JPS627378Y2 - - Google Patents

Info

Publication number
JPS627378Y2
JPS627378Y2 JP16512180U JP16512180U JPS627378Y2 JP S627378 Y2 JPS627378 Y2 JP S627378Y2 JP 16512180 U JP16512180 U JP 16512180U JP 16512180 U JP16512180 U JP 16512180U JP S627378 Y2 JPS627378 Y2 JP S627378Y2
Authority
JP
Japan
Prior art keywords
cylinder
disk
rotating disk
rotating
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16512180U
Other languages
Japanese (ja)
Other versions
JPS5786626U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16512180U priority Critical patent/JPS627378Y2/ja
Publication of JPS5786626U publication Critical patent/JPS5786626U/ja
Application granted granted Critical
Publication of JPS627378Y2 publication Critical patent/JPS627378Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Description

【考案の詳細な説明】 この考案はコンパクトな構成で剪断作用と圧縮
作用による〓和操作をきわめて効率よく行なわせ
ることができる連続〓和機に関するものである。
[Detailed Description of the Invention] This invention relates to a continuous slendering machine that has a compact structure and is capable of extremely efficiently performing summing operations by shearing action and compression action.

従来、コロイド状のエマルジヨンの混合、分散
は回分式のロールミルやサンドミルあるいはニー
ダー等によつてのみ処理が可能であり、公知の連
続〓和機では混合、分散を効果的に行なうことが
できなかつた。例えばゴム系の接着剤を製造する
ばあい、ゴムベースをチツプ状にしたものを溶剤
にて膨潤させてコロイド状にしたものに再び溶剤
を添加し、温度をコントロールしながら長時間を
費して混合、湿潤、分散を回分式ニーダーで行な
つている。このような回分式の処理機によるばあ
いは処理能力が低いばかりでなく、製品のロツト
毎の品質にムラが生じるという欠点がある。
Conventionally, colloidal emulsions could be mixed and dispersed only using batch-type roll mills, sand mills, kneaders, etc., and mixing and dispersion could not be performed effectively using known continuous mills. . For example, when manufacturing a rubber adhesive, the rubber base is made into chips, swollen with a solvent, turned into a colloid, the solvent is added again, and the temperature is controlled over a long period of time. Mixing, wetting, and dispersion are performed using a batch kneader. Such batch-type processing machines have the disadvantage that not only the processing capacity is low, but also the quality of the products varies from lot to lot.

〓和操作は強力な剪断と圧縮作用による流動に
よつて行なわれるものであるが、ニーダーでこの
ような接着剤のゴム溶解操作を行なうと、ブレー
ドと混合槽の構造から、コロイド状物と液体とは
互いに滑り合つて〓和効果が悪くなり、〓和に時
間がかかるのが現状である。
〓The mixing operation is carried out by the flow caused by strong shearing and compression effects, but when such rubber melting operation of adhesive is performed with a kneader, colloidal matter and liquid are mixed due to the structure of the blade and mixing tank. The current situation is that the summation effect deteriorates and it takes a long time to complete the summation as they slide into each other.

そこでこの操作をホモミキサーで行なうと、コ
ロイド状物に対して強力な剪断作用を与えるが、
反面圧縮作用が弱いためにこれによつて得られた
製品は、ゴム粒子が溶剤と完全に溶け合つている
のではなく溶剤中にゴム粒子が点在している状態
になるため伸びが悪く、これをロールコーターで
延ばして接着テープにするとニーダーによつて得
られた製品よりも延びが悪く、充分な処理がなさ
れてないことがわかる。
Therefore, when this operation is performed with a homomixer, a strong shearing effect is applied to the colloidal material, but
On the other hand, since the compression effect is weak, the resulting product has poor elongation because the rubber particles are not completely dissolved in the solvent, but are scattered in the solvent. When this was rolled into an adhesive tape using a roll coater, it spread more poorly than a product obtained using a kneader, indicating that sufficient processing had not been carried out.

この考案はこのような従来の問題の解決のため
になされたものであり、従来の回分式ニーダーや
ロール練機におけるような〓和操作を混練材料の
粒度や固体、液体の別を問わず強力な剪断と圧縮
作用によつて、しかもコンパクトな構成で連続的
に行なうようにした装置を提供するものである。
This idea was made to solve these conventional problems, and it makes it possible to perform the summing operation like that in conventional batch kneaders and roll kneaders, regardless of the particle size of the kneaded materials or whether they are solids or liquids. The purpose of the present invention is to provide a device that can perform continuous shearing and compression with a compact structure.

