and ys-is.

XK多量のアルミナ細孔を有している。XK has a large amount of alumina pores.

なお、本発明の触媒の有する特定の表面積お二び細孔分
布は、通常、一般的には触媒担体に使用するアルミナお
よび非結晶質シリカ・アルミナを各々の表面積および細
孔分布が前述した範囲のものから選択しさえすればこれ
らをY型ゼオライトとともに通常の方法で混合、成型、
焼成することにより得られる。
The specific surface area and pore distribution of the catalyst of the present invention are generally within the ranges described above for alumina and amorphous silica/alumina, which are generally used as catalyst carriers. Once selected, these can be mixed with Y-type zeolite in the usual manner, molded,
Obtained by firing.

しかし、これらアルミナとシリカ・アルミナ原料の細孔
特性はいつの場合にも製品触媒の細孔特性の完全な十分
条件であるとは限らないので最終的に、調製後の触媒に
ついて都度細孔特性を確認して取捨選択することが望ま
しい。勿論、原料特性が上述の範囲外のものから何らか
の工夫を加えて本発明の触媒を調製することも全くあり
得ないことではないので、いずれにしても得られた触媒
が本発明で規定するものとなれば、使用するアルミナ、
非結晶質シリカ・アルミナの細孔特性は上述した範囲が
好ましいが必ずしもそれらに限定されるものではない。
However, the pore characteristics of these alumina and silica/alumina raw materials are not always completely sufficient conditions for the pore characteristics of the product catalyst, so ultimately, the pore characteristics of the prepared catalyst must be determined each time. It is desirable to check and make a selection. Of course, it is not at all impossible that the catalyst of the present invention may be prepared from materials whose characteristics are outside the above-mentioned range by making some modifications, so in any case, the obtained catalyst does not meet the requirements of the present invention. Then, the alumina to use,
The pore characteristics of amorphous silica/alumina are preferably within the ranges described above, but are not necessarily limited thereto.

アルミナと非結晶質シリカ・アルミナの混合属区化物の
形で担持される。さらに好ましくは当該担体のアルミナ
にはl/lb族金属としては例えばモリブデンおよび(
または)タングステン、およびVIIl族金属としては
鉄族金属から選ばれる例えはニッケルおよび(または)
コバルトを担持してなυ、また当該担体の非結晶質シリ
カ・アルミナには■族金属のうち白金、ロジウ太、イリ
ジウム、パラジウム等の白金族金属から選ばれる少なく
とも1種が担持してなる。当該担体の非結晶質シリカ・
アルミナおよびY型ゼオライトに■b族金属および■族
金属の鉄族金属を担持することは本発明の場合1分解活
性を低下させるので避けることが望まれる。これは、■
b族金属および■族金属の鉄族金属の担持は非結晶質シ
リカ・アルミナの細孔を閉塞し、表面積を低下させ、酸
性点を減少させるからであり、およびY型ゼオライトの
結晶構造を破壊し、表面積を低下させ、さらに酸性点を
減少させるからである。通常、活性成分の担持量は、当
該担体のアルミナに担持される■b族金属は金属LOw
t%、同じく当該担体の非結晶質シリカ・アルミナに担
持される■族金属の白金族金属は金属として最終触媒組
成物の0.OS = / wt%である。
It is supported in the form of a mixed compound of alumina and amorphous silica/alumina. More preferably, the alumina of the support includes l/lb group metals such as molybdenum and (
or) tungsten, and group VIIl metals selected from iron group metals, such as nickel and/or
Cobalt is supported on the amorphous silica/alumina carrier, and at least one metal selected from platinum group metals such as platinum, rhodium, iridium, and palladium is supported on the amorphous silica/alumina carrier. The amorphous silica of the carrier
In the present invention, it is desirable to avoid supporting alumina and Y-type zeolite with iron group metals such as group (I) group metals and group (I) metals, as this lowers the 1 decomposition activity. This is ■
This is because supporting iron group metals such as group B metals and group II metals blocks the pores of amorphous silica/alumina, lowers the surface area, and reduces acidic points, and destroys the crystal structure of Y-type zeolite. This is because it reduces the surface area and further reduces the number of acidic points. Usually, the amount of the active ingredient supported on the alumina of the carrier is
t%, and the platinum group metal of the group Ⅰ metal supported on the amorphous silica/alumina of the support also accounts for 0.0% of the final catalyst composition as a metal. OS = /wt%.

