JPS6274425A - Gas liquid separation apparatus for water seal type vacuum pump - Google Patents

Gas liquid separation apparatus for water seal type vacuum pump

Info

Publication number
JPS6274425A
JPS6274425A JP21728485A JP21728485A JPS6274425A JP S6274425 A JPS6274425 A JP S6274425A JP 21728485 A JP21728485 A JP 21728485A JP 21728485 A JP21728485 A JP 21728485A JP S6274425 A JPS6274425 A JP S6274425A
Authority
JP
Japan
Prior art keywords
gas
liquid separation
water
pipe
seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21728485A
Other languages
Japanese (ja)
Inventor
Koichi Soma
浩一 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21728485A priority Critical patent/JPS6274425A/en
Publication of JPS6274425A publication Critical patent/JPS6274425A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the gas-liquid separation efficiency of the emitting stream of a water seal type vacuum pump, by providing gas-liquid separation piping, to which a seal water sump part is provided by partially enlarging the caliber thereof, to this side of the inlet pipe of a cyclone type gas-liquid separation apparatus. CONSTITUTION:A gas-liquid separation piping 15 having a cliber larger than that of emitting piping 4 is provided between a water seal type pump 1 and a gas-liquid separation tank 6. A seal water sump part 19 is provided to the downstream side of the gas-liquid separation piping 15 so as to be suspended from the lower side thereof and the lower part of said water sump part 19 is connected to the gas-liquid separation tank 6. Therefore, the gas-liquid mixture discharged from the pump 1 is lowered in its flow speed because the piping caliber is large at the enlarged part 14 and large water droplets flow in the seal water sump part 9. The gas-liquid mixture containing minute water droplets is raised in its flow speed because the caliber is throttled at the part of gas piping 17 and sent to the cyclone type gas-liquid separation apparatus 6.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は水封式真空ポンプ用気液分離装置に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a gas-liquid separation device for a water ring vacuum pump.

[発明の技術的背景とその問題点] 従来の水封式真空ポンプ用気液分離装置の問題点につい
て放射性排ガス処理用真空ポンプ設備を例にとり説明す
る。
[Technical background of the invention and its problems] The problems of conventional gas-liquid separation devices for water-ring type vacuum pumps will be explained by taking vacuum pump equipment for radioactive exhaust gas treatment as an example.

一般に水封式真空ポンプを使用した放射性排ガス処理装
置用真空ポンプ設備では真空ポンプが排ガスを抽出する
際、排ガスの漏洩と、ポンプ性能低下となる空気の混入
を防止する意味から水封式真空ポンプを採用している。
In vacuum pump equipment for radioactive exhaust gas treatment equipment that generally uses a water ring type vacuum pump, when the vacuum pump extracts exhaust gas, water ring type vacuum pumps are used to prevent leakage of the exhaust gas and the incorporation of air, which can reduce pump performance. is adopted.

そのため、水封式真空ポンプには封水が常に供給される
ようになっている。
Therefore, water ring type vacuum pumps are always supplied with seal water.

水封式真空ポンプから吐出される排ガスは封水と混合さ
れ、吐出配管内上方は排気ガスに封水の水滴を多く含む
混合気流となり、下方は封水の波立ち流れとなった2層
流となっている。
The exhaust gas discharged from the water ring vacuum pump is mixed with seal water, and the upper part of the discharge piping becomes a mixed air flow containing many water droplets of seal water in the exhaust gas, and the lower part is a two-layer flow with undulating flow of seal water. It has become.

封水は純水を使用しているので使用量を減らすために封
水を循環さヒて連続使用することにしている。このため
、水封式真空ポンプの下流には気液分離性能を備えた気
液分離タンクを設けている。
The water seal uses pure water, so in order to reduce the amount used, the water seal is circulated and used continuously. For this reason, a gas-liquid separation tank with gas-liquid separation performance is provided downstream of the water ring vacuum pump.

この気液分離ターンクは封水の貯蔵の目的も有している
This gas-liquid separation tank also has the purpose of storing sealed water.

さて、気液分離タンクに於ける気液分離であるが、気液
分離の形式としては、一般的に金網、ラシヒリング等の
充填物による濾過式、衝突式、流速を落下させて分離す
る膨張式、遠心力を利用するサイクロン式等が考えられ
る。放射性排ガス処理装置用としてはフランジを含まな
い密閉構造が望ましいため、定期清掃が必要な濾過式を
避け、小型で分離効率の高いサイクロン式を採用してい
る。
Now, regarding gas-liquid separation in a gas-liquid separation tank, the types of gas-liquid separation are generally a filtration type using a filling such as a wire mesh or a Raschig ring, a collision type, and an expansion type that separates by reducing the flow rate. , a cyclone type that uses centrifugal force, etc. can be considered. Since a sealed structure without flanges is desirable for radioactive exhaust gas treatment equipment, we avoided a filtration type that requires periodic cleaning and instead adopted a cyclone type that is compact and has high separation efficiency.

以下、第4図35よび第5図により問題点を説明する。The problems will be explained below with reference to FIG. 4 and FIG. 5.