この考案は、シリンダ内で回転してその軸方向
に流体を移送するように外周部にスクリユーを形
成した回転軸に対して複数個の回転円板を軸方向
に所定間隔で取付け、この回転円板の両側面に
は、軸方向に突出する部分が外周端まで連続して
なる山部を複数個ほぼ放射方向に形成し、この両
側面に対向させて同軸に固定円板をシリンダに設
け、この固定円板の側面にも上記山部を複数個ほ
ぼ放射方向に形成し、回転軸とシリンダ内面との
間から回転円板と固定円板との間に送り込まれた
材料が回転円板の外周面を通つて反対側の回転円
板と固定円板との間の中心側へ送られるように、
固定円板と回転円板との相対向する山部を互いに
傾斜させて形成し、かつ回転円板の外周面にスク
リユーを形成するとともにこの外周面に対向する
固定円板間のシリンダ内面には軸方向に溝を形成
したものである。
This idea involves attaching a plurality of rotating disks at predetermined intervals in the axial direction to a rotating shaft that has a screw formed on its outer periphery so that it rotates within a cylinder and transfers fluid in the axial direction. On both sides of the plate, a plurality of ridges in which the axially protruding parts are continuous up to the outer circumferential end are formed substantially in the radial direction, and fixed disks are provided coaxially on the cylinder so as to face both sides, A plurality of the above-mentioned peaks are also formed on the side surface of the fixed disk in the almost radial direction, so that the material fed between the rotating disk and the fixed disk from between the rotating shaft and the inner surface of the cylinder can be applied to the rotating disk. so that it passes through the outer circumferential surface and is sent to the center between the rotating disk and fixed disk on the opposite side.
The opposing peaks of the fixed disk and rotating disk are formed so as to be inclined to each other, and a screw is formed on the outer circumferential surface of the rotating disk, and a screw is formed on the inner surface of the cylinder between the fixed disks facing this outer circumferential surface. A groove is formed in the axial direction.

以下、この考案の実施例を図面によつて説明す
る。第1図において、1はホツパー、1aは定量
フイーダ、1cは材料供給口、4はシリンダであ
る。シリンダ4内には駆動装置2によつて回転す
る回転軸31が挿入され、この回転軸31には先
端部までスクリユーが形成され、基端部のスクリ
ユー3によつてフイード部F、先端部のスクリユ
ー59によつて押出部Xが形成されている。また
それらの間には回転円板9,11,15が所定の
間隔をもつて取付けられ、かつ幅の広い回転円板
13がそれらの間に配置されている。回転円板
9,11によつて混練部K1、回転円板15によ
つて混練部K2が形成され、回転円板13によつ
てベント部Vが形成されている。これらの回転円
板間の軸にはスクリユー10が形成されている。
Embodiments of this invention will be described below with reference to the drawings. In FIG. 1, 1 is a hopper, 1a is a quantitative feeder, 1c is a material supply port, and 4 is a cylinder. A rotary shaft 31 rotated by the drive device 2 is inserted into the cylinder 4, and a screw is formed on this rotary shaft 31 up to the distal end. An extruded portion X is formed by the screw 59. Furthermore, rotating disks 9, 11, and 15 are mounted at predetermined intervals between them, and a wide rotating disk 13 is arranged between them. A kneading section K 1 is formed by the rotating disks 9 and 11, a kneading section K 2 is formed by the rotating disk 15, and a vent section V is formed by the rotating disk 13. A screw 10 is formed on the shaft between these rotating disks.

基部のシリンダ4と先端部のシリンダ30との
間には回転円板9,11,15に対応する環状部
材17,20,26とそれらの間に配置された環
状部材18,21,25とベント穴12を有する
環状部材22とを重ね合わせてシリンダ4,30
とタイロツド24によつて連結させている。また
シリンダの外周面にはヒータ5を配置している。
シリンダ4の内部上方には軸方向に連続する溝8
を形成し、第2図に示すようにその端部は外部に
開口するベント穴7に挿通させている。
Between the cylinder 4 at the base and the cylinder 30 at the tip are annular members 17, 20, 26 corresponding to the rotating disks 9, 11, 15, annular members 18, 21, 25 arranged between them, and a vent. The cylinders 4 and 30 are overlapped with the annular member 22 having the hole 12.
and are connected by a tie rod 24. Further, a heater 5 is arranged on the outer peripheral surface of the cylinder.
A groove 8 continuous in the axial direction is provided in the upper part of the inside of the cylinder 4.
As shown in FIG. 2, the end thereof is inserted into a vent hole 7 that opens to the outside.

