JPS6273237A - Ion conductive material for electrochromic display element - Google Patents

Ion conductive material for electrochromic display element

Info

Publication number
JPS6273237A
JPS6273237A JP21264585A JP21264585A JPS6273237A JP S6273237 A JPS6273237 A JP S6273237A JP 21264585 A JP21264585 A JP 21264585A JP 21264585 A JP21264585 A JP 21264585A JP S6273237 A JPS6273237 A JP S6273237A
Authority
JP
Japan
Prior art keywords
polymer
ionic
conductive material
exchange group
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21264585A
Other languages
Japanese (ja)
Other versions
JPH0466332B2 (en
Inventor
Toshikatsu Sada
佐田 俊勝
Hiroshi Kato
寛 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP21264585A priority Critical patent/JPS6273237A/en
Publication of JPS6273237A publication Critical patent/JPS6273237A/en
Publication of JPH0466332B2 publication Critical patent/JPH0466332B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

PURPOSE:To obtain an ECD element having a non-linear relation between the voltage and current to be impressed between an EC film and counter electrode of an ECD element by selecting an ion conductive material. CONSTITUTION:This ion conductive material for the electrochromic display element consists of the ionic high-polymer material which is the ionic high- polymer material of >=3,000mol.wt. having an ion exchange group or a functional group to change the ion exchange group under use conditions and into which an ionic low-polymer material of <=1,000mol.wt. to dissociate to ions under the use conditions is incorporated at max. 1,000ppm. The skeleton of the ionic high-polymer material is adequately a polymer or copolymer of hydrocarbons, polymer or copolymer of halogen-contg. hydrocarbons of chlorine, iodine, bromine, fluorine, etc., polymer or copolymer of perfluorocarbon polymer or copolymer bound and incorporated with metals or elements such as silicon into the main chain of the above-mentioned polymers, etc. The functional group of the ionic high-polymer to be used is the ion exchange group or the functional group which change to the ion exchange group under the use conditions.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はエレクトロクロミックディスプレイ(以下単に
ECDと略記する場合もある)素子用の新規なイオン導
電材を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention provides a novel ion conductive material for an electrochromic display (hereinafter sometimes simply abbreviated as ECD) element.

〔従来技術及び発明が解決しようとする問題点〕ECD
素子は′電圧を印加することにより、無機あるいは有機
物質に起こる可逆的な色変化を利用した表示素子である
。該ECD素子は液晶と比べ視野角依存性がなく見易さ
の点ですぐれ、またメモリー機能を有し、低電圧駆動が
できるなどの特giを有している。しかしながら現在開
発提案されているECD累子は、実用上、その寿命、応
答速度及びコントラスト比の点でいま一歩であり、今後
の開発が待たれるのが実情である。
[Prior art and problems to be solved by the invention] ECD
The device is a display device that utilizes a reversible color change that occurs in an inorganic or organic material by applying a voltage. The ECD element is superior in viewability because it has no viewing angle dependence compared to a liquid crystal, and has special features such as having a memory function and being able to be driven at a low voltage. However, the ECD devices that are currently being proposed for development are still a step forward in terms of practical life, response speed, and contrast ratio, and the reality is that future development is awaited.

ECD素子は一般に透明導電膜、エレクトロクロミック
膜(以下単にEC膜とも云う)、イオン導電材及び対抗
電極を積層した構造が主構成となり組立てられている。
An ECD element is generally assembled with a main structure in which a transparent conductive film, an electrochromic film (hereinafter simply referred to as an EC film), an ion conductive material, and a counter electrode are laminated.

そしてECD素子の寿命、応答速度及びコントラスト比
はEC膜の材質のみならずイオン導電材全構成する材質
にも大きく依存をうけることが本発明者等によって確認
されている。
The inventors of the present invention have confirmed that the life span, response speed, and contrast ratio of the ECD element depend not only on the material of the EC film but also on the materials of the entire ion conductive material.

本発明者等は上記種々の問題点を解決すべく鋭意研究し
、既に数多くの提案を行い安定したECD素子の製造に
成功した。ECD素子を更に実用化するに際して、これ
に文字、画などの微細な表示をするためには、表示素子
を多くのセグメントに分割する必要がちり、この分割し
たセグメント間の分離が充分でなければ鮮明な文字、画
等の表示は難しい。−上記鮮明な文字、画を表示するた
めにはエレクトロクロミック膜と対極との間に印加する
電圧と電流の間に非線型の関係があれば表示したいセグ
メントと隣接するセグメントの間で電流値が著しく異な
り鮮明な信金表示することが出来る。
The inventors of the present invention have conducted extensive research to solve the various problems mentioned above, have already made numerous proposals, and have succeeded in manufacturing a stable ECD element. When ECD elements are put into practical use, it is necessary to divide the display element into many segments in order to display fine details such as characters and images, and if the separation between the divided segments is not sufficient. It is difficult to display clear characters, images, etc. - In order to display the above clear characters and images, if there is a non-linear relationship between the voltage and current applied between the electrochromic film and the counter electrode, the current value between the segment to be displayed and the adjacent segment must be It is markedly different and can display clear credit information.

従ってECD素子開発における現在の課題はEc膜と対
極との間に印加する電圧と電流の間に非線型の関係があ
るECD素子特に特定の電圧までは電流は流れないが特
定の電圧になると急に電流が流れる関係にあるECD素
子の開発である。
Therefore, the current issue in ECD device development is that there is a nonlinear relationship between the voltage and current applied between the Ec film and the counter electrode. This is the development of an ECD element in which a current flows through.

〔問題全解決するための手段〕[Means to solve all problems]

本発明者等は上記技術課題を解決すべく禎々検討した結
果、イオン導電材を選ぶことにエリ、上記ECD素子に
おけるEC膜と対極との間に印加する電圧と電流の間に
非線型の関係があるECU素子とすることが出来ること
を知見し、本発明全完成するに至った。
As a result of careful consideration to solve the above technical problem, the present inventors decided to select an ion conductive material, and found that there is a nonlinear relationship between the voltage and current applied between the EC film and the counter electrode in the ECD element. It was discovered that a related ECU element could be used, and the present invention was completed.

即ち本発明は、イオン交換基含有するか使用条件下にイ
オン交換基に変る官能基を有する分子量3000以上の
イオン性高分子体で、使用条件下にイオンに解離する分
子量が1000以下のイオン性低分子物質が最大100
0 ppm含まれるイオン性高分子体よりなるエレクト
ロクロミックディスプレイ素子用イオン導電材である。
That is, the present invention is an ionic polymer with a molecular weight of 3,000 or more that contains an ion exchange group or has a functional group that converts into an ion exchange group under the conditions of use, and an ionic polymer with a molecular weight of 1,000 or less that dissociates into ions under the conditions of use. Up to 100 low molecular weight substances
This is an ion conductive material for electrochromic display elements made of an ionic polymer containing 0 ppm.