水封式真空ポンプ1には排ガスを吸い込む入口配管2、
封水が注入される11水ノズル3と、排ガスと封水が混
合され排出される吐出配管4が接続されている。吐出配
管4から排出される排ガスと封水の気液混合流は、吐出
配管4に接続された連結管5を通り、気液分離タンク6
の上方でかつ、気液分離タンク6の接線方向に設けられ
た入口ノズル7から気液分離タンク6内部へ流入する。
The water ring vacuum pump 1 includes an inlet pipe 2 that sucks exhaust gas;
A water nozzle 3 11 into which sealing water is injected is connected to a discharge pipe 4 through which exhaust gas and sealing water are mixed and discharged. The gas-liquid mixed flow of exhaust gas and seal water discharged from the discharge piping 4 passes through a connecting pipe 5 connected to the discharge piping 4 and is transferred to a gas-liquid separation tank 6.
It flows into the interior of the gas-liquid separation tank 6 from an inlet nozzle 7 provided above and in the tangential direction of the gas-liquid separation tank 6 .

気液分離タンク6内部には封水8が図示しない水位スイ
ッチにより水位低になれば図示しない供給水ノズルから
補給され、水位高で補給を止めるように常に水位高、低
量の水位に保たれている。
Inside the gas-liquid separation tank 6, a sealed water 8 is supplied from a supply water nozzle (not shown) when the water level becomes low by a water level switch (not shown), and is always maintained at a high and low water level so that replenishment is stopped when the water level is high. ing.

封水8は気液分離タンク6の下方に設けられた封水取出
しノズル9から図示しない循環ポンプによって強制的に
流出され、図示しない循環水クーラによって冷却された
後、水封真空ポンプ1の封水3へ流出する循環をくり返
す。
The sealed water 8 is forcibly discharged from a sealed water take-out nozzle 9 provided below the gas-liquid separation tank 6 by a circulating pump (not shown), and is cooled by a circulating water cooler (not shown). The cycle of flowing out to water 3 is repeated.

ここで、気液分離タンク6内へ流入する排ガスと封水の
気液混合流は入口ノズル7が気液分離タンク6の接線方
向へ向いているため、タンク6内壁を沿うようにら線状
に流れ落ちていき、一般的であるサイクロン式の気液分
離方法で排ガスと封水が分離されて行く。
Here, since the inlet nozzle 7 faces in the tangential direction of the gas-liquid separation tank 6, the gas-liquid mixed flow of the exhaust gas and seal water flowing into the gas-liquid separation tank 6 flows in a linear shape along the inner wall of the tank 6. The exhaust gas and sealed water are separated using the common cyclone gas-liquid separation method.

さて、サイクロン式気液分離方法はガス内に同伴されて
流動する粒状となったドレン捕集を目的とし、粒状ドレ
ンの遠心力によって、タンク6内壁へ付着させ、壁面に
連続した液膜を形成させ、粒状ドレンの付着を補い、か
つ、再飛散を防止しながら気液分離を行うものである。
Now, the purpose of the cyclone gas-liquid separation method is to collect the granular condensate that is entrained in the gas and flows, and the centrifugal force of the granular condensate causes it to adhere to the inner wall of the tank 6, forming a continuous liquid film on the wall surface. This system performs gas-liquid separation while supplementing the adhesion of granular condensate and preventing re-scattering.

そして、連結管5および入口ノズル7などの配管内上方
は水封式真空ポンプの吐出流の如く、気液混合流が排ガ
スに粒状となった封水が同伴されて流動している混合気
10となる。また、配管内の下方は排ガスと同時に吐出
され流動していた比較的大径の水滴となった封水が落下
して水流を形成した封水の液膜流11となっている。こ
のようなものにおいては混合気10のみならば問題なく
サイクロン式による気液分離が期待できるが、しかしな
がら気膜流11は気液分離が効果的に行なわれないこと
が実験によりあきらかとなった。
In the upper part of the pipes such as the connecting pipe 5 and the inlet nozzle 7, a gas-liquid mixed flow is flowing, like the discharge flow of a water ring vacuum pump, with seal water in the form of particles in the exhaust gas flowing. becomes. In addition, in the lower part of the pipe, the seal water, which was discharged at the same time as the exhaust gas and was flowing and turned into relatively large-diameter water droplets, falls and forms a liquid film flow 11 of the seal water. In such a case, if only the mixture 10 is used, gas-liquid separation by the cyclone method can be expected without any problem, but experiments have shown that gas-liquid separation cannot be effectively performed with the gas film flow 11.

液膜流11が気液分離タンク6に流入する場合、液膜流
11は気液分離タンク6の壁面に衝突し、ここで多量の
水滴を飛散させ、分離すべき粒状の封水を増加させる。
When the liquid film flow 11 flows into the gas-liquid separation tank 6, the liquid film flow 11 collides with the wall surface of the gas-liquid separation tank 6, scattering a large amount of water droplets here, and increasing the amount of granular sealed water to be separated. .

ノズル7は接線方向に取り付けられてはいるが、流入水
のうち、タンク内面のらせん状液膜を形成できなかった
部分が、タンク6内にバッフルを設けたのと同じ様な状
態となり、正常なガスの旋回流を妨げる原因となり、サ
イクロン現象が効果的に行われない。
Although the nozzle 7 is installed in the tangential direction, the part of the inflowing water that cannot form a spiral liquid film on the inner surface of the tank becomes in a state similar to that of a baffle installed inside the tank 6, so that it is not normal. This causes the swirling flow of gas to be obstructed, making it impossible for the cyclone phenomenon to occur effectively.