これら触媒の活性成分は、アルミナ、非結晶質シリカ・
アルミナとY型ゼオライトが混合される工程前に、予め
アルミナと非結晶質シリカ・アルミナに上記成分を含む
水溶液を別々に含浸して担持し、次いで混合し、成型、
乾燥、焼成を行なう方法および予め非結晶質シリカ・ア
ルミナに上記活性成分を含む水溶液を含浸し、乾燥、焼
成した後、アルミナ及びY型ゼオライトと混合し、成型
、乾燥、焼成を行なって得たアルミナ、Y型ゼオライト
および白金族金属担持非結晶質シリカ・アルミナとから
なる中間体触媒組成物に、上記活性成分を含む水溶液を
充分注意深い操作により当該担体のアルミナ細孔にのみ
選択的に■b族金属および■族金属の鉄族金属を含浸し
、乾燥、焼成することてよって担持する方法等のいずれ
をも採用することができる。活性成分を含浸担持した触
媒の焼成は。
The active components of these catalysts are alumina, amorphous silica,
Before the step of mixing alumina and Y-type zeolite, alumina and amorphous silica/alumina are separately impregnated and supported with an aqueous solution containing the above components, then mixed, molded,
Drying and firing method: Amorphous silica/alumina is impregnated in advance with an aqueous solution containing the above active ingredient, dried and fired, then mixed with alumina and Y-type zeolite, molded, dried and fired. By carefully applying an aqueous solution containing the above-mentioned active ingredient to an intermediate catalyst composition consisting of alumina, Y-type zeolite, and platinum group metal-supported amorphous silica/alumina, it is selectively applied only to the alumina pores of the carrier. Any of the methods of impregnating iron group metals such as group metals and iron group metals and supporting them by drying and firing can be employed. Calcination of catalysts impregnated with active ingredients.

前記のアルミナと非結晶質シリカ・アルミナとY型ゼオ
ライトの混合物担体な製造する場合と同様の条件で行な
われる。
The process is carried out under the same conditions as in the case of producing a mixture carrier of alumina, amorphous silica/alumina and Y-type zeolite.

〔効果〕〔effect〕

かくして型造された本発明の触媒は重質油の水素化脱硫
・水素化分解処理圧於いてすぐれた脱硫活性および分解
活性を示し、特に中間留分を高収率で得ることができる
。本発明の触媒を使用する重質油の水素化脱硫、水素化
分解処理は公知の方法および条件で実施することができ
る。例えば、50−コ00k(17dlGの水素加圧下
に、300〜ti、socで固定床触媒床に重質油を液
空間速度oi−ユh−1、水素付重質油300〜コ00
0 Httloil tで流通させることにより効果的
に重質油の水素化脱硫、水素化分解処理を行なうことが
でき、中間留分の収率は高いものとなる。
The thus molded catalyst of the present invention exhibits excellent desulfurization and cracking activity in the hydrodesulfurization/hydrocracking treatment pressure of heavy oil, and is particularly capable of obtaining middle distillates in high yields. Hydrodesulfurization and hydrocracking treatment of heavy oil using the catalyst of the present invention can be carried out using known methods and conditions. For example, under a hydrogen pressure of 50-co00k (17 dlG), heavy oil with liquid hourly space velocity of oi-yuh-1, hydrogenated heavy oil 300-co00
By circulating the oil at 0 Httloil t, heavy oil can be effectively hydrodesulfurized and hydrocracked, and the yield of the middle distillate is high.

〔実施例〕〔Example〕

以下に本発明を実施例により更に具体的に説明する。 The present invention will be explained in more detail below using Examples.

実施例での細孔分布および容積は水銀圧入式ポロシメー
ターで測定した。使用機は株式会社島津製作所製自動ポ
ロシメーターオートボアタコ00で最高圧弘コθ(7k
p / c、r/lケージである。
The pore distribution and volume in Examples were measured using a mercury intrusion porosimeter. The machine used is an automatic porosimeter Auto Bore Tacho 00 manufactured by Shimadzu Corporation, and the maximum pressure Hiroko θ (7k
p/c, r/l cage.

従って細孔の測定範囲は半径/ 7.g Aからqso
oo Xである。比表面積は窒素吸着法によpBp、r
法で算出した。使用機はカルロエルバ社製ンープトマチ
ツク/Jfθ0である。
Therefore, the measurement range of pores is radius/7. g A to qso
oo X. The specific surface area was determined by the nitrogen adsorption method as pBp, r.
Calculated using the method. The machine used was Nooptomatic/Jfθ0 manufactured by Carlo Erba.