本発明のイオン導電材はイオン交換基を有するか使用条
件下にイオン交換基に変る官能基含有する分子i−30
00以上好ましくH5000以上のイオン性高分子体か
らなる。該イオン性高分子体の骨格は分子量が3000
以上好ましくは5000以上となりつるものであれば如
何なるものであってもよいが一般には炭化水素系の重合
体又は共重合体;塩素、沃素、臭素、弗素等の含ノ・ロ
グン炭化水素糸の重合体又は共重合体;ノ9−フルオロ
カーポy系の重合体又は共重合体;これらの重合体の主
鎖中に金属或いは珪素等の元素が結合して含有された重
合体又は共重合体等が好適であり、該共重合体にあって
は前記炭化水素系単量体、含ノ・ロダン炭化水素系単量
体或いはパーフルオロカーボン系の単量体を一成分とす
るものとこれら相互の或いは共重合可能な他の単量体と
の共重合体が特に限定されず使用出来る。これらの1合
体、共重合体の具体例については後述するが、従来イオ
ン性局分子体、イオン交換樹脂、イオン交換樹脂膜等と
称されて公知のものがそのまま或いは溶媒に可溶なもの
は必要に応じて溶媒に溶解して使用出来る。
The ion conductive material of the present invention is a molecule i-30 that has an ion exchange group or a functional group that converts into an ion exchange group under usage conditions.
00 or more, preferably H5000 or more. The skeleton of the ionic polymer has a molecular weight of 3000.
Any polymer or copolymer containing hydrocarbons such as chlorine, iodine, bromine, fluorine, etc. may be used as long as it is preferably 5000 or more and is stable. Polymers or copolymers; 9-fluorocarpoy-based polymers or copolymers; polymers or copolymers containing elements such as metal or silicon bonded to the main chain of these polymers, etc. is preferable, and the copolymer contains the above-mentioned hydrocarbon monomer, rodan-containing hydrocarbon monomer, or perfluorocarbon monomer as one component, and their mutual or Copolymers with other copolymerizable monomers can be used without particular limitation. Specific examples of these monomers and copolymers will be described later, but conventionally known ionic polymers, ion exchange resins, ion exchange resin membranes, etc. may be used as they are or those soluble in solvents. It can be used by dissolving it in a solvent if necessary.

本発明のイオン導電材はその分子量が3000以上好ま
しくは5000以上である必要がある。
The ion conductive material of the present invention needs to have a molecular weight of 3,000 or more, preferably 5,000 or more.

該分子量の上限はその使用態様によって異なるが、一般
に工業的な製造に制限され、固体物質特にその膜状物質
にあっては膜状物全体が一つの分子量となっている高分
子重合体物質(単鼠体即位で50万〜100万)好まし
くは100万程度まで、液状物の形状で使用する場合は
50万程度までが好適に使用される。
The upper limit of the molecular weight varies depending on its usage, but is generally limited to industrial production, and in the case of solid materials, especially film-like materials, the entire film-like material has a single molecular weight (high molecular weight). (500,000 to 1,000,000 for a single mouse) Preferably, the amount is about 1,000,000, and when used in the form of a liquid, it is preferably about 500,000.

また本発明で使用するイオン性高分子体の官能基はイオ
ン交換基或いは使用条件下にイオン交換基に変る官能基
である。該イオン交換基は陽イオン交換基及び陰イオン
交換基の公知のものが特に限定されず使用出来る。特に
好適に使用されるものを例示すれば陽イオン交換基とし
ては、スルボン酸基、カルがン酸基、リン酸基、亜リン
酸基。
Further, the functional group of the ionic polymer used in the present invention is an ion exchange group or a functional group that converts into an ion exchange group under the conditions of use. As the ion exchange group, known cation exchange groups and anion exchange groups can be used without particular limitation. Examples of particularly preferably used cation exchange groups include sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, and phosphorous acid groups.

硫酸エステル基、リン酸エステル基、亜すン酸エステル
基、チオール基、フェノール性水酸基、金F5 属錯塩で負の電荷をもつもの、−COH等である。
These include sulfate ester groups, phosphate ester groups, sulfite ester groups, thiol groups, phenolic hydroxyl groups, negatively charged gold F5 complexes, and -COH.

F3 また隘イオン交換基と1−ては第一級アミン、第二級ア
ミン、第三級アミン、第四級アンモニウム塩基、第三級
スルホニウム塩基、第四級スルホニウム塩基、コバルチ
ジニウム塩基、金網錯塩で正の電荷をもつもの等である
F3 also has ion exchange groups such as primary amines, secondary amines, tertiary amines, quaternary ammonium bases, tertiary sulfonium bases, quaternary sulfonium bases, cobaltidinium bases, and wire mesh complex salts. These include things that have a positive charge.

更にまた使用条件下にイオン交換基に変る官能基として
は特に限定されず公知のものから選ぶことが出来るが一
般に好適に使用される官能基を例示すれば陽イオン交換
基の場合−802X 、 −COX 、 −CN。
Furthermore, the functional group that converts into an ion exchange group under the conditions of use is not particularly limited and can be selected from known functional groups, but examples of functional groups that are generally suitably used are cation exchange groups -802X, - COX, -CN.

−CORl −802R(X ハハロP 7原子、Rは
アルキル基)などがアシ、陰イオン交換基の場合、エポ
キ7基、ペンヅルハライド基などがある。
When -CORl -802R (X hahaloP 7 atoms, R is an alkyl group) is an acyl or anion exchange group, examples include epoxy 7 group and pendyl halide group.

上記イオン交換基又は使用条件下にイオン交換基に変る
官能基の前記骨格への結合は特に限定されず、側鎖又は
主鎖のいずれに結合していてもよい。またイオン交換基
の結合量は使用態様においてECD素子が作動するもの
であれば特に限定されない。一般にはイオン交換基とし
ては0.2ミリ当量/グラム乾燥樹脂以上12ミリ当量
/グラム乾燥樹脂以下のものが用いられる。好ましくは
0.5ミリ当t/グラム乾燥樹脂以上8ミリ当量/グラ
ム乾燥樹脂のものが用いられる。
The bonding of the ion exchange group or the functional group that converts into an ion exchange group under usage conditions to the skeleton is not particularly limited, and may be bonded to either the side chain or the main chain. Further, the amount of bonded ion exchange groups is not particularly limited as long as the ECD element operates in the usage mode. Generally, the ion exchange group used is 0.2 meq/g dry resin or more and 12 meq/g dry resin or less. Preferably, 0.5 milliequivalents/gram dry resin or more and 8 milliequivalents/gram dry resin are used.

本発明に於いて前記イオン性高分子体として最も好適に
使用される具体的なものを例示すると、スチレンスルホ
ン酸の単独重合体又はスチレンスルホン酸を一成分とす
る共重合体(以下重合性単量体を一成分とする共重合体
を単に共重合体と称する);アクリル酸、メタアクリル
酸、ビニルスルホン酸等の単独重合体、共亘合体;ポリ
スチレンのスルポン(l;)+−フルオロ(3,6−ノ
オキf−4−)fルー7−オクテンスルホニルフルオラ
イド)とテトラフルオロエチレンの共重合体の加水分解
物;ポリビニルビリノニウム塩基類;ポリエチレンイミ
ン類;ポリベンツルトリメチルアンモニウム塩基類等で
おる。
In the present invention, the most preferably used ionic polymers are styrene sulfonic acid homopolymers or copolymers containing styrene sulfonic acid as one component (hereinafter referred to as polymerizable monopolymers). A copolymer having one component thereof is simply referred to as a copolymer); a homopolymer or a copolymer of acrylic acid, methacrylic acid, vinyl sulfonic acid, etc.; Hydrolyzate of copolymer of 3,6-nokif-4-)f-7-octensulfonyl fluoride) and tetrafluoroethylene; polyvinylvinonium bases; polyethyleneimine; polybenzyltrimethylammonium bases etc.