壁面に衝突した液膜流は流れ方向を下方に変え、気液分
離タンク6の下方に貯蔵されている封水8の水面に斜め
上方より流入し、ここで再度多量の水滴を飛散させる。
The liquid film flow colliding with the wall surface changes its flow direction downward and flows obliquely from above into the water surface of the sealed water 8 stored below the gas-liquid separation tank 6, where it scatters a large amount of water droplets again.

この封水の水面に衝突して発生した水滴は、気液分離タ
ンク6の下方を浮遊するので、ガスの旋回流にのり、遠
心力で分離される事は期待できない。
Since the water droplets generated by colliding with the water surface of this sealed water float below the gas-liquid separation tank 6, they cannot be expected to ride on the swirling flow of gas and be separated by centrifugal force.

以上のように液膜流11の気液分離タンク6内への流入
は、粒状となった封水のサイクロン現象による気液分離
効率を低下させるばかりか、気液分離タンク6内で多量
の水滴を飛散される原因となる。この分離されずにガス
内で浮遊している水滴は気液分離タンク6内に延在して
いる出口ノズル12から吸い込まれ、気液分離タンク6
下流の配管へと流れる事になり、粒状ドレンのみ流入す
る場合のサイクロン式気液分離方式の分離効率と比較す
るとかなり低下する。
As described above, the inflow of the liquid film flow 11 into the gas-liquid separation tank 6 not only reduces the gas-liquid separation efficiency due to the cyclone phenomenon of the granular seal water, but also causes a large amount of water droplets to form inside the gas-liquid separation tank 6. This may cause the liquid to be scattered. These unseparated water droplets floating in the gas are sucked into the gas-liquid separation tank 6 through an outlet nozzle 12 extending into the gas-liquid separation tank 6.
This will flow into the downstream piping, and the separation efficiency will be considerably lower than that of the cyclone gas-liquid separation method when only granular condensate flows in.

このことは、下流配管でのドレン溜りや腐食の問題点を
生じるほか、純水を使用する封水の消耗が多くなったり
、放射性ドレンの処理量の増加という問題点がある。
This causes problems such as condensate accumulation and corrosion in the downstream piping, as well as increased consumption of sealing water using pure water and an increase in the amount of radioactive condensate to be processed.

液膜流11気液分離タンク6下方に貯蔵された封水8へ
の衝突は液膜流11の運動エネルギーにより、封水8に
渦流13や波立ち揺動を発生させ、これは14水を常に
一定量に制御している水位スイッチの誤動作につながる
問題点がある。
The liquid film flow 11 collides with the sealed water 8 stored below the gas-liquid separation tank 6, and due to the kinetic energy of the liquid film flow 11, it generates vortices 13 and ripples in the sealed water 8, which causes the water 14 to constantly There is a problem that leads to malfunction of the water level switch that controls the water level to a certain level.

[発明の目的] 本弁明は上記照点を解決するためになされたもので、水
封式真空ポンプの吐出流の気液分離効率を向上させた水
封式真空ポンプ用気液分離装置を提供することを目的と
なる。
[Object of the Invention] The present invention has been made in order to solve the above-mentioned problems, and provides a gas-liquid separation device for a water-ring vacuum pump that improves the gas-liquid separation efficiency of the discharge flow of the water-ring vacuum pump. The purpose is to

[発明の1lIii要] 本発明は水封筒式真空ポンプの吐出配管の口径を拡大し
て気液分離配管の入口を接続し、その気液分離配管出口
の口径を減少させてサイクロン式の気液分離タンクの入
口ノズルに接続し、気液分離配管の下流側に封水溜り部
を設け、この封水溜り部の下方と気液分離タンクの下方
を封水もどり管で接続してなることを特徴とする水封式
真空ポンプ用気護分離装茸である。この装置では水封式
真空ポンプから吐出されたガス封水の気液混合流のうち
気液分離配管内で流速が低下した事により水滴が落下し
、水流を形成した大部分の封水を封水溜り部へ捕集し、
封水もどり管を通して気液分離タンク内に貯蔵されてい
る封水部分へ回収する。
[1lIiii Summary of the Invention] The present invention expands the diameter of the discharge piping of a water envelope type vacuum pump to connect the inlet of the gas-liquid separation piping, and reduces the diameter of the outlet of the gas-liquid separation piping to connect it to the cyclone-type gas-liquid. Connected to the inlet nozzle of the separation tank, a sealed water reservoir is provided on the downstream side of the gas-liquid separation piping, and the lower part of this water-sealed reservoir is connected to the lower part of the gas-liquid separation tank with a water-sealed return pipe. This is a mushroom protection isolation device for water-ring type vacuum pumps. In this device, water droplets fall as the flow rate of the gas-liquid mixed flow of gas seal water discharged from a water ring vacuum pump decreases in the gas-liquid separation piping, sealing most of the seal water that formed the water flow. Collect water in the puddle,
The water is collected through the sealed water return pipe to the sealed water section stored in the gas-liquid separation tank.