実施例 (1)アルミナ担体前駆体混練物およびアルミナ担体の
製造 コンデア社製ベーマイト粉末Pural SB(AI、
O,含有率75%)lコ50?をバッチ式ニーダ−に移
し、4<、J%硝酸水溶液/弘7コ?を約5分かけて混
練しながら加え、さらに25分混線を続けた。次に前記
混合物にユ、/チアンモニア水69S?を加えて25分
混線し混練物(X)を得た。
Example (1) Production of alumina carrier precursor kneaded product and alumina carrier Boehmite powder Pural SB (AI,
O, content 75%) 50? Transfer to a batch kneader and add 4<, J% nitric acid aqueous solution/Hiroshi 7? was added while kneading over about 5 minutes, and mixing was continued for an additional 25 minutes. Next, add Yu/thiammonia water 69S to the mixture. was added and stirred for 25 minutes to obtain a kneaded product (X).

この混練物(X)をスクリュ一式押出成型機で直径/、
5m+1に押出成型し、成型物をl−0℃で3時間転線
した後、電気炉中で乾燥空気流通下温度を徐々に上げ最
終的に5socの温度で3時間焼成してアルミナを得た
。得られたアルミナは、比表面積/ g 7 y// 
fを有し、半径20〜7sooo7yの全細孔の容積が
0.7 、? / d/ fPであり、半径ttts〜
is。
This kneaded material (X) was molded using a screw set extruder with a diameter of /,
After extrusion molding to 5 m + 1, the molded product was heated at 1-0°C for 3 hours, the temperature was gradually raised in an electric furnace under dry air flow, and finally it was fired at a temperature of 5 soc for 3 hours to obtain alumina. . The obtained alumina has a specific surface area/g 7 y//
f, and the volume of all pores with a radius of 20 to 7 sooo7y is 0.7,? / d/ fP and radius ttts ~
is.

又の細孔の容積は全細孔の容積のg ?、A %を占め
、半径コo −a s Xの細孔の容積は全細孔の容積
の6.9%であり、半径67Hにシャープなピークを有
する細孔分布を示−し、半径so 〜too’jの細孔
の容積はo、strml/fであった。
Also, the volume of the pore is g of the total pore volume? , A %, and the volume of pores with radius o -as X is 6.9% of the total pore volume, showing a pore distribution with a sharp peak at radius 67H. The pore volume of ~too'j was o, strml/f.

(2)触媒−ノの製造 触媒化成株式会社製非結晶質シリカ・アルミナ成型担体
(組成50%sto、・SO%AI、O,、比表面積I
IJ&rrl/l、半径20〜73;000又の全細孔
の容積は0.!red/ンであ)、半径−〇〜ダsgの
細孔の容積0.’I 4づ/ンであシ、全細孔容積に対
する半径ユ0〜ttsXの細孔の容積は? /、0 %
を占め、半径tis〜troXの細孔の容積は!、弘チ
であり、半径J7Xにシャープなピークを有する細孔分
布を示す)roopにパラジウムを0.0077f/ゴ
含有する塩化テトラアンミンパラジウムの水溶液3ユj
ゴを含浸し、lコ0Cで3時間乾燥した後、さらに電気
炉中で乾燥空気流通下体々に温度を上げ最終的にSSO
℃で3時間焼成し、担体な基準に+7.5wt%のパラ
ジウム金属を担持した。このパラジウム担持非結晶質シ
リカ・アルミナ担体5oopを振盪式ボールミル粉砕機
(内容y s t )に移し水15θ0?を加えてコロ
間粉砕し、パラジウム担持非結晶質クリ力・アルミナ微
粉砕物(Y)を得た。
(2) Production of catalyst Amorphous silica/alumina molded carrier manufactured by Catalysts & Chemicals Co., Ltd. (composition: 50% Sto, SO% AI, O, specific surface area I
IJ&rrl/l, the total pore volume with a radius of 20-73;000 is 0. ! red/n), the volume of the pore with radius -〇~dasg is 0. 'I 4. What is the volume of the pores with a radius of 0 to ttsX relative to the total pore volume? /, 0%
, and the volume of a pore with radius tis~troX is! , Hirochi, and exhibits a pore distribution with a sharp peak at radius J7
After drying for 3 hours at 0C, the temperature is further raised in an electric furnace under dry air circulation, and finally SSO is applied.
It was fired at ℃ for 3 hours to support +7.5 wt % of palladium metal on the basis of the carrier. 5 oop of this palladium-supported amorphous silica/alumina carrier was transferred to a shaking ball mill (content: y s t ), and water was mixed with 15θ0? was added and pulverized between rollers to obtain a palladium-supported amorphous alumina finely pulverized product (Y).