前記イオン性高分子体1よイオン交換樹脂、イオン交換
樹脂膜等として例えは水のn製、海水濃縮・脱塩6食塩
電解、!池のセミ4レーター尋の分野で使用される公知
のものである。これらの公知イオン性高分子体は、必要
な単音体、触媒、可塑剤。
Examples of the ionic polymer 1, ion exchange resin, ion exchange resin membrane, etc. are water n products, seawater concentration and desalination, 6-salt electrolysis,! This is a well-known type used in the field of semi-four-fathom ponds. These known ionic polymers contain the necessary monotons, catalysts, and plasticizers.

溶媒尋を混合して必要に応じて膜状9粒状、繊維状環の
形状に重合して市販されている。従って一般に必要な物
性の必要な形状のものを容易に入手出来る。また一般に
ECD素子のイオン導電材にイオン交換膜を使用する試
みはすでに実施されていをか従来の提案によると前記し
たようにその寿命。
It is commercially available after mixing with a solvent and polymerizing it into a membrane-like particle shape or a fibrous ring shape as required. Therefore, it is generally possible to easily obtain a material having the required physical properties and the required shape. Generally, attempts to use ion exchange membranes as ion conductive materials in ECD elements have already been made, and as mentioned above, the lifespan of ion exchange membranes has been limited according to conventional proposals.

応登速変及びコントラスト比が今−歩満足されず、特に
鮮明な文字1画を表示することが困難であった0本発明
者等もECr)素子のイオン導電材としてのイオン性高
分子体は上記欠陥が宿命的なものと結論して来たが、全
く意外にもイオン性高分子体から含有されてhるイオン
性低分子物を特定量以下になるように除去したイオン性
高分子体をECD素子用イオン導電材に使用するとEC
膜と対極との間に印加する電圧と電流の間に非線型通電
関係を示すことを知見した。即ち印加する電圧と電荷注
入量の間に非線型性があるのである。即ち本発明で使用
するイオン性高分子体は使用条件下にイオンに解離する
分子量が1000以下のイオン性低分子物質が最大10
00 ppm好ましくは500pprn更に好ましくは
100 ppm含まれるものであることが必要な要件で
ある。
The speed change and contrast ratio were unsatisfactory, and it was difficult to display a single stroke of clear text. had concluded that the above-mentioned defects were fatal, but surprisingly, an ionic polymer was developed in which the ionic low-molecular substances contained in the ionic polymer were removed to a specific amount or less. EC when the body is used as an ion conductive material for ECD elements
It was discovered that a non-linear conduction relationship was observed between the voltage and current applied between the membrane and the counter electrode. That is, there is nonlinearity between the applied voltage and the amount of charge injection. That is, the ionic polymer used in the present invention contains at most 10 ionic low-molecular substances with a molecular weight of 1000 or less that dissociates into ions under the conditions of use.
00 ppm, preferably 500 pprn, and more preferably 100 ppm.

使用条件下にイオンに解離する分子量が3000に満た
ないイオン性低分子物質は通常のイオン性高分子体中に
は多量に含有されていて一般に2重量%程変最大5重1
係になって−るものさえ存在して込た。このように多量
のイオン性低分子物質が含有されていること自体が意外
なことで更にこのような含有イオン性低分子物質が本発
明のECD素子用イオン導電材としての使用に悪影響を
及ぼす現象は全く予想外の現象である。しかし該イオン
性低分子物質がどのような作用で悪影響を及ffして因
るのかその機構は必らずしも明確ではない。
Ionic low-molecular substances with a molecular weight of less than 3000 that dissociates into ions under usage conditions are contained in large amounts in ordinary ionic polymers, and generally vary by about 2% by weight up to 5%.
There were even things that were related to it. The fact that such a large amount of ionic low-molecular substances are contained is surprising in itself, and furthermore, it is a phenomenon that such contained ionic low-molecular substances have an adverse effect on the use of the present invention as an ion conductive material for an ECD element. is a completely unexpected phenomenon. However, the mechanism by which the ionic low-molecular-weight substance exerts an adverse effect is not necessarily clear.

本発明者等は後述する実施例でも明らかなようにこれら
のイオン性低分子物質を除去することにより、前記エレ
クトロクロイック膜と対極との間の印加による電圧と電
流の間に線型通電関係を示していたものが非線型通電関
係を示すことから、これらのイオン性低分子物質が使用
条件下にイオンに解離し、電気を運ぶ原因となりEEC
D累子に於ける文字、1両の表示をげやかず働きをして
いたものと推定してbる。このような現象は前記したよ
うに全く意外なものである反面、驚ろくべき現象でもあ
る。
By removing these ionic low-molecular substances, the present inventors established a linear conduction relationship between the voltage and current applied between the electrochroic membrane and the counter electrode, as will be clear from the examples described later. Since what was shown shows a nonlinear conduction relationship, these ionic low-molecular substances dissociate into ions under the conditions of use and cause electricity to be carried, resulting in EEC.
It is assumed that the characters on the D-column and the display of one of the cars were working without any hesitation. While this phenomenon is completely unexpected as described above, it is also a surprising phenomenon.

前記イオン性低分子物質はイオン性高分子体の製法によ
って種々の形態、種類のものが存在するが一般の市販の
イオン性高分子体に含まれる代表的なものを例示すれば
次ぎの通りである。
The ionic low-molecular substances described above exist in various forms and types depending on the manufacturing method of the ionic polymer, but the following are representative examples of the substances contained in general commercially available ionic polymers: be.

(1)  イオン交換基を有するか使用条件下にイオン
交換基に変る官能基を有する低分子量重合体。
(1) A low molecular weight polymer that has an ion exchange group or a functional group that converts into an ion exchange group under the conditions of use.

(11)  イオン交換基を有するか使用条件下にイオ
ン交換基に変る官能基を有するイオン性単量体物質。
(11) Ionic monomeric substances that have ion exchange groups or have functional groups that convert into ion exchange groups under the conditions of use.

011)使用条件1にイオンに解離する無機塩、無機酸
、無機塩基等の化合物。
011) Compounds such as inorganic salts, inorganic acids, and inorganic bases that dissociate into ions under usage condition 1.

上記(1)及び(+r)Vi主にイオン性高分子体の製
造時に例えば重合度が低くおさえられて或いは何かの原
因で重合又は共重合しない状態でイオン性高分子体に含
まれるオリゴマー、モノマー(単量体物質)溶媒の変質
物質、触媒の分解生成物等である。
The above (1) and (+r) Vi are mainly oligomers contained in the ionic polymer in a state where the degree of polymerization is suppressed to a low level or is not polymerized or copolymerized for some reason during the production of the ionic polymer, These include altered substances of monomer (monomer substances) solvents, decomposition products of catalysts, etc.

また前記(ill)はイオン性高分子体を製造するとき
に使用される触媒、溶媒、加水分解剤等がイオン性高分
子体に付着又は吸着されて含有されるものである。
Moreover, the above (ill) contains catalysts, solvents, hydrolyzing agents, etc. used when producing the ionic polymer, attached or adsorbed to the ionic polymer.