回転円板11は、第3図に示すように、側面に
中心から放射状に延びる突起32が円周方向に複
数条形成されている。この突起32は回転円板1
1の両側面において軸方向に突出する部分が外周
端まで連続してなる山部により形成され、この突
起32の間に凹部43が形成されている。この構
成は回転円板の反対側の面および回転円板9,1
3,15の両側面も同じである。突起32の外周
端は回転円板の外周面から突出し、かつ螺旋状に
軸方向に延びて回転円板の外周面にスクリユーを
形成させている。また回転円板の側面に対向する
面は環状部材18,21,25,28に同様の突
起(山)と凹部(谷)とを形成して固定円板を構
成している。固定円板の突起は放射方向からやや
傾斜しその傾斜方向は装置の入口側では外周方向
ほど回転方向に対し位相が遅れる方向に、また出
口側では逆方向に傾斜し、これによつて内部の材
料がスクリユーとシリンダとの隙間から回転円板
と固定円板との間を通つて外周方向に送られ、回
転円板の外周面上を通過した後、回転円板の反対
側の面と固定円板との間を中心方向に送られるよ
うにしている。すなわち回転円板の突起32と固
定円板の突起とはそれぞれほぼ放射方向に形成さ
れているが、相対向する両突起は互いに交差する
ように少なくとも一方の突起が放射方向からやや
傾斜して形成されている。これを図面によつて具
体的に説明すると、第7図において回転円板11
の一方の側面に対向する固定円板はその対向面に
形成された突起(山部)80が仮想線で示すよう
に突起(山部)32に対して傾斜して配置されて
おり、回転円板11が図示の矢印方向に回転する
と両突起32と80とが中心側から徐々に重なり
合うことになり、このため両突起32と80との
間にある材料は外周方向に押出されることにな
る。一方この回転円板11の反対側では、第8図
に示すように固定円板の突起80は突起32に対
して反対向きに傾斜しており、このため回転円板
11の矢印方向の回転により両突起32と80と
は外周側から中心側に向けて徐々に接近すること
になり、このため両突起32と80との間の材料
は外周側から中心方向へと送られることになる。
また環状部材17,20,26の内周面には軸方
向に延びる溝49が円周方向に複数条形成され、
これが回転円板の外周面と対向することによつて
回転円板と固定円板との関係と同様に突起と凹部
が交互に対向している。回転円板13の外周面と
環状部材22の内周面も同様に構成され、突部3
2の外周端で形成されるスクリユーフライトと軸
方向の溝23とが対向している。
As shown in FIG. 3, the rotating disk 11 has a plurality of protrusions 32 formed in the circumferential direction on the side surface thereof, extending radially from the center. This protrusion 32 is the rotary disk 1
The portions protruding in the axial direction on both side surfaces of the protrusion 1 are formed by convex portions that continue to the outer peripheral end, and a recess 43 is formed between the protrusions 32 . This configuration includes the opposite side of the rotating disk and the rotating disk 9,1.
The same applies to both sides of numbers 3 and 15. The outer peripheral end of the protrusion 32 protrudes from the outer peripheral surface of the rotary disk and extends spirally in the axial direction to form a screw on the outer peripheral surface of the rotary disk. Further, on the surface facing the side surface of the rotating disk, projections (mountains) and recesses (valleys) similar to those of the annular members 18, 21, 25, and 28 are formed to constitute a fixed disk. The protrusions of the fixed disk are slightly inclined from the radial direction, and the inclination direction is such that on the inlet side of the device, the phase lags behind the rotation direction toward the outer periphery, and in the opposite direction on the outlet side. The material is fed from the gap between the screw and the cylinder to the outer circumferential direction through between the rotating disk and the fixed disk, and after passing over the outer circumferential surface of the rotating disk, it is fixed to the opposite surface of the rotating disk. It is designed to be sent toward the center between the disk and the disk. In other words, the protrusions 32 on the rotating disk and the protrusions on the stationary disk are each formed substantially in the radial direction, but at least one of the opposing protrusions is formed at a slight angle from the radial direction so as to intersect with each other. has been done. To explain this in detail with reference to the drawings, in FIG.
The fixed disk facing one side of the rotating circle has a projection (mountain portion) 80 formed on the opposite surface thereof, which is arranged to be inclined with respect to the projection (mountain portion) 32 as shown by the imaginary line. When the plate 11 rotates in the direction of the arrow shown in the figure, the protrusions 32 and 80 gradually overlap from the center side, and the material between the protrusions 32 and 80 is therefore extruded toward the outer circumference. . On the other hand, on the opposite side of the rotary disk 11, as shown in FIG. Both protrusions 32 and 80 gradually approach each other from the outer circumferential side toward the center, so that the material between both protrusions 32 and 80 is fed from the outer circumferential side toward the center.
Further, a plurality of grooves 49 extending in the axial direction are formed in the inner peripheral surface of the annular members 17, 20, 26 in the circumferential direction.
By facing the outer circumferential surface of the rotating disk, the protrusions and recesses alternately face each other, similar to the relationship between the rotating disk and the fixed disk. The outer circumferential surface of the rotating disk 13 and the inner circumferential surface of the annular member 22 are similarly configured, and the protrusion 3
The screw flight formed at the outer circumferential end of 2 and the axial groove 23 face each other.