2゜ 一方、lニオンカーバイド社製Y型ゼオライトSK−’
l0jrθθ?を3N塩化アンモニウム水溶液コ、3り
tに入れ、t00℃で3時間攪拌してから脱水、洗浄を
行なう操作をq回繰り返し、しかる後これをi、2oc
で乾燥してアンモニウム交換Y型ゼオライ)(Na含有
tO,OJ wt% )を得た。次にこのアンモニウム
交換Y型ゼオライトを酢酸セリウム(少量の塩散で溶解
)水溶液しで浸漬し、セリウムイオンを約2.2mg当
fit/IY型ゼオライトの割合でイオン交換し、脱水
、洗浄を行なった後、l−〇Cで乾燥してセリウム交換
Y型ゼオライト(Z)を得た。
2゜On the other hand, Y-type zeolite SK-' manufactured by lNion Carbide Co., Ltd.
l0jrθθ? was added to a 3N aqueous ammonium chloride solution, stirred at 00°C for 3 hours, and then dehydrated and washed q times.
to obtain an ammonium-exchanged Y-type zeolite (Na-containing tO, OJ wt%). Next, this ammonium-exchanged Y-type zeolite was immersed in an aqueous solution of cerium acetate (dissolved with a small amount of salt dispersion), ion-exchanged with approximately 2.2 mg of cerium ions per IY-type zeolite, dehydrated, and washed. After drying at 1-0C, cerium-exchanged Y-type zeolite (Z) was obtained.

このセリウム交換Y型ゼ゛オライド(セリウム交帷Y型
ゼオライト含有率7 g、9 wt%)4.7.Fpと
上記の混練物(X) 、tユj?と微粉砕物(Y) i
コ0.6?をニーダ−に仕込み、混合混線をダ時間行な
った。次いで直径ハjalの円柱状だ成型し、l20C
の温度で3時間乾燥し九後、空気流通下grocで3時
間焼成して、セリウム交換Y型ゼオライト含有量2 j
 wt%、パラジウム担持非結晶質シリカ・アルミナ含
有i 、70 wt%、アルミナ含有量’I j wt
チの触媒担体を得た。
This cerium-exchanged Y-type zeolide (cerium-exchanged Y-type zeolite content: 7 g, 9 wt%) 4.7. Fp and the above kneaded product (X), tyuj? and finely ground material (Y) i
Ko0.6? were charged into a kneader and mixed and crossed for a period of time. Next, it is molded into a cylindrical shape with a diameter of 120 cm.
After drying for 3 hours at a temperature of
wt%, palladium-supported amorphous silica/alumina content i, 70 wt%, alumina content 'I j wt
A catalyst carrier was obtained.

このバラジクム担持担体りg、/?に、まずキノリン溶
液1.41.09−を含浸し、次に7θCの温度で徐々
に担体のアルミナ細孔中のキノリンを蒸発させ、キノリ
ン含浸量4”1.4 wt%まで乾燥した。このキノリ
y含浸担体にモリブデン酸アンモニウム6.6jpメ硝
酸ニツケル15’ lIfを含む水溶液コg、oゴを含
浸させ、JooCまで徐々に昇温しながら乾燥し、次い
で5socで3時間焼成して触媒−/を製造した。
This Baladichum-supported carrier is g/? was first impregnated with a quinoline solution of 1.41.09-, and then the quinoline in the alumina pores of the carrier was gradually evaporated at a temperature of 7θC, and dried to a quinoline impregnation amount of 4"1.4 wt%. An aqueous solution containing 6.6 jp of ammonium molybdate and 15' lIf of nickel mesnitrate was impregnated into a quinolium-impregnated carrier, dried while gradually increasing the temperature to JooC, and then calcined at 5 soc for 3 hours to form a catalyst. / was manufactured.

触媒−1の触媒成分担持量および物性を表−1に示す。Table 1 shows the amount of catalyst components supported and physical properties of Catalyst-1.

(3)  触媒−一の製造 セリウム交換Y型ゼオライトに変えて、東洋曹達工業株
式会社製超安定質Y型ゼオライ)T8Z−3!ユ(超安
定質Y型ゼオライト含有量9ダ、6%、ナトリウム含有
ミニ0.ユ6 wt%)6ユ、71と微粉砕物(Y)−
gコ、J fとを用い触媒担体組成を超安定gLY型ゼ
オライト含有量=7 wt%、パラジウム担持非結晶質
シリカ・アルミナ含有量3コwt%、アルミナ含有量U
 / Vt%とじたことおよびキノリン含illを’I
 コ、r wt%としモリブデン酸アンモニウム7.7
?2と硝酸ニッケルr、l 3 fを含む水溶液をココ
、ざ−使用したこと以外は触媒−7の製造と同様にして
触媒担体の製造および活性成分の担持を行ない触媒−一
を製造した。
(3) Catalyst - Production of cerium-exchanged Y-type zeolite was replaced with ultra-stable Y-type zeolite (manufactured by Toyo Soda Kogyo Co., Ltd.) T8Z-3! Yu (ultra stable Y-type zeolite content 9 da, 6%, sodium content mini 0. Yu 6 wt%) 6 Yu, 71 and finely ground product (Y)-
Ultra-stable catalyst carrier composition using g co, J f, gLY type zeolite content = 7 wt%, palladium supported amorphous silica/alumina content 3 wt%, alumina content U
/ Vt% binding and quinoline containing ill 'I
Co, r wt% ammonium molybdate 7.7
? Catalyst-1 was produced by producing a catalyst carrier and supporting an active component in the same manner as in the production of Catalyst-7, except that an aqueous solution containing 2 and nickel nitrates r and l3f was used here and there.