前記イオン性高分子体から含有イオン性低分子物質を除
去する手段は特に限定さhず如何なる手段を用いてもよ
い。一般に工業的に好適に採用される代表的な手段を例
示すると次ぎの通りである。
The means for removing the contained ionic low-molecular substance from the ionic polymer is not particularly limited, and any means may be used. The following are examples of representative means that are generally suitably adopted industrially.

イオン性高分子体が固体状物にあっては該イオン性高分
子体を非イオン性溶媒例えば、ノオキサン、ツメチルホ
ルムアンド、ツメチルスルホキ7ド、水、アルコール類
などの極性溶媒、或いはベンゼン、トルエン、ヘキサン
等の非極性溶媒に浸漬し、イオン性低分子物質が前記特
定量になるまで溶出させるとか該溶媒中に陽極及び陰極
を入れ通電することによりイオン性低分子物質を可動さ
せて除去する等の手段が好適である。また固体状物のイ
オン性高分子体を水、エチレングライコール、fロビレ
ングライコール、グリセリン、ツメチルスルホキシド、
ノオキサン、ジメチルホルムアミド、ツメチルアセトア
ミド、ジエチルアセトアミド等又はこれらを−成分とす
る混合溶媒に溶解して液状物としたもの及びイオン性高
分子体が液状物であるものにあっては、これらの液状物
を例えばセロファン紙などの透析膜を用いて電流を印加
し或いFf電流をかけず濃度差のみによって透析精製す
る手段が好適に使用される。また通常の高分子の精製手
段として使われる高分子体の良溶媒に溶解(2、貧溶媒
中に注入して沈澱析出させることをくり返して精製する
ことも有効である。
If the ionic polymer is in a solid state, the ionic polymer may be mixed with a nonionic solvent such as a polar solvent such as nooxane, trimethylformand, trimethylsulfoxide, water, or alcohols, or benzene or toluene. , by immersing it in a non-polar solvent such as hexane and eluting the ionic low-molecular substance until it reaches the specified amount, or by placing an anode and a cathode in the solvent and applying electricity to move and remove the ionic low-molecular substance. The following methods are suitable. In addition, solid ionic polymers such as water, ethylene glycol, f-robylene glycol, glycerin, trimethyl sulfoxide,
In the case of liquids obtained by dissolving in nooxane, dimethylformamide, trimethylacetamide, diethylacetamide, etc. or mixed solvents containing these as components, and those in which the ionic polymer is a liquid, these liquids Preferably, a method is used for dialysis-purifying the substance using a dialysis membrane made of cellophane paper or the like, by applying an electric current, or by using only a concentration difference without applying an Ff current. In addition, it is also effective to purify a polymer by repeatedly dissolving it in a good solvent (2) and injecting it into a poor solvent and causing precipitation, which is a common method for purifying polymers.

本発明のイオン導電材としてのイオン性高分子体中に含
まれる分子量1000以下の前記イオン性低分子物質の
量は該イオン導電材の用途として非常に重要な要因とな
る。本発明にあっては該イオン性低分子物質の含有量は
最大1000 ppm好ましくは500 ppm更に好
ましくは100 ppmまでに減少させたものであるこ
とが必要である。該イオン性低分子物質の含有量が上記
値よシ多くなるとECD素子に文字2画等の鮮明な表示
をさすことが困難となる。
The amount of the ionic low-molecular substance having a molecular weight of 1000 or less contained in the ionic polymer as the ion-conducting material of the present invention is a very important factor in the use of the ion-conducting material. In the present invention, the content of the ionic low molecular weight substance must be reduced to a maximum of 1000 ppm, preferably 500 ppm, and more preferably 100 ppm. If the content of the ionic low-molecular substance exceeds the above value, it becomes difficult to provide a clear display such as two strokes of characters on the ECD element.

本発明のイオン導電材の使用態様は特に限定されず公知
のイオン導電材の使用態様がそのまま採用出来る。一般
に好適に使用される態様を例示すると次ぎの通りである
The manner of use of the ion conductive material of the present invention is not particularly limited, and the manner of use of known ion conductive materials can be adopted as is. Examples of generally preferred embodiments are as follows.

陽イオン交換基を有するか使用条件下に陽イオン交換基
となる官能基を有する陽イオン性高分子体と陰イオン交
換基を有するか使用条件下に陰イオン交換基となる官能
基を有する陰イオン性高分子体とをそれぞれ層状に少く
とも2層以上積層したイオン導電材は好適々ものの1つ
の形態である。
A cationic polymer having a cation exchange group or a functional group that becomes a cation exchange group under the usage conditions, and an anionic polymer having an anion exchange group or a functional group that becomes an anion exchange group under the usage conditions. An ion conductive material in which at least two or more layers of ionic polymers are laminated is one preferred form.

この場合積層する層数は特に限定されず、上記いずれか
の1種のイオン性高分子体を使用してもよいが工業的に
は2〜7層好ましくは3〜5層を積層して使用するのが
好適である。また上目己積層する順序は少くとも1組の
積層体が陽イオン性高分子体と陰イオン性高分子体と接
するようにすればよいが一般には異種のイオン性高分子
体が交互に積層されるのが好ましい。また上記積層態様
にあっては積層する少くとも1種が液状物のイオン性高
分子体であると好適である。該液状物はイオン性高分子
体自体が液状のものをそのまま又は非イオン性溶媒に溶
解して使用する態様の他に、固体状のイオン性高分子体
を非イオン性溶媒に溶解または膨潤した態様のいずれで
あってもよい。上記液状物のイオン性高分子体を固体状
物特に層状(膜状)のイオン性高分子体に積層して本発
明のイオン24電材とする場合は固体状物の細孔が該液
状物のイオン性高分子体を通過させない大きさとするの
が好ましい。
In this case, the number of layers to be laminated is not particularly limited, and any one of the above ionic polymers may be used, but industrially, 2 to 7 layers, preferably 3 to 5 layers, are laminated. It is preferable to do so. In addition, the order in which the upper layer is laminated should be such that at least one set of laminates is in contact with a cationic polymer and an anionic polymer, but in general, different types of ionic polymers are laminated alternately. Preferably. In the above-mentioned lamination mode, it is preferable that at least one of the laminated materials is a liquid ionic polymer. In addition to the embodiment in which the ionic polymer itself is used as a liquid or dissolved in a nonionic solvent, the liquid material may also be used in which a solid ionic polymer is dissolved or swollen in a nonionic solvent. Any mode may be used. When the above-mentioned liquid ionic polymer is laminated onto a solid material, particularly a layered (membrane-like) ionic polymer to form the ionic 24 electric material of the present invention, the pores of the solid material are It is preferable to have a size that does not allow the ionic polymer to pass through.

また前記複合積層体にあっては各層間は密着しているこ
とが望ましく、密着のだめの手段は必要に応じて公知の
手段から適宜選んで決定すればよい。
Further, in the composite laminate, it is desirable that the layers are in close contact with each other, and the means for preventing the close contact may be appropriately selected from known means as necessary.