この水流を形成した封水が気液分離タンクの上部に位置
するサイクロン現象発生範囲へ流入することをなくし、
気液分離タンク内で正常なサイクロン式気液分離が行わ
れるようにすることで水封式真空ポンプの吐出流の気液
分離効率を向上させることができる。
This prevents the sealed water that forms this water flow from flowing into the cyclone phenomenon area located at the top of the gas-liquid separation tank.
By allowing normal cyclone gas-liquid separation to occur within the gas-liquid separation tank, the gas-liquid separation efficiency of the discharge flow of the water ring vacuum pump can be improved.

[発明の実施例] 以下本発明に係る水封式真空ポンプ用気液分離装置の一
実施例どして、放射性排ガス処理装置用真空ポンプ設備
を例にとり第1図、第2図及び第3図につき説明する。
[Embodiments of the Invention] Hereinafter, an embodiment of the gas-liquid separation device for a water-ring type vacuum pump according to the present invention will be described, taking a vacuum pump equipment for a radioactive exhaust gas treatment device as an example, and Figs. 1, 2, and 3. This will be explained with reference to the diagram.

第1図において、第4図と同一部材については同一符号
を付して説明する。
In FIG. 1, the same members as those in FIG. 4 will be described with the same reference numerals.

本発明に係る水封式真空ポンプ用気液分i装置は第4図
に示した従来例と同様に水封式真空ポンプ1、気液分離
タンク6を主な機器として、各機器の構造はほぼ従来例
と同様である。従来例と異なる点を次に説明する。
The gas-liquid separation device for a water-ring type vacuum pump according to the present invention uses a water-ring type vacuum pump 1 and a gas-liquid separation tank 6 as main equipment, similar to the conventional example shown in FIG. This is almost the same as the conventional example. The differences from the conventional example will be explained next.

第1図に示したように吐出配管4の下流に、この吐出配
管4の口径を下側に広がり持ち拡大される拡大部14を
設け、この拡大部14と同径の気液分離配管15を接続
する。この気液分離配管15の口径D1は、水封式真空
ポンプ1から吐出される流体の気液分離配管15内の流
速が2m /S以下となるように選択する。また該配管
15は第2図および第3図に示したように水封式真空ポ
ンプ1から吐出された1−JI気ガスと↑・1水の気液
混合流に同伴される粒状となった封水の液IlQ流11
への落下を早め、かつ、液膜流11の表面の波立ちを少
なくし流れを安定させるようにする。ここで、気液分離
配管15内の流速が2111 /S以上どなった場合に
は、粒状となった封水の液膜流11への落下が遅くなる
ばかりか、液膜流11の表面で波立ちが大きくなり、さ
らには波の先端から水滴が飛散し、再度、排ガス内を粒
状となった封水が浮遊する事となるので好ましくない。
As shown in FIG. 1, an enlarged part 14 is provided downstream of the discharge pipe 4 to expand the diameter of the discharge pipe 4 downward, and a gas-liquid separation pipe 15 having the same diameter as the enlarged part 14 is provided. Connecting. The diameter D1 of the gas-liquid separation pipe 15 is selected so that the flow velocity of the fluid discharged from the water ring vacuum pump 1 in the gas-liquid separation pipe 15 is 2 m 2 /S or less. In addition, as shown in FIGS. 2 and 3, the pipe 15 became granular as it was entrained in the gas-liquid mixed flow of 1-JI gas and ↑・1 water discharged from the water ring vacuum pump 1. Sealing liquid IlQ flow 11
To speed up the fall of liquid film flow 11 and reduce ripples on the surface of liquid film flow 11 to stabilize the flow. Here, if the flow velocity in the gas-liquid separation pipe 15 exceeds 2111/S, not only does the fall of the granular seal water into the liquid film flow 11 become slower, but also the surface of the liquid film flow 11 slows down. This is undesirable because the ripples become large, water droplets scatter from the tips of the waves, and granular water seals become suspended in the exhaust gas again.

また、第2図および第3図に拡大して示したように気液
分離配管15の下流にはこの気液分離配管15の口径を
上側に偏心させる挟まりを持ち減少させる減少部16を
設け、この減少部16と同径のガス配管17を接続する
。このガス配管17は気液分離タンク6の接線方向に設
けられた入口ノズル7に接続されている。このガス配管
17及び入口ノズル7の口径D2は一般的なサイクロン
式の気液分離を目的となる容器の設計法より求めた口径
として何らさしつかえない。気液分離タンク6の気液分
離に直接影響する基本構造も同様に何らさしつかえない
Further, as shown enlarged in FIGS. 2 and 3, a reducing part 16 is provided downstream of the gas-liquid separation pipe 15 to reduce the diameter of the gas-liquid separation pipe 15 by eccentrically increasing the diameter of the gas-liquid separation pipe 15 to the upper side. This reduced portion 16 and a gas pipe 17 having the same diameter are connected. This gas pipe 17 is connected to an inlet nozzle 7 provided tangentially to the gas-liquid separation tank 6 . The diameter D2 of the gas pipe 17 and the inlet nozzle 7 may be determined from the design method of a container intended for general cyclone gas-liquid separation. Similarly, there is no problem with the basic structure of the gas-liquid separation tank 6 that directly affects the gas-liquid separation.