触媒−一の触媒成分担持量および物性を表−7に示す。Table 7 shows the amount of catalyst components supported and the physical properties of Catalyst-1.

(4)触媒−3の製造 モリブデン酸アンモニウム7 t、49 fと硝酸ニッ
ケルl−,/ / iを含む水溶液II r、g rd
を使用したこと以外は触媒−コの製造の場合と同様にし
て触媒担体の製造および触媒成分の担持を行ない触媒−
3を製造した。
(4) Production of catalyst-3 Aqueous solution II containing ammonium molybdate 7t, 49f and nickel nitrate l-,//i r,grd
The catalyst carrier was produced and the catalyst components were supported in the same manner as in the production of the catalyst, except that a catalyst was used.
3 was manufactured.

触媒−3の触媒成分担持i>よび物性を表−7に示す。Table 7 shows the catalyst component support i> and physical properties of Catalyst-3.

(5)触媒−弘の製造 実施例(1)で得られた混練物(X)ユ92fをニーダ
−に仕込み、モリブデン酸アンモニウム3グ、96zと
硝酸ニッケルJ I/ 、7 fを含む水溶液/、f4
−を5分間かけて混練しながら添加し、さらに210分
間加熱濃縮しながら混合混練した。次に、この混合物に
触媒−7の製造で得られた微粉砕物(Y) 2 lI/
 %と触媒−コの製造時に使用したと同一の銘柄の超安
定質Y型ゼオライ) 6,71 %と水S0.71を加
え、さらに5時間加熱しながら混合混線を行なった。以
下触媒−1の製造の場合と同様に押出成型、乾燥および
焼成を行ない、超安定質Y型ゼオライト含有ii 、7
0 wt%、非結晶質シリカ・アルミナ含有fJ Ow
t%、アルミナ含有液!(7wt%の担体からなる触媒
−弘を製造した。
(5) Production of Catalyst-Hiroshi The kneaded product (X) 92f obtained in Example (1) was charged into a kneader, and an aqueous solution containing 3 g, 96z of ammonium molybdate and 7 f of nickel nitrate J/ was prepared. , f4
- was added while kneading over 5 minutes, and further mixed and kneaded while heating and concentrating for 210 minutes. Next, the finely ground product (Y) 2 lI/ obtained in the production of catalyst-7 was added to this mixture.
%, ultra-stable Y-type zeolite of the same brand as that used in the production of Catalyst-C) 6.71%, and water SO. Thereafter, extrusion molding, drying and calcination were carried out in the same manner as in the production of catalyst-1, and ultra-stable Y-type zeolite-containing ii, 7
0 wt%, amorphous silica/alumina content fJ Ow
t%, alumina-containing liquid! (A catalyst composition consisting of 7 wt% of carrier was produced.

触媒−qの触媒成分担持量および物性を表−7に示す。Table 7 shows the amount of catalyst components supported and physical properties of catalyst-q.

(6)触媒=5の製造 触媒化成株式会社製非結晶質シリカ・アルミナ成型担体
(組成72多810.・コg%AI!O,。
(6) Production of catalyst = 5 Amorphous silica/alumina molded carrier manufactured by Catalysts & Chemicals Co., Ltd. (composition: 72:810.0g% AI!O,.