本発明のイオン導電材はECD素子のイオン導電材とし
て著しく良好力性状を発揮する。従って従来公知のEC
D素子のイオン導電材として前記イオン導電材をそのま
ま使用すればよい。代表的なECD素子の構成について
説明すると次ぎの通りである。例えばECD素子は透明
導電膜、EC膜、イオン導電材及び対向電極の順序で構
成させるのが一般的である。上記透明導電膜、EC膜及
び対向電極については従来公知のものが任意に採用され
る。例えば透明導電膜については、公知のものが使用出
来、例えば酸化インジウム−酸化すず(ITO)、酸化
すず、酸化亜鉛、酸化チタン、酸化カドミウム、すず酸
化カドミウム等の酸化物半導体薄膜、あるいは厚さ50
オングストローム以下の金、銀等の薄膜が好適に使用さ
れる。またEC膜については、公知のものが使用出来例
えば無定形酸化タングステンが最も代表的であるがその
他最近EC物質として研究がされている有機色素、金属
錯体、遷移金属化合物、有機物の高分子体などが適宜採
用される。更Kまた対向電極については、公知のものが
使用出来、例えば酸化イリジウム、酸化インジウム−酸
化スズ膜(ITO膜)、金属、無定形酸化タングステン
、鉄錯体、遷移金属酸化物−カーゲン焼結体及び酸化マ
ンガンその他が挙げられる。
The ion conductive material of the present invention exhibits extremely good strength properties as an ion conductive material for ECD elements. Therefore, the conventionally known EC
The ion conductive material may be used as it is as the ion conductive material of the D element. The configuration of a typical ECD element will be explained as follows. For example, an ECD element is generally constructed of a transparent conductive film, an EC film, an ion conductive material, and a counter electrode in this order. As the transparent conductive film, the EC film and the counter electrode, conventionally known ones can be arbitrarily employed. For example, as for the transparent conductive film, known ones can be used, such as oxide semiconductor thin films such as indium oxide-tin oxide (ITO), tin oxide, zinc oxide, titanium oxide, cadmium oxide, and cadmium tin oxide, or 50% thick oxide semiconductor thin films.
A thin film of gold, silver, etc. with a thickness of angstrom or less is preferably used. In addition, for the EC film, known materials can be used, such as amorphous tungsten oxide, which is the most representative, but other materials that have recently been studied as EC materials, such as organic dyes, metal complexes, transition metal compounds, organic polymers, etc. will be adopted as appropriate. Further, as for the counter electrode, known ones can be used, such as iridium oxide, indium oxide-tin oxide film (ITO film), metal, amorphous tungsten oxide, iron complex, transition metal oxide-cargen sintered body, and Examples include manganese oxide and others.

なお、本明細書において対向電極とは単一電極のほか、
EC膜と金属電極あるいはEC膜とI’rO膜など積層
構造の電極をも含めて相称するものであり、これら積層
構造の対向電極を有する断器サンドイッチ構造のECD
素子は一般に着消色のコントラスト比、応答速度、寿命
が良好である。
Note that in this specification, the counter electrode refers to a single electrode, as well as a single electrode.
It is synonymous with electrodes of laminated structure such as EC film and metal electrode or EC film and I'rO film, and is an ECD with a breaker sandwich structure having opposing electrodes of these laminated structures.
The devices generally have good contrast ratios, response speeds, and lifetimes.

〔効果〕〔effect〕

本発明のイオン導電材を用いたECD素子即ち透明導電
膜、EC膜、イオン導電材及び対向電極の順序で構成し
九ECD素子は例えばEC膜をX軸とY軸にn及びm(
但し、n及びmは2〜3から数百分の正の整数)のセグ
メントに分割したとき、例えばX軸方向のn−2とY軸
方向のm−3のセグメントに信号を送ると(n−2,m
3)のセグメントのみが作動し、これらに隣接するセグ
メントは作動しない。そのためK ECD素子に表示す
る文字、画等は鮮明な表示が可能となシ、本発明の寄与
は計シ知れないものとなる。
An ECD element using the ion conductive material of the present invention, that is, a transparent conductive film, an EC film, an ion conductive material, and a counter electrode, are constructed in this order.
However, when divided into segments (n and m are positive integers ranging from 2 to 3 to several hundred minutes), for example, if a signal is sent to segments n-2 in the X-axis direction and m-3 in the Y-axis direction, (n -2,m
Only the segments 3) are activated, and the segments adjacent to these are not activated. Therefore, the characters, images, etc. displayed on the KECD element can be displayed clearly, and the contribution of the present invention is immeasurable.

上記セグメントの数は勿論EC膜の大きさによって異な
り一概に特定することは出来ない。一般には前記n及び
mが数個から数百万個の値で適宜選択される。該IC膜
を各セグメントに分割する方法は特に限定されず公知の
手段をそのまま採用することが出来る。代表的々方法を
例示すれば次ぎの通りである。セグメントの単位が大き
いときはEC膜を形成する際にEC膜が形成されないよ
う予め格子状のバリヤ一層を透明電導膜例えばITO上
に形成してEC膜を形成後該バリヤ一層を除去する方法
が採用出来る。またI C、LSI工業に於て広く利用
されている光感光性樹脂謂ゆるホトレゾストを用いる方
法が微細加工を行う場合有効である。即ち例えばEC膜
を透明電導膜となる基板例えばITO上に形成1〜、次
いでこれにネガ型またはポジ型のホトレジストを塗布し
セグメントに分割する仕切を形成するマスクを重ねたあ
と露光し、次いで仕切りとなる部分のホトレジストを溶
解し、更に該仕切と彦る部分のEC膜fToが溶解する
酸、アルカリ等で処理して溶解し7、次いで残りのホト
レジストを除去し、各セグメントに分割する方法である
The number of segments described above naturally depends on the size of the EC film and cannot be specified unconditionally. Generally, n and m are appropriately selected from several to several million values. The method of dividing the IC film into segments is not particularly limited, and any known method can be used as is. Typical examples of methods are as follows. When the segment unit is large, it is recommended to form a lattice-shaped barrier layer on a transparent conductive film such as ITO in advance to prevent the EC film from being formed, and then remove the barrier layer after forming the EC film. Can be hired. Further, a method using a photosensitive resin, so-called photoresist, which is widely used in the IC and LSI industries, is effective for microfabrication. That is, for example, an EC film is formed on a substrate that will become a transparent conductive film, such as ITO (1), then a negative or positive photoresist is applied thereto, a mask for forming partitions for dividing into segments is overlapped, and then exposed. Dissolve the photoresist in the part that will become the partition, further treat with an acid, alkali, etc. that dissolves the EC film fTo in the part that will become the partition, and then remove the remaining photoresist and divide it into each segment. be.

〔実施例〕〔Example〕

本発明を更に具体的に説明するため、以下実施例を挙げ
て説明するが、本発明けこれらの実施例に限定されるも
のではない。
EXAMPLES In order to explain the present invention more specifically, examples will be described below, but the present invention is not limited to these examples.

(ECn素子の作成) まずEC膜としてのI rO2膜、WO5膜(以下■膜
、W膜と略称する。、)は次のような方法で成膜した。
(Preparation of ECn element) First, an IrO2 film and a WO5 film (hereinafter abbreviated as ① film and W film) as EC films were formed by the following method.