つぎにこの装置の作用を説明する。まず駆動装
置2によつて回転軸31を回転させるとともに定
量フイーダ1aを作動させてホツパー1内の材料
を一定量づつシリンダ4内に供給する。シリンダ
4内はヒータ5によつて加熱されているために供
給された材料6は乾燥されつつ回転円板9方向へ
送られる。この間に発生したガスは溝8からベン
ト穴7を通して排出される。回転円板9の基部に
達した材料は回転円板の側面と固定円板の側面と
の相対向する面の相対運動によつて外周方向に送
られつつ圧縮作用および剪断作用が与えられる。
すなわち、第5図および第6図に示すように、山
43と39とが対向する部分は広く、谷43と山
29とが対向する部分はやや狭く、さらに山29
と山32とが対向する部分はごくわずかの間隙が
形成される。従つて回転円板が矢印R方向に移動
するとそれぞれの境界線部41と42との距離L
が縮まる結果、その内部の材料は強力な圧縮作用
をうける。圧縮作用をうけた材料は谷43と山2
9との間に押し出され、ここで山32と山29と
の間で強力な剪断作用をうける。このような作用
が円周方向について同様に行なわれ、即ち圧縮工
程Pと剪断工程Sとが交互に円周方向に繰返され
る。一方、円板の放射方向についてみると、固定
円板の山29は放射方向から傾斜していて中心か
ら外周に向つて徐々に山29と32とが対向する
ようにしているために、材料に円周方向の力を加
えると同時に放射方向の力をも加えることにな
り、材料を外周方向に送り出す。外周部では前述
のように突起32の延長部で形成されたスクリユ
ーフライトと溝49とが対向しているために、こ
こでも固定円板と回転円板との関係と同様、材料
が剪断および圧縮作用をうけつつ送られる。回転
円板の反対側でも第5,6図に示したと同様に圧
縮、剪断が繰返され、かつ材料は中心方向に送ら
れるように固定円板の山が傾斜している。スクリ
ユー10の部分に達した材料は、環状部材18の
内周面に形成した軸方向の溝19とスクリユーフ
ライトとの作用によつて上記同様に剪断、圧縮作
用をうけつつ、つぎの回転円板11へ送られ、以
下同様の作用がなされる。
Next, the operation of this device will be explained. First, the rotating shaft 31 is rotated by the drive device 2, and the quantitative feeder 1a is operated to feed the material in the hopper 1 into the cylinder 4 in fixed amounts. Since the inside of the cylinder 4 is heated by the heater 5, the supplied material 6 is sent toward the rotating disk 9 while being dried. Gas generated during this time is discharged from the groove 8 through the vent hole 7. The material that has reached the base of the rotating disk 9 is conveyed in the outer circumferential direction by the relative motion of the opposing surfaces of the rotating disk and the fixed disk, and is subjected to compression and shearing effects.
That is, as shown in FIGS. 5 and 6, the part where the peaks 43 and 39 face each other is wide, the part where the valley 43 and the peak 29 face each other is slightly narrower, and the part where the valleys 43 and 39 face each other is slightly narrower.
A very small gap is formed in the portion where the ridge 32 and the crest 32 face each other. Therefore, when the rotating disk moves in the direction of arrow R, the distance L between the respective boundary lines 41 and 42 increases.
As a result, the material inside is subjected to strong compression. The material subjected to compression is valley 43 and peak 2.
9, where it is subjected to a strong shearing action between the peaks 32 and 29. Such an action is performed in the same manner in the circumferential direction, that is, the compression process P and the shearing process S are alternately repeated in the circumferential direction. On the other hand, looking at the radial direction of the disk, the ridges 29 of the fixed disk are inclined from the radial direction, and the ridges 29 and 32 gradually face each other from the center toward the outer periphery, so that the material At the same time as applying a circumferential force, a radial force is also applied, and the material is sent out in the circumferential direction. At the outer periphery, as described above, the screw flight formed by the extension of the protrusion 32 and the groove 49 are opposed to each other, so here too, the material is subjected to shearing and It is sent under compression. On the opposite side of the rotating disk, compression and shearing are repeated in the same manner as shown in FIGS. 5 and 6, and the peaks of the stationary disk are inclined so that the material is sent toward the center. The material that has reached the screw 10 is sheared and compressed in the same manner as described above due to the action of the axial groove 19 formed on the inner circumferential surface of the annular member 18 and the screw flight, and then continues in the next rotational circle. It is sent to the plate 11, and the same action is performed thereafter.