そして、気液分離配管15の下流側の一部分から下方に
分岐部18を設けこの分岐部18に封水面り部19を接
続する。この封水面り部19の口径D3は第2図および
第3図に示したように、液膜流11が封水面り部19に
流れ込む場合、開口部の全周より液膜流11が流れこむ
状態となるような口径を選定する。目安として気液分離
配管15の口径D1の0.25〜1.0倍の間で、封水
の定格流量をもとに定める。ここで、封水面り部の口径
D3を上記の目安とくらべて極端に小さくした場合には
封水面り部1つへ流れ込む封水の壷にくらべ水封式真空
ポンプ1より吐出される封水の世が相対的に多くなる。
Then, a branch part 18 is provided below from a part of the downstream side of the gas-liquid separation pipe 15, and a water sealing surface part 19 is connected to this branch part 18. As shown in FIGS. 2 and 3, the diameter D3 of the water sealing surface 19 is such that when the liquid film flow 11 flows into the water sealing surface 19, the liquid film flow 11 flows from the entire circumference of the opening. Select a diameter that will meet the conditions. As a guideline, it is determined to be between 0.25 and 1.0 times the diameter D1 of the gas-liquid separation pipe 15, based on the rated flow rate of the water seal. Here, if the diameter D3 of the water seal surface is made extremely small compared to the above guideline, the seal water discharged from the water ring type vacuum pump 1 will be smaller than the water seal that flows into one water seal surface. The number of people in the world will increase relatively.

そのため、気液分離配管15内に封水が徐々に溜ってい
き、排ガスの流路を狭める結果となる。これによって、
排ガスの流速が早くなり、液膜流れ11の表面に波立ち
を発生させ、水滴を飛散させるばかりか、最終的には従
来例の如く液膜流11が入口ノズル7から気液分離タン
ク6へ流入する結果となり好ましくない。反対に封水面
り部19の口径D3を上記の目安とくらべて大きくした
場合には開口部の全周より液膜流11が流れ込まず、気
液分離配管15の上流側からだけ流れ込む結果となり、
その場合、液膜流11が開口部反対側の壁面に衝突し、
水滴を発生させ、分離すべき粒状となった封水が増える
原因となり好まくない。
Therefore, sealing water gradually accumulates in the gas-liquid separation pipe 15, resulting in a narrowing of the exhaust gas flow path. by this,
The flow rate of the exhaust gas becomes faster, which not only causes ripples on the surface of the liquid film flow 11 and scatters water droplets, but also ultimately causes the liquid film flow 11 to flow from the inlet nozzle 7 into the gas-liquid separation tank 6 as in the conventional example. This is an undesirable result. On the other hand, if the diameter D3 of the water sealing surface portion 19 is made larger than the above guideline, the liquid film flow 11 will not flow from the entire circumference of the opening, but will flow only from the upstream side of the gas-liquid separation pipe 15.
In that case, the liquid film flow 11 collides with the wall surface on the opposite side of the opening,
This is undesirable because it generates water droplets and increases the amount of granular water that needs to be separated.

また、拡大部14から分岐部18までの気液分離配管の
長さぶは気液分離配管の口径D1の10倍前後とし、粒
状となった封水の液膜流11への落下と、液膜流11の
表面の波立ちの安定が十分に行われるようにする。ここ
で、長さβをDlの10倍以上としても良いが、長さを
良くする割には効果が上がらず、設置スペースが大きく
なるので好ましくない。
In addition, the length of the gas-liquid separation pipe from the enlarged part 14 to the branch part 18 is approximately 10 times the diameter D1 of the gas-liquid separation pipe, and the drop of the granular seal water into the liquid film flow 11 and the liquid film The ripples on the surface of the flow 11 are sufficiently stabilized. Here, the length β may be set to be 10 times or more than Dl, but this is not preferable because the effect is not improved even though the length is improved and the installation space becomes large.

さらに、封水面り部19の下方と気液分離タンク6の下
方を封水もどり管20で接続させる。この場合、気液分
離タンク6の下方に貯蔵されている封水8の水面より常
時、封水もどり管20の開口部が下となるようにし、封
水の流入による気液分離タンク6内での水滴の飛散を防
止する構成とする。
Furthermore, the lower part of the water seal surface part 19 and the lower part of the gas-liquid separation tank 6 are connected by a water seal return pipe 20. In this case, the opening of the seal water return pipe 20 is always placed below the water level of the seal water 8 stored below the gas-liquid separation tank 6, so that the water inside the gas-liquid separation tank 6 due to the inflow of seal water The structure is designed to prevent water droplets from scattering.

しかして、本発明は、(1)水封式真空ポンプ1と気液
分離タンク6の間に吐出配管4の口径より大きな口径を
有する気液分離配管15を設けたこと、(2)気液分離
配管15の下流の一部分の下方に封水溜部19を設けた
こと、(3)封筒水溜り部19の下方と気液分離タンク
6の下方と接続した封水もどり管20が設けられている
ことである。
Therefore, the present invention provides (1) a gas-liquid separation pipe 15 having a diameter larger than the diameter of the discharge pipe 4 between the water ring vacuum pump 1 and the gas-liquid separation tank 6; (3) A water seal return pipe 20 is provided below the envelope water reservoir 19 and the gas-liquid separation tank 6. That's true.

つぎに上記水封式真空ポンプ用気液分離装置の作用を説
明す。
Next, the operation of the gas-liquid separator for a water ring vacuum pump will be explained.