■膜は純酸素雰囲気中で高周波ス・9ツタ−法で透明導
電膜上に成膜した。即ちターグツトに99.99 %の
イリジウム金属板を用い、基板には透明導電膜(酸化す
ず膜20オーム/口)をコートしたガラスを15■X1
5簡の大きさに切り出し、有機溶媒、純水にて十分洗浄
、乾燥した後、真空槽内にマウントし、まず真空槽内を
〜4xlO−)−ル以下の真空になるまで吸引する。次
に基板を高真空中で100℃程度で加熱を数分性なった
のち、水冷して40℃以下に保ち、純酸素を導入してス
ノ母ツター成膜を行なった。酸素圧は10ミリトール、
高周波電力は0.5 W/cm”に保持した。この時成
膜速度は10オングストロ一ム/分で、I膜厚は700
オングストロームであった。
(2) The film was formed on a transparent conductive film by the high-frequency pulse method in a pure oxygen atmosphere. That is, a 99.99% iridium metal plate was used as the target, and a glass coated with a transparent conductive film (tin oxide film 20 ohms/hole) was used as the substrate.
After cutting into 5 pieces, thoroughly washing with an organic solvent and pure water, and drying, it is mounted in a vacuum chamber, and the inside of the vacuum chamber is first suctioned until the vacuum becomes less than ~4xlO-)-. Next, the substrate was heated in a high vacuum at about 100.degree. C. for several minutes, then cooled with water and kept at 40.degree. C. or lower, and pure oxygen was introduced to form a sludge film. Oxygen pressure is 10 millitorr.
The high frequency power was maintained at 0.5 W/cm''. At this time, the film formation rate was 10 Å/min, and the I film thickness was 700 Å/min.
It was angstrom.

W膜は電子ビーム真空蒸着法によシI膜と同様の基板上
に成膜した。99.99 %のWO5ターダットを用い
、4〜5オングストロ一ム/秒で3000オングストロ
ームまで成膜した。
The W film was formed on the same substrate as the Si I film by electron beam vacuum evaporation. A film of up to 3000 angstroms was formed at a rate of 4 to 5 angstroms/second using 99.99% WO5 TARDIT.

以上のようにして作製したWO,膜と透明導電膜との複
合膜上に前記ホトレジスト法により後述するセグメント
を形成させた。
Segments to be described later were formed by the photoresist method on the composite film of the WO film and the transparent conductive film produced as described above.

次いでこの複合膜上にイオン導電材を積層し、更にその
上に前記スフ9ツター法で作成1〜だ透明導電膜とイリ
ジウムオキサイドとの複合膜を積層してこれを対向電極
としたgcn素子を作製した。このようにして製造した
ECn素子を用いて後述する実施例記載のようが評価を
行なった。
Next, an ion conductive material was laminated on this composite film, and on top of that, a composite film of a transparent conductive film and iridium oxide prepared by the above-mentioned suffix 9 tutter method was laminated, and a GCN element was made using this as a counter electrode. Created. Using the ECn element manufactured in this way, evaluations were conducted as described in Examples described later.

実施例2 厚みが30ミクロンのIリエチレンのシートをクロルメ
チルエーテル、ジビニルベンゼン、ペンゾイルノ量−オ
キサイドの混合物中に浸漬し、これらの単量体を充分に
フィルム中に浸み込ませたのち、沸騰している飽和の芒
硝溶液中に浸漬[7て重合させた。この得られたフィル
ムをアセトン−水−トリメチルアミンの溶液中に浸漬し
て、膜内のりaルメチル基をアミノ化して第4級アン七
ニウム塩基をイオン交換基とする陰イオン交換膜を合成
した。この得られた膜をメタノール−アセトンの1:1
の混合溶媒で充分に抽出精製した。
Example 2 A sheet of I-polyethylene with a thickness of 30 microns was immersed in a mixture of chloromethyl ether, divinylbenzene, and penzoyl oxide to fully infiltrate these monomers into the film, and then boiled. Polymerization was carried out by immersing the sample in a saturated Glauber's salt solution [7]. The obtained film was immersed in a solution of acetone-water-trimethylamine to aminate the alkyl groups in the membrane to synthesize an anion exchange membrane having quaternary am7nium bases as ion exchange groups. This obtained membrane was mixed with methanol-acetone in a 1:1 solution.
It was thoroughly extracted and purified using a mixed solvent of

他方スチレンスルホン酸ソーダを水に溶解して過硫酸ア
ンモニウムと亜硫酸ソーダを用いて重合させ次いでロー
タリーエバポレーターによって乾燥して重合体をとり出
した。この重合体をH型とした陽イオン交換樹脂(アン
バーライトIR−120B(商品名))に通液してポリ
スチレンスルホン酸とした。約10%の濃度となるよう
に濃縮したのち、これの101!を平均孔径が481の
セルローズ製のチューブ状の透析膜によって外液に純水
を配して低分子物質の除去、精製を行った。次いでこの
液を凍結乾燥して固型状の精製ポリスチレンスルホン酸
(I)を収率75チで得た。従って約25チが低分子物
質として除去された。
On the other hand, sodium styrene sulfonate was dissolved in water, polymerized using ammonium persulfate and sodium sulfite, and then dried using a rotary evaporator to take out the polymer. This polymer was passed through an H-type cation exchange resin (Amberlite IR-120B (trade name)) to obtain polystyrene sulfonic acid. After concentrating to a concentration of about 10%, this 101! A tube-shaped dialysis membrane made of cellulose with an average pore diameter of 481 was used to remove and purify low-molecular substances by placing pure water in the external liquid. This liquid was then freeze-dried to obtain solid purified polystyrene sulfonic acid (I) in a yield of 75 cm. Therefore, about 25 ts were removed as low molecular weight substances.

また上記透析外液は純水も集めてそのtま濃縮して固型
状のスチレンスルホン酸オリゴマーを主成分とするイオ
ン性低分子物質値)をとシ出した。
In addition, pure water was also collected from the above-mentioned external dialysis solution and concentrated to a temperature of 100 ml to extract an ionic low-molecular substance whose main component is solid styrene sulfonic acid oligomer.

また前記のようにして得た低分子物質を含む未精製のポ
リスチレンスルホン酸もそのまま濃縮して固型物(li
t)として取り出した。上記I中の無機イオン濃度は5
01)Ill、I[中のそれは2000ppmlll中
のそれは1200Pであった。これら■〜■の三種のポ
リスチレンスルボン酸をそれぞれ用いて前記ECD素子
の作成に準じてエレクトロクロミック表示素子を作った
。即ちそれぞれのポリスチレンスルホン酸を50%とな
るようにエチレングライコールに溶解し、EC膜上及び
対極−ヒに薄膜状に塗布し、その中間に一上記で合成し
、Ct−型にl、た薄膜状の陰イオン交換膜をはさみ、
気泡が入らないように注意してプレスして密着させて三
種0ECD素子を作った。このときEC膜は0.5部間
隙でY軸、Y軸ともに各30セグメントに分割して用い
、駆動変圧を印加して表示させた。その結果X軸方向で
15番目、Y軸方向で15番目のセグメントに信号を送
ったところ、三つ0ECD素子は異なった挙動を示した
。即ち、透析精製したポリスチレンスルホン酸を用いた
ときは、極めて鮮明に(15゜15)のセグメントのみ
発色、消色したが、透析外液のポリスチレンスルホン酸
を用いると(15,15)のセグメントの周辺が一帯に
着色、消色した。また未精製のものを用いたものはこれ
らの中間で鮮明な着色、消色が困難であった。
In addition, the unpurified polystyrene sulfonic acid containing the low molecular weight substance obtained as described above is also concentrated as it is to form a solid (li).
It was taken out as t). The inorganic ion concentration in I above is 5
01) Ill, I [It was 2000 ppm 1200 P. Using these three types of polystyrene sulfonic acids ① to ②, electrochromic display devices were made in accordance with the preparation of the ECD device described above. That is, each polystyrene sulfonic acid was dissolved in ethylene glycol to a concentration of 50%, and applied as a thin film on the EC membrane and the counter electrode. Sandwiching a thin anion exchange membrane,
They were pressed together to make a three-type 0ECD element, being careful not to introduce air bubbles. At this time, the EC film was divided into 30 segments each on both the Y-axis and the Y-axis with a gap of 0.5 parts, and a driving voltage was applied to display the images. As a result, when a signal was sent to the 15th segment in the X-axis direction and the 15th segment in the Y-axis direction, the three 0ECD elements exhibited different behaviors. That is, when polystyrene sulfonic acid purified by dialysis was used, only the segment (15°15) was colored and discolored very clearly, but when polystyrene sulfonic acid from the external dialysis solution was used, the segment (15, 15) was clearly colored and discolored. The surrounding area was colored and discolored. In addition, when unrefined products were used, it was difficult to achieve clear coloring or decoloring between the two.