上記混練作用中にも材料中に含まれた水分等が
ガス化するが、このガスは回転円板13の外周部
を通過する間にベント穴から排出される。回転円
板13は回転円板9,11より軸方向の幅を広く
設定しているために材料の通路の容積が広くな
り、このためガスの排出が行なわれやすい。
Even during the kneading action, moisture contained in the material is gasified, but this gas is discharged from the vent hole while passing through the outer circumference of the rotating disk 13. Since the rotating disk 13 is set to have a wider width in the axial direction than the rotating disks 9 and 11, the volume of the material passage becomes larger, and therefore gas can be easily discharged.

回転円板13を通過してガスが完全に抜き取ら
れた材料は回転円板15を通過することによつて
仕上げ練りが行なわれ、先端部から押出される。
The material from which the gas has been completely removed after passing through the rotating disk 13 is subjected to finishing kneading by passing through the rotating disk 15, and is extruded from the tip.

以上説明したように、この考案は回転円板と固
定円板との対向面全体において強力な剪断および
圧縮が行なわれ、かつこれらの対向面間において
も剪断、圧縮を行ないつつ移送するようにしてい
るために非常にコンパクトな構成で効果的な〓和
作用を行なわせることができる。なお、回転円板
の設置数は混練材料の種類に応じて適宜定めれば
よく、また回転円板および固定円板の山と谷の形
状、段数も前述の作用を行なう範囲で種々の変更
が可能である。
As explained above, this device is designed so that strong shearing and compression are performed on the entire opposing surfaces of the rotating disk and the stationary disk, and the transfer is performed while shearing and compression are also occurring between these opposing surfaces. Therefore, it is possible to perform an effective summation effect with a very compact configuration. The number of rotating disks to be installed may be determined as appropriate depending on the type of material to be kneaded, and the shapes of the peaks and troughs and the number of stages of the rotating disks and fixed disks may be changed in various ways as long as the above-mentioned effects are achieved. It is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の実施例を示す中央縦断面
図、第2〜4図はそれぞれ第1図の−線、
−線、−線断面図、第5図は〓和工程図、
第6図は〓和機構図第7図および第8図はそれぞ
れ回転円板と固定円板との間の材料の流れを説明
するための説明図である。 3……スクリユー、4,30……シリンダ、
9,11,13,15……回転円板、17,1
8,20,21,22,25,26,28……環
状部材、29,32……突起、39,43……凹
部、23,49……溝。
Fig. 1 is a central vertical sectional view showing an embodiment of this invention, and Figs. 2 to 4 are the - line in Fig. 1, respectively.
- line, - line sectional view, Figure 5 is a sum process diagram,
FIG. 6 is a summation mechanism diagram. FIGS. 7 and 8 are explanatory diagrams for explaining the flow of material between the rotating disk and the stationary disk, respectively. 3...Screw, 4,30...Cylinder,
9, 11, 13, 15... Rotating disk, 17, 1
8, 20, 21, 22, 25, 26, 28... annular member, 29, 32... protrusion, 39, 43... recess, 23, 49... groove.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] シリンダ内で回転してその軸方向に流体を移送
するように外周部にスクリユーを形成した回転軸
に対して複数個の回転円板を軸方向に所定間隔で
取付け、この回転円板の両側面には、軸方向に突
出する部分が外周端まで連続してなる山部を複数
個ほぼ放射方向に形成し、この両側面に対向させ
て同軸に固定円板をシリンダに設け、この固定円
板の側面にも上記山部を複数個ほぼ放射方向に形
成し、回転軸とシリンダ内面との間から回転円板
と固定円板との間に送り込まれた材料が回転円板
の外周面を通つて反対側の回転円板と固定円板と
の間の中心側へ送られるように、固定円板と回転
円板との相対向する山部を互いに傾斜させて形成
し、かつ回転円板の外周面にスクリユーを形成す
るとともにこの外周面に対向する固定円板間のシ
リンダ内面には軸方向に溝を形成したことを特徴
とする連続〓和機。