水封式真空ポンプ1は入口配管2がらの排ガスと封水ノ
ズル3からの封水を内部に引き込み、吐出配管4へ気液
混合物として排出する。排出された気液混合物は、拡大
部14で配管口径が太きなるため流速を下げられ、気液
分離配管15内を流動する。ここでは水封筒式真空ポン
プ1から吐出される時点で小粒、中粒、大粒の水滴とな
って排ガス中に同伴されていた封水のうち、比較的中、
大粒の水滴となった封水が、流速低下とともに次第に気
液分離配管15内面下方に落下し、封水の液膜流11を
形成して内面下方を流れて行く。さらに気液分離配管1
5下流の一部分の下方に設けられた分岐部18に到達す
るまでに水滴の落下等により発生した液膜流11の表面
の波立ちが安定させられる。以上のように気液分離配管
15内では液膜流11と、いまだ排ガス内に同伴されて
流動している比較的小粒の水滴となった封水ガスとの気
液混合物である混合気10の2層の流れが安定した状態
で流動していく。
The water ring type vacuum pump 1 draws exhaust gas from an inlet pipe 2 and seal water from a water seal nozzle 3 into its interior, and discharges them to a discharge pipe 4 as a gas-liquid mixture. The discharged gas-liquid mixture flows through the gas-liquid separation pipe 15 with its flow rate being lowered because the diameter of the pipe becomes thicker in the enlarged portion 14 . Here, among the sealed water that was entrained in the exhaust gas in the form of small, medium, and large water droplets at the time of discharge from the water envelope vacuum pump 1, relatively medium and
The sealing water, which has become large water droplets, gradually falls below the inner surface of the gas-liquid separation pipe 15 as the flow rate decreases, forming a liquid film flow 11 of the sealing water and flowing below the inner surface. Furthermore, gas-liquid separation piping 1
The ripples on the surface of the liquid film flow 11 caused by falling water droplets etc. are stabilized before reaching the branching part 18 provided below a part of the downstream side of the liquid film flow 11. As described above, in the gas-liquid separation pipe 15, the air-fuel mixture 10 is a gas-liquid mixture of the liquid film flow 11 and the sealing gas, which has become relatively small water droplets and is still flowing along with the exhaust gas. The two-layer flow continues to flow in a stable state.

液膜流11は分岐部18に到達すると、第2図および第
3図に示したように、開口部の全周から封水面り部19
へ流れ込む。この時、開口部には全周より流れこむ液膜
流11によって水腹が形成される。この水膜によって、
液膜流11は直接管壁に衝突する事がなく、水滴の発生
が防止される。
When the liquid film flow 11 reaches the branch part 18, it flows from the entire circumference of the opening to the water sealing surface part 19, as shown in FIGS.
flows into. At this time, a water belly is formed in the opening by the liquid film flow 11 flowing from the entire circumference. Through this water film,
The liquid film flow 11 does not directly collide with the pipe wall, and the generation of water droplets is prevented.

封水面り部19へ落下した器膜流11、すなわち、封水
は封水面り部19の下方と気液分離タンク6の下方を接
続した封水もどり管20により気液分離タンク6の下方
に貯蔵させた封水8へと流れ込み、気液分離タンク6に
回収されたことになる。ここで、封水もどり管20から
流入する封水は気液分離タンク6の下方に貯蔵された封
水8の水面下に流入するため水面に衝突して水滴を飛散
させる事はない。
The membrane flow 11 that has fallen onto the water sealing surface 19, that is, the sealing water, is returned to the lower part of the gas-liquid separation tank 6 through the water seal return pipe 20 that connects the lower part of the water sealing surface 19 and the lower part of the gas-liquid separation tank 6. It flows into the stored sealed water 8 and is collected in the gas-liquid separation tank 6. Here, the seal water flowing in from the water seal return pipe 20 flows below the water surface of the seal water 8 stored below the gas-liquid separation tank 6, so it does not collide with the water surface and scatter water droplets.

気液分離配管15内を流れる混合気10は気液分離配管
下流に設【プられた減少部16によって口径を絞られる
ため流速を上げられ、ガス配管17、入口ノズル7を通
り、気液分離タンク6内へ流入する。
The air-fuel mixture 10 flowing through the gas-liquid separation pipe 15 is reduced in diameter by the reducing part 16 installed downstream of the gas-liquid separation pipe, increasing its flow velocity, passing through the gas pipe 17 and the inlet nozzle 7, and separating the gas and liquid. It flows into the tank 6.

気液分離タンク内へ流入した混合気10は一般的なサイ
クロン式の気液分離方法と何らかわりない方法で気液分
離が行なわれ、粒子半径5〜10μまでの粒状となった
封水が捕集される。
The air-fuel mixture 10 that has flowed into the gas-liquid separation tank is separated into gas and liquid using a method that is no different from the general cyclone type gas-liquid separation method, and the sealed water in the form of particles with a particle radius of 5 to 10 μm is captured. collected.