そこでこれらECD素子の電圧Mに対する注入電荷訝(
ミリクーロン/副3)を測定した結果第1表に示す通り
であった。またこの第1表の結果を第1図にプロットし
た。第1図よシ前記I〜■の3種類を用いたとき0EC
D素子の作動のちがいが明確である。
Therefore, the injected charge for the voltage M of these ECD elements (
The results of measuring millicoulombs/sub 3) were as shown in Table 1. The results in Table 1 are also plotted in FIG. As shown in Figure 1, when using the three types I to ■ above, 0EC
The difference in the operation of the D element is clear.

第1表 実施例2 ステアリルメタアクリレート50部とスチレンスルホン
酸ソーダ50部をジメチルホルムアミド300部の中に
溶解し、これにベンゾイルパーオキサイド3部を加えて
均一な溶液としたのち100℃に5時間加熱して重合体
を得た。ここで得られた粘稠な溶液を大過剰の1.0規
定の塩酸中に入れて激しく攪拌して放置し、析出したポ
リマーを再びジメチルホルムアミドに溶解し、1.0規
定の塩酸に投入することをくり返し、スルホン酸ソーダ
基をスルホン酸基に変換した。次いで再び乾燥後ジメチ
ルホルムアミドへの溶解、純水中への投入をくり返して
過剰の酸及び塩、オリプマー未反応単量体を除去し収率
が70チで精製物を得た。精製物には液体クロマトグラ
フィーで測定した結果、上記低分子物質は確認出来なか
った。更に減圧乾燥して得られたポリマーをジメチルホ
ルムアミドに溶解してこれをEC膜上及び対向電極上に
塗布し放置して溶媒を飛散させた。EC膜上には非水溶
性のスルホン酸基を有する薄膜が形成された。
Table 1 Example 2 50 parts of stearyl methacrylate and 50 parts of sodium styrene sulfonate were dissolved in 300 parts of dimethylformamide, 3 parts of benzoyl peroxide was added thereto to make a homogeneous solution, and the mixture was heated to 100°C for 5 hours. A polymer was obtained by heating. The viscous solution obtained here is poured into a large excess of 1.0N hydrochloric acid, stirred vigorously and left to stand.The precipitated polymer is dissolved again in dimethylformamide and poured into 1.0N hydrochloric acid. This process was repeated to convert the sodium sulfonate group into a sulfonic acid group. Then, after drying again, dissolving in dimethylformamide and pouring into pure water were repeated to remove excess acid, salt, and unreacted monomer of Olipmer, and a purified product was obtained with a yield of 70 cm. As a result of measuring the purified product by liquid chromatography, the above-mentioned low molecular weight substance could not be confirmed. Furthermore, the polymer obtained by drying under reduced pressure was dissolved in dimethylformamide, and this was coated on the EC membrane and the counter electrode, and left to scatter the solvent. A thin film having water-insoluble sulfonic acid groups was formed on the EC film.

他方分子量約5oooのポリクロロメチルスチレンをト
リエチルアミンと反応させて水溶性とした第四級アンモ
ニウム塩基を有するポリマーを合成した。これを平均孔
径約48Xのセロファンの円筒の中に5チ水浴液として
入れて、外側に純水を配して合成したポリアミンの精製
を行った。セロファンの円筒の内部で精製されたポリア
ミンの収率は65チで、液クロマトグラフイーで測定し
た結果、低分子物質は全量で150部1ml以下であっ
た。
On the other hand, polychloromethylstyrene having a molecular weight of about 500 was reacted with triethylamine to synthesize a water-soluble polymer having a quaternary ammonium base. This was placed as a water bath solution in a cellophane cylinder with an average pore diameter of about 48X, and purified water was placed on the outside to purify the synthesized polyamine. The yield of polyamine purified inside the cellophane cylinder was 65%, and as measured by liquid chromatography, the total amount of low-molecular substances was 150 parts, less than 1 ml.

さて、このポリアミンをエチレングライコール)中に濃
度が50%となるように溶解して、前記薄膜を形成した
EC膜と対向電極の間にサンドイッチ状にはさんで三層
構造のECD素子とした。このときEC膜は0.5 v
m間隙でY軸、Y軸ともにそれぞれ30のセグメントに
分割されておシ、それに駆動電圧を印加して作動させた
Now, this polyamine was dissolved in ethylene glycol (ethylene glycol) to a concentration of 50% and sandwiched between the EC film on which the thin film was formed and the counter electrode to form a three-layered ECD element. . At this time, the EC membrane is 0.5 V
Both the Y-axis and the Y-axis were divided into 30 segments with a gap of m, and a driving voltage was applied to them to operate them.

その結果X軸方向15番目、Y軸方向で15番目のセグ
メントに信号を送ったところ、 (15,15)のセグ
メントのみが極めて鮮明に発消色をくシ返した。比較の
ために中間にはさむポリアミンとしく26) て未n製のものを用いて同様にECD素子を組み立てて
同様の測定ケしたところ精製したポリマーに近い着消色
ケしたが周辺のセグメントへの着消色のにじみが見らn
、た。
As a result, when a signal was sent to the 15th segment in the X-axis direction and the 15th segment in the Y-axis direction, only the segment (15, 15) changed color and fading very clearly. For comparison, we assembled an ECD element using an unmanufactured polyamine sandwiched in the middle26) and carried out similar measurements.The result was a change in color similar to that of the purified polymer, but there was no effect on the surrounding segments. No bleeding of discoloration is seen.
,Ta.