A plurality of rotating disks are attached at predetermined intervals in the axial direction to a rotating shaft that has a screw formed on the outer periphery so as to rotate within the cylinder and transfer fluid in the axial direction. In the cylinder, a plurality of ridges are formed in which the axially protruding portions are continuous up to the outer circumferential end, and fixed disks are provided coaxially on the cylinder so as to face both sides of the ridges, and the fixed disks are A plurality of the above-mentioned peaks are formed on the side surface of the cylinder in a substantially radial direction, so that the material fed between the rotating disk and the fixed disk from between the rotating shaft and the inner surface of the cylinder passes through the outer peripheral surface of the rotating disk. The facing peaks of the fixed disk and the rotating disk are formed so as to be inclined to each other so that the material is fed to the center between the rotating disk and the fixed disk on the opposite side. A continuous smoothing machine characterized in that a screw is formed on the outer circumferential surface and a groove is formed in the axial direction on the inner surface of the cylinder between fixed disks facing the outer circumferential surface.
JP16512180U 1980-11-17 1980-11-17 Expired JPS627378Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16512180U JPS627378Y2 (en) 1980-11-17 1980-11-17

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16512180U JPS627378Y2 (en) 1980-11-17 1980-11-17

Publications (2)

Publication Number Publication Date
JPS5786626U JPS5786626U (en) 1982-05-28
JPS627378Y2 true JPS627378Y2 (en) 1987-02-20

Family

ID=29523829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16512180U Expired JPS627378Y2 (en) 1980-11-17 1980-11-17

Country Status (1)

Country Link
JP (1) JPS627378Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204302A (en) * 1984-03-29 1985-10-15 株式会社村田製作所 Vacuum earth kneading extrusion molding machine

Also Published As

Publication number Publication date
JPS5786626U (en) 1982-05-28

Similar Documents

Publication Publication Date Title
KR820001942B1 (en) Rotary processor
JPH0130615B2 (en)
US3808701A (en) Apparatus for drying fluent materials
JPH02180628A (en) Continuously operable mixer
US4067553A (en) Continuous kneader
US4084263A (en) Kneading and mixing machine
JPH0677679B2 (en) Continuous kneading machine
JPH0677680B2 (en) Continuous kneading machine
JP3010033B2 (en) Mixing tool
JPS627378Y2 (en)
JPS6111663B2 (en)
US2623737A (en) Material conditioning apparatus
CN212987905U (en) Disc type continuous drying machine for material dispersion
US3730663A (en) Pelletizer
US2611590A (en) Method and apparatus for stage kneading
JP3116240B2 (en) Agitation mixing granulation method and apparatus
JPS627379Y2 (en)
JPS6265726A (en) Arrangement in mixer
JPH0292B2 (en)
US4071167A (en) Apparatus for dispersing agglomerates
CN216063140U (en) A stir tooth granulator for fertilizer production
JPS5922146B2 (en) heating rotary furnace
JPS6134029Y2 (en)
JP3692503B2 (en) Drying equipment
EP0198929A1 (en) Coating apparatus