比表面mt!l’1m’IP、半径二〇〜7!000又
の全細孔の容積は0.& /艷/ンであり、半径コo 
−tt s Xの細孔は容積θ、jグme/fであわ、
全細孔容積に対する中径コθ〜ダjXの細孔の容積はg
t、λチを占め、半径US〜1soXの細孔の容積は7
.6多であシ、半径コアXに明瞭なピークを有する細孔
分布を示す)ココ5zにパラジウムを0.007’lf
/ml含有する塩化テトラアンミンパラジウムの水溶i
 t r 、?−を含浸した。以下触媒−7の製造の場
合と同様の方法によυパラジウム担持非結晶質シリカ・
アルミナ微粉砕物900fを得た。このパラジウム担持
非結晶質シリカ・アルミナ微粉砕物コグθ1をニーダ−
に仕込み、実施例(1)で得られた混練物(X)コ92
?と触媒−λの製造時に用いたと同一の銘柄の超安定質
Y型ゼオライト!、 、7.ll fを加えて加熱しな
がらニゲ5分間混合混線を行なった。
Specific surface mt! l'1m'IP, the volume of all pores with a radius of 20 to 7,000 is 0. & / 艷 / n and the radius is o
-tt s The pore of X has a volume θ, j gme/f,
The volume of the pores of medium diameter θ to djX relative to the total pore volume is g
The volume of the pore with radius US~1soX is 7
.. 6 polyester, showing a pore distribution with a clear peak in the radius core
Aqueous solution of tetraamine palladium chloride containing /ml
tr,? - impregnated with. Hereinafter, υpalladium-supported amorphous silica
900f of finely pulverized alumina was obtained. This palladium-supported amorphous silica/alumina finely ground cog θ1 is put into a kneader.
The kneaded product (X) obtained in Example (1)
? The same brand of ultra-stable Y-type zeolite used in the production of Catalyst-λ! , ,7. llf was added and mixed and mixed for 5 minutes while heating.

以下触媒−20Elfの場合と同様にして超安定質Y型
ゼオライト含有責J Owt%、・シラジ製造および触
媒成分の相持を行ない、触媒−jを製造した。
Thereafter, in the same manner as in the case of Catalyst-20Elf, ultra-stable Y-type zeolite containing J Owt%, silage was produced and the catalyst components were mutually combined to produce Catalyst-j.

触媒−jの触媒成分担持量および物性を表−tVC示す
The amount of supported catalyst components and physical properties of catalyst-j are shown in Table-tVC.

比較例 (刀 触媒−6の製造 セリウム交換Y型ゼオライトを使用しなかったことおよ
びキノリン含浸量をj t、Owt%とし、モリブデン
酸アンモニウム7.271と硝酸ニッケル7.5751
−を含む水溶液−g、7 mlを使用したこと以外は触
媒−)の製造の場合と同様にして、パラジウム担持非結
晶質シリカ・アルミナ含有量’I Owt%、アルミナ
含有量b Owt%の触媒担体の製造および触媒成分の
相持を行ない触媒−6を製造した。
Comparative Example (Production of Katana Catalyst-6 Cerium-exchanged Y-type zeolite was not used and the amount of quinoline impregnated was jt, Owt%, ammonium molybdate 7.271 and nickel nitrate 7.5751
A catalyst with palladium-supported amorphous silica and alumina content 'I Owt% and alumina content b Owt% was prepared in the same manner as in the case of producing the catalyst -) except that an aqueous solution containing -g, 7 ml was used. Catalyst-6 was manufactured by manufacturing a carrier and supporting the catalyst components.

触媒−6の触媒成分担持量および物性を表−1に示す。Table 1 shows the amount of catalyst components supported and physical properties of Catalyst-6.

(8)触媒−7の製造 パラジウム担持非結晶質シリカ・アルミナを使用しなか
ったことおよびセリウムIIIY型ゼオライト//l1
7を使用し、キノリン含浸量を、? 4(,0wt%と
じ、モリブデン酸アンモニウムL、7 g !il−と
硝酸ニッケル6.621を含む水溶液、7 J、g−を
使用した以外は触媒−7の製造の場合と同じ方法で、セ
リウム交換Yへ11ゼオライト含有1.!; Owt%
、アルミナ含有量5Owt%の触媒担体の製造および触
媒成分の相持を行ない触媒−7を製造した。
(8) Production of catalyst-7 Palladium-supported amorphous silica/alumina was not used and cerium IIIY type zeolite//l1
7 and the amount of quinoline impregnated, ? Cerium was prepared in the same manner as in the production of catalyst-7, except that an aqueous solution containing ammonium molybdate L, 7 g!il- and nickel nitrate 6.621 g-, 7 J, g- was used. Exchange Y to 11 zeolite content 1.!; Owt%
Catalyst-7 was manufactured by manufacturing a catalyst carrier having an alumina content of 5 Owt% and supporting the catalyst components.

触媒−7の触媒成分担持量および物性を表−lに示す。Table 1 shows the amount of catalyst components supported and physical properties of Catalyst-7.

(9)触媒−gの製造 パラジウム担持非結晶質シリカ・アルミナを使用しなか
ったことおよびモリブデン酸アンモニウム二!、7 ?
と硝酸ニッケルユL/ %Y型ゼオライト含有菫II 
、? wt%、アルミナ含有量j 7 wt%の触媒担
体の製造および触媒成分の担持を行ない触媒−gを製造
した。
(9) Production of catalyst-g Palladium-supported amorphous silica/alumina was not used, and ammonium molybdate di! ,7?
and nickel nitrate L/% Y-type zeolite containing Sumire II
,? Catalyst-g was produced by producing a catalyst carrier with an alumina content of j 7 wt% and supporting catalyst components.