そこで前記ポリアミンの分析をした。ν1jち、未精製
のポリアミン、透析精製したポリアミン、透析外液のポ
リアミン會液体クロマトグラフィーによって分析したと
ころ、透析精製したポリアミンからは明らかに低分子物
質の成分は除去され、透析外液中に視察され次。また無
機成分全分析したところ未精製のポリアミンにl’rl
100ppm相当のKCL NaC1CaCt2が含ま
扛ていたが、精製したポリアミンでは低分子物質全1:
で150ppm以下でおった。ポリマーの分子蓋を測定
したところ透析精製したものは約14,000でおり、
透析外液のものにViiooo以下のものが多く含fn
ていた。
Therefore, the polyamine was analyzed. ν1j When we analyzed the unpurified polyamine, the dialysis-purified polyamine, and the dialysis fluid by liquid chromatography, it was clear that low-molecular-weight substances were clearly removed from the dialysis-purified polyamine, and no traces of low-molecular-weight substances were observed in the dialysis fluid. Next. In addition, when all inorganic components were analyzed, unpurified polyamine was found in l'rl.
It contained KCL NaC1CaCt2 equivalent to 100 ppm, but in the purified polyamine, the total amount of low-molecular substances was 1:
It was below 150 ppm. When the molecular cap of the polymer was measured, it was about 14,000 when purified by dialysis.
Many of the external dialysis fluids contain less than Viiooo fn
was.

実施例3 分子量約50力のポリスチレンスルホン酸ヲ、筒状のセ
ロファン膜の内側に入れ、外液に純水を配し、純水をく
り返しとりかえて透析精製し、収率65qbで精製物を
得た。これを液体クロマトグラフィーによって測定した
ところ、低分子物質成分は完全に除去さ扛ていた。こn
rrr合度1500のポリビニルアルコール全熱水に溶
解したものケ、同様にセロファンで透析精製して不純物
を除去したものケ得、こnを濃縮して固形状とした。上
で得た精製したポリスチレンスルホン酸とポリビニルア
ルコール全重量比で1=1に混合し、これ全ポリテトラ
フルオロエチレン製の板の上に流延し次いで80℃で5
時間加熱して後、ホルマリン−硫酸−苛硝からなるホル
マール化浴に60℃で30分浸情し、ホルマール化反応
を実施した。ここで得らおたフィルムを0.5規定塩酸
、1.0規定含塩水でくり返しconditionln
g して後)0.5規定塩酸に浸漬して膜を酸型とした
。次いで股全純水中に純水をとりかえながらくり返し浸
漬し、膜中に吸着されている酸を完全に除去した。ここ
で得らnた50ミクロンの厚みのフィルム會エチレング
ライコール中に浸漬してエチレングライコールと膜中の
水と置換した。
Example 3 Polystyrene sulfonic acid with a molecular weight of about 50 was placed inside a cylindrical cellophane membrane, pure water was placed in the outer solution, and the purified water was repeatedly replaced and purified by dialysis to obtain a purified product with a yield of 65 qb. Ta. When this was measured by liquid chromatography, it was found that the low molecular weight components were completely removed. This
Polyvinyl alcohol with an rrr degree of 1500 was dissolved in completely hot water, and the same was obtained by dialysis and purification with cellophane to remove impurities, and this was concentrated to form a solid. The purified polystyrene sulfonic acid obtained above and polyvinyl alcohol were mixed in a total weight ratio of 1=1, and this was cast onto a board made entirely of polytetrafluoroethylene, and then heated at 80°C for 50 minutes.
After heating for a period of time, the mixture was immersed in a formalization bath consisting of formalin, sulfuric acid, and sulfuric acid at 60° C. for 30 minutes to carry out a formalization reaction. The obtained film was repeatedly conditioned with 0.5N hydrochloric acid and 1.0N saline water.
g) After that, the membrane was immersed in 0.5N hydrochloric acid to make it into an acid form. Next, the membrane was immersed in pure water repeatedly while changing the pure water to completely remove the acid adsorbed in the membrane. The film obtained here with a thickness of 50 microns was immersed in ethylene glycol to replace the water in the film with ethylene glycol.

他方4−ビニルピリジン全純水中に懸濁【7ペンゾイル
ノ9−オキサイドを触媒として窒素雰囲気で80℃で加
熱重合した。得ら扛たゴム状のポリマー?水から分け、
乾燥後トルエンに溶解し、大蓋のピリジン中に入扛で沈
澱全析出させた。こrtyt−5回くり返して、未反応
の4−ビニルピリジン、4−ビニルピリジンのオリゴマ
ー除去し、収率68チで精製した。次いでこr、ヲ二ト
ロメタンに溶解しポリマーのピリジン基の約2倍当量の
沃化メチル7加えて70℃で加熱還流した。析出したポ
リマーを分離し、乾燥後水に溶解し、塩素イオン型にし
た陰イオン交換樹脂IRA −4000カラムに通液し
て、沃素イオン型ポリ−(N−メチル−4−ビニルピリ
ジウムクロライド)に変換した。
On the other hand, 4-vinylpyridine was suspended in pure water and polymerized by heating at 80°C in a nitrogen atmosphere using 7penzoylno-9-oxide as a catalyst. Rubber-like polymer obtained? Separate from water;
After drying, it was dissolved in toluene and poured into a large lid of pyridine to completely precipitate it. This process was repeated five times to remove unreacted 4-vinylpyridine and 4-vinylpyridine oligomers, and the product was purified in a yield of 68 cm. Next, this was dissolved in nitromethane, 7 equivalents of methyl iodide, about twice the amount of pyridine groups in the polymer, was added, and the mixture was heated to reflux at 70°C. The precipitated polymer was separated, dried, dissolved in water, and passed through an anion exchange resin IRA-4000 column in the form of chloride ions to obtain poly(N-methyl-4-vinylpyridium chloride) in the form of iodine ions. Converted to .

通液した沿ヲ集め濃縮し、次いで一ヒのポリスチレンス
ルホン酸の場合と同様にして、−1=077ン膜を用い
て透析精製し収率的80qbで精製ポリマーを得た。こ
のポリマーは乾燥してポリ−(N−メチル−4−ビニル
ピリジニウムクロライド)固形物とした〇 これをエチレングライコールの中に約50%となるよう
に溶解した。次いでEC膜及び対向電極上に約50ミク
ロンの厚みに塗布し、この両極の間に先に得た陽イオン
交換膜をはさんで、ECD累子8した。EC膜は実施例
1と同様にX軸、Y軸に0、5 ms間隙でセグメント
分割さ扛ており、実施例1と同様に(15,15)のセ
グメントに信号を送ったところ、(15,15)セグメ
ントのみが鮮明に発色した。
The solution was collected and concentrated, and purified by dialysis using a -1=077 membrane in the same manner as in the case of polystyrene sulfonic acid to obtain a purified polymer with a yield of 80 qb. The polymer was dried to form a poly-(N-methyl-4-vinylpyridinium chloride) solid, which was dissolved in ethylene glycol to approximately 50%. Next, it was coated on the EC membrane and the counter electrode to a thickness of about 50 microns, and the previously obtained cation exchange membrane was sandwiched between the two electrodes to form an ECD layer 8. As in Example 1, the EC membrane was divided into segments on the X and Y axes at intervals of 0 and 5 ms, and when a signal was sent to the (15, 15) segment as in Example 1, (15 , 15) only the segment was clearly colored.

他方比較のために上記陽イオン交換膜全合成すル際ニポ
リスチレンスルホン酸を透析精製せずに陽イオン交換膜
を作り、ポリ(N−メチル−4−ビニルピリジニウムク
ロライド)を作るときも同様ニトルエンーピリジンによ
る精製及び透析精製全しないで用いたところ、(n、m
)セグメントの