しかして、上記実施例においては液膜流が直接気液分離
タンクの入口ノズルから流入する事がなくなるためタン
ク内での水滴の飛散及び正常な排ガスの旋回流の妨害を
防止でき、気液分離効率が向上する。これにより、下流
配管でのドレン溜りや腐食の問題も軽減でき、また純水
を使用する封水の消耗量を減らし放射性ドレンの処理歯
も減少することかできる。ざらに液膜流のタンク内流入
によって生じたタンク内に貯蔵された封水の過や波立ち
揺動の発生がなくなり、封水量を制御している水位スイ
ッチの誤動作の防止ができる。
Therefore, in the above embodiment, since the liquid film flow does not directly flow in from the inlet nozzle of the gas-liquid separation tank, it is possible to prevent the scattering of water droplets in the tank and the disturbance of the normal swirling flow of exhaust gas. Increased efficiency. As a result, the problem of drainage accumulation and corrosion in the downstream piping can be reduced, and the amount of sealing water using pure water can be reduced, and the number of radioactive drains to be processed can be reduced. This eliminates the occurrence of sealing errors and rippling of the water stored in the tank caused by the inflow of a liquid film flow into the tank, and it is possible to prevent malfunctions of the water level switch that controls the amount of sealed water.

[発明の効果] 以上述べた様に本発明によればつぎに述べる効果ある。[Effect of the invention] As described above, the present invention has the following effects.

水封式真空ポンプの吐出流れである水滴を多く含む気液
混合流の気液分離効率が向上する。
The gas-liquid separation efficiency of the gas-liquid mixed flow containing many water droplets, which is the discharge flow of a water ring vacuum pump, is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る水封式真空ポンプ用気液分離装置
の一実施例を示す構成図、第2図は第1図における気液
分離配管の分岐部内の流体の流れを表わす縦断面図、第
3図は第2図のA−A断面図、第4図は従来例の水封式
真空ポンプ用気液分離装置を示す構成図、第5図は第4
図の気液分離タンクと入口ノズルの接続部内の流体の流
れを表わす縦断面図である。 1・・・・・・・・・・・・水封式真空ポンプ2・・・
・・・・・・・・・入口配管 3・・・・・・・・・・・・封水ノズル4・・・・・・
・・・・・・吐出配管 5・・・・・・・・・・・・連結管 6・・・・・・・・・・・・気液分離タンク7・・・・
・・・・・・・・入口ノズル8・・・・・・・・・・・
・封水 9・・・・・・・・・・・・封筒氷取出ノズル10・・
・・・・・・・・・・混合気 11・・・・・・・・・・・・液膜流 12・・・・・・・・・・・・出口ノズル13・・・・
・・・・・・・・渦流 14・・・・・・・・・・・・拡大部 15・・・・・・・・・・・・気液分離配管16・・・
・・・・・・・・・減少部 17・・・・・・・・・・・・ガス配管18・・・・・
・・・・・・・分岐部 19・・・・・・・・・・・・封水量り部20・・・・
・・・・・・・・封水もどり管筒2図 第3図
FIG. 1 is a configuration diagram showing an embodiment of a gas-liquid separation device for a water-ring vacuum pump according to the present invention, and FIG. 2 is a vertical cross-section showing the flow of fluid in the branch part of the gas-liquid separation piping in FIG. 1. Figure 3 is a sectional view taken along the line A-A in Figure 2, Figure 4 is a configuration diagram showing a conventional gas-liquid separation device for a water ring type vacuum pump, and Figure 5 is a sectional view taken along the line A-A in Figure 2.
FIG. 3 is a longitudinal sectional view showing the flow of fluid within the connection between the gas-liquid separation tank and the inlet nozzle shown in the figure. 1... Water ring vacuum pump 2...
・・・・・・・・・Inlet piping 3・・・・・・・・・Water sealing nozzle 4・・・・・・
・・・・・・Discharge piping 5・・・・・・・・・Connecting pipe 6・・・・・・・・・ Gas-liquid separation tank 7・・・
......Inlet nozzle 8...
・Water sealing 9...Envelope ice removal nozzle 10...
......Mixture 11...Liquid film flow 12...Outlet nozzle 13...
...... Vortex 14 ...... Enlarged section 15 ...... Gas-liquid separation piping 16 ...
...... Decreasing part 17 ...... Gas piping 18 ...
......Branch section 19...Water seal measuring section 20...
・・・・・・・・・ Water seal return pipe tube 2 figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)処理ガスを吸い込む入口配管、吐出配管および封
水ノズルを有する水封式真空ポンプと、前記吐出配管の
口径を下側に広がりを持ち拡大させる拡大部と、この拡
大部に接続された気液分離配管と、この気液分離配管の
口径を上側に偏心させる狭まりを持ち減少させる減少部
と、この減少部からガス配管を介して接続された気液分
離タンクと、この気液分離タンクの下方に設けられた封
水取出ノズルと、前記気液分離タンクの上方に設けられ
た出口ノズルと、前記気液分離配管の下流側から下方に
分岐されてなる封水溜り部と、この封水溜り部の下方と
前記気液分離タンクとを連通とせた封水もどり管とを具
備したことを特徴とする水封式真空ポンプ用気液分離装
置。
(1) A water-seal vacuum pump having an inlet pipe for sucking process gas, a discharge pipe, and a water-sealing nozzle, an enlarged part for expanding the diameter of the discharge pipe downwardly, and a pump connected to the enlarged part. A gas-liquid separation pipe, a reducing part that narrows and reduces the diameter of the gas-liquid separation pipe eccentrically upward, a gas-liquid separation tank connected from this reducing part via a gas pipe, and this gas-liquid separation tank. a seal water take-out nozzle provided below the gas-liquid separation tank; an outlet nozzle provided above the gas-liquid separation tank; a water seal reservoir branched downward from the downstream side of the gas-liquid separation pipe; A gas-liquid separation device for a water-sealed vacuum pump, comprising a water-sealed return pipe that communicates a lower part of the water reservoir with the gas-liquid separation tank.
(2)ガス配管の下流側は気液分離タンクの接線方向に
設けられた入口ノズルに接続され、出口ノズルは該気液
分離タンク内に延在していることを特徴とする特許請求
の範囲第1項記載の水封式真空ポンプ用気液分離装置。
(2) A claim characterized in that the downstream side of the gas pipe is connected to an inlet nozzle provided in a tangential direction of a gas-liquid separation tank, and the outlet nozzle extends into the gas-liquid separation tank. 2. The gas-liquid separation device for a water ring vacuum pump according to item 1.
JP21728485A 1985-09-30 1985-09-30 Gas liquid separation apparatus for water seal type vacuum pump Pending JPS6274425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21728485A JPS6274425A (en) 1985-09-30 1985-09-30 Gas liquid separation apparatus for water seal type vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21728485A JPS6274425A (en) 1985-09-30 1985-09-30 Gas liquid separation apparatus for water seal type vacuum pump