触媒−ざの触媒成分担持量および物性を表−7に示す。Table 7 shows the amount of catalyst components supported and the physical properties of the catalyst.

(10)触媒−デの製造 キノリン溶液による含浸を実施しないことおよびモリブ
デン酸アンモニウム/ j、j fと硝酸ニッケル/ 
j、67を含む水溶液A&、6+n/!を使用したこと
以外は触媒−/の製造の場合と同様にして触媒担体の製
造および触媒成分の担持を行ない触媒−9を製造した。
(10) Preparation of the catalyst - No impregnation with quinoline solution and ammonium molybdate/j, j f and nickel nitrate/
Aqueous solution A &, 6+n/! containing j, 67! Catalyst-9 was produced by producing a catalyst carrier and carrying catalyst components in the same manner as in the production of Catalyst-/, except that .

触媒−9の触媒成分担持量および物性を表−lに示す。Table 1 shows the amount of catalyst components supported and physical properties of Catalyst-9.

〈水素化脱硫、水素化分解反応〉 本発明の触媒−l〜−5および比較触媒−6〜−9各1
..0 ?、アラビアンヘビー系常圧残油(硫黄分j、
?ダwt%、360℃十留分デ、/wt%)1、 o、
o g−を200m1容積の上下首撮搗盪式オートクレ
ーブに仕込み、J90C,tbθkp / adGで3
時間水素化脱硫、水素化分解処理を行なった。硫黄分の
除去率、3t、oc十留分の減少率、中間留分(tsO
〜3boc>収率、および軽質留分(3o−tsoC)
収率を表−コに示す。
<Hydrodesulfurization, hydrocracking reaction> Catalysts-1 to -5 of the present invention and Comparative catalysts-6 to -9 each 1
.. .. 0? , Arabian heavy atmospheric residual oil (sulfur content j,
? dwt%, 360°C tenth fraction de, /wt%) 1, o,
o g- in a 200 ml volume upper and lower neck shaking type autoclave, and J90C, tbθkp / adG 3
Time hydrodesulfurization and hydrocracking treatments were performed. Removal rate of sulfur content, 3t, reduction rate of oc-10 fraction, middle distillate (tsO
~3boc>yield, and light fraction (3o-tsoC)
The yield is shown in Table-C.

表  −ユTable - Yu

Claims (6)

【特許請求の範囲】[Claims] (1)アルミナ、非結晶質シリカ・アルミナおよびY型
ゼオライトの混合物からなる担体に、周期律表VIb族金
属およびVIII族金属の鉄族と白金族金属を担持してなる
比表面積300〜500m^2/gの触媒であり、 [1]半径20〜300Åの細孔の容積が0.35ml
/g以上であり、 [2]半径20〜40Åおよび50〜100Åにそれぞ
れ一つずつ明瞭なピークを有する細孔分布を示し、 [3]半径20〜45Åの細孔の容積が半径20〜30
0Åの細孔の容積の15〜40%の範囲にあり、半径4
5〜150Åの細孔の容積が半径20〜300Åの細孔
の容積の55〜85%の範囲にあること、 を特徴とする水素化脱硫・水素化分解触媒。
(1) A carrier made of a mixture of alumina, amorphous silica/alumina, and Y-type zeolite supports iron group metals and platinum group metals of group VIb and group VIII metals of the periodic table, with a specific surface area of 300 to 500 m^. 2/g catalyst, [1] The volume of pores with a radius of 20 to 300 Å is 0.35 ml.
/g or more, [2] Shows a pore distribution with one clear peak at a radius of 20-40 Å and one at a radius of 50-100 Å, [3] The volume of pores with a radius of 20-45 Å is 20-30 Å.
It is in the range of 15-40% of the volume of the 0 Å pore, with a radius of 4
A hydrodesulfurization/hydrocracking catalyst characterized in that the volume of pores with a radius of 5 to 150 Å is in the range of 55 to 85% of the volume of pores with a radius of 20 to 300 Å.
(2)担体中の非結晶質シリカ・アルミナ量が担体の2
0〜40wt%である特許請求の範囲第1項記載の触媒
(2) The amount of amorphous silica and alumina in the carrier is 2
The catalyst according to claim 1, wherein the content is 0 to 40 wt%.
(3)担体中のY型ゼオライト量が担体の20〜40w
t%である特許請求の範囲第1項記載の触媒。
(3) The amount of Y-type zeolite in the carrier is 20 to 40w of the carrier
% of the catalyst according to claim 1.
(4)担体中の非結晶質シリカ・アルミナ量およびY型
ゼオライト量が担体の40〜70wt%である特許請求
の範囲第2項または第3項記載の触媒。
(4) The catalyst according to claim 2 or 3, wherein the amount of amorphous silica/alumina and Y-type zeolite in the carrier is 40 to 70 wt% of the carrier.
(5)担体中のアルミナにVIb族金属の少なくとも1種
およびVIII族金属の鉄族金属の少なくとも1種を担持し
てなる特許請求の範囲第1項記載の触媒。
(5) The catalyst according to claim 1, wherein at least one group VIb metal and at least one iron group metal of group VIII metal are supported on alumina in a carrier.
(6)担体中の非結晶質シリカ・アルミナにVIII族金属
の白金族金属の少なくとも1種を担持してなる特許請求
の範囲第1項記載の触媒。
(6) The catalyst according to claim 1, wherein at least one platinum group metal of group VIII metal is supported on amorphous silica/alumina in a carrier.
JP60217146A 1985-09-30 1985-09-30 Hydrodesulfurization / hydrocracking catalyst Expired - Lifetime JPH0628738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60217146A JPH0628738B2 (en) 1985-09-30 1985-09-30 Hydrodesulfurization / hydrocracking catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60217146A JPH0628738B2 (en) 1985-09-30 1985-09-30 Hydrodesulfurization / hydrocracking catalyst