Publications (1)

Publication Number Publication Date
JPS6274425A true JPS6274425A (en) 1987-04-06

Family

ID=16701723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21728485A Pending JPS6274425A (en) 1985-09-30 1985-09-30 Gas liquid separation apparatus for water seal type vacuum pump

Country Status (1)

Country Link
JP (1) JPS6274425A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2644357A1 (en) * 1989-03-14 1990-09-21 Selnor Electromenager Nord Liquid-gas separator and device comprising such a separator
JP2002235698A (en) * 2001-02-09 2002-08-23 Nikkiso Co Ltd Foreign matter removal chamber of canned motor pump
WO2008089525A1 (en) * 2007-01-26 2008-07-31 Atlas Copco Airpower, Naamloze Vennootschap Water separator for a water-injected screw compressor and a compressor installation provided with such a water separator
JP2010115627A (en) * 2008-11-14 2010-05-27 Tlv Co Ltd Steam-water separator
WO2011082972A1 (en) * 2009-12-15 2011-07-14 Basf Se Device for precipitating liquid droplets from a feed gas flow containing said droplets and having a liquid content of > 101 liquid/m3 of feed gas

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2644357A1 (en) * 1989-03-14 1990-09-21 Selnor Electromenager Nord Liquid-gas separator and device comprising such a separator
JP2002235698A (en) * 2001-02-09 2002-08-23 Nikkiso Co Ltd Foreign matter removal chamber of canned motor pump
WO2008089525A1 (en) * 2007-01-26 2008-07-31 Atlas Copco Airpower, Naamloze Vennootschap Water separator for a water-injected screw compressor and a compressor installation provided with such a water separator
BE1017444A3 (en) * 2007-01-26 2008-09-02 Atlas Copco Airpower Nv WATER SEPARATOR FOR A WATER INJECTION COMPRESSOR AND A COMPRESSOR INSTALLATION FITTED WITH SUCH WATER SEPARATOR.
JP2010115627A (en) * 2008-11-14 2010-05-27 Tlv Co Ltd Steam-water separator
WO2011082972A1 (en) * 2009-12-15 2011-07-14 Basf Se Device for precipitating liquid droplets from a feed gas flow containing said droplets and having a liquid content of > 101 liquid/m3 of feed gas
US8764886B2 (en) 2009-12-15 2014-07-01 Basf Se Apparatus for separating liquid droplets out of a feed gas stream comprising them with a liquid loading of > 10 L of liquid/m3 of feed gas

Similar Documents

Publication Publication Date Title
US3771290A (en) Vortex de-aerator
US3641745A (en) Gas liquid separator
US4906264A (en) Oil separator for separating and collecting oil entrained in refrigerant
CN201179364Y (en) Vertical gas (steam) liquid cyclone separator with built-in helical commutating device
JPH0554365B2 (en)
US4279627A (en) Fine particle separation apparatus
JP2007319790A (en) Defoaming device
JPS6274425A (en) Gas liquid separation apparatus for water seal type vacuum pump
JP3314758B2 (en) Gas-liquid separation device
US3969093A (en) Cyclonic gas scrubbing system
RU2293595C1 (en) Separator
RU48277U1 (en) SEPARATOR
JPH08187403A (en) Gas/liquid separation device
RU2147939C1 (en) Method of separation of particles from liquid by means of turbulent vortices and device for realization of this method
JPH07232021A (en) Gas-liquid separator
JP2930451B2 (en) Steam-water separator
CN110585801A (en) Pipeline type filter adopting cyclone separation
JPH0538408A (en) Gas-liquid separation apparatus
JPH0725231Y2 (en) Mist separator
EA006172B1 (en) A device for a cyclone scrubber
SU1692619A1 (en) Air cleaning device
JPH02223703A (en) Rotating type separator
CN211585828U (en) Gas-liquid separator
SU1095964A1 (en) Apparatus for cleaning gas
CN202359147U (en) Double-drain-pipe type cyclone dehydrator