Publications (2)

Publication Number Publication Date
JPS6274455A true JPS6274455A (en) 1987-04-06
JPH0628738B2 JPH0628738B2 (en) 1994-04-20

Family

ID=16699574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60217146A Expired - Lifetime JPH0628738B2 (en) 1985-09-30 1985-09-30 Hydrodesulfurization / hydrocracking catalyst

Country Status (1)

Country Link
JP (1) JPH0628738B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5159257A (en) * 1990-02-27 1992-10-27 Aisin Seiki K.K. Vehicle power supply apparatus for protecting a battery from excessive discharge
JP2003103173A (en) * 2001-09-28 2003-04-08 Petroleum Energy Center Hydrogenation catalyst of heavy hydrocarbon oil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5159257A (en) * 1990-02-27 1992-10-27 Aisin Seiki K.K. Vehicle power supply apparatus for protecting a battery from excessive discharge
JP2003103173A (en) * 2001-09-28 2003-04-08 Petroleum Energy Center Hydrogenation catalyst of heavy hydrocarbon oil
JP4519379B2 (en) * 2001-09-28 2010-08-04 財団法人石油産業活性化センター Heavy hydrocarbon oil hydrotreating catalyst

Also Published As

Publication number Publication date
JPH0628738B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
US11642664B2 (en) Silica containing alumina supports, catalysts made therefrom and processes using the same
US3766058A (en) Process for hydroprocessing heavy hydrocarbon feedstocks
EP0449144B2 (en) Catalyst composition for hydrotreating of hydrocarbons and hydrotreating process using the same
EP0160475A2 (en) Hydrotreating catalyst and process of manufacture
US4325804A (en) Process for producing lubricating oils and white oils
KR102197525B1 (en) Preparation of a hydrocarbon conversion catalyst
JPH0239305B2 (en)
US3779903A (en) Hydroconversion process with a catalyst having a hydrogenation component composited with a high density alumina
JPH0536099B1 (en)
CN101909751A (en) Catalyst including at least one particular zeolite and at least one silica-alumina, and method for the hydrocracking of hydrocarbon feedstock using such catalyst
US4013547A (en) Desulfurization of residual petroleum oils with a catalyst calcined at higher temperatures
US2888501A (en) Process and catalyst for isomerizing hydrocarbons
JP3949778B2 (en) Catalytic cracking catalyst
CN113289673B (en) Isomerization catalyst and preparation method and application thereof
US3853747A (en) Hydrocracking process
US3617509A (en) Catalytic composition, method of preparing same, and hydrocarbon-conversion process employing same
US4900711A (en) Hydrotreating catalyst
US3652449A (en) Hydrocarbon conversion processes using alumina-bonded catalysts
JPS6274455A (en) Hydrodesulfurizing and hydrocracking catalyst
JPH0626673B2 (en) Catalyst with hydrodesulfurization and hydrodegradability
JP2556343B2 (en) Method for producing hydrogenated catalyst from hydrogel
JP2817622B2 (en) Catalyst for hydrodesulfurization and denitrification and production method thereof
RU2142337C1 (en) Catalyst for hydrofining of oil fractions and method of preparation thereof
US4186111A (en) Stabilized aluminosilicate hydrocracking catalyst
JPH0819741A (en) Catalsyt for hydrogenation for hydrocarbon oil and producing method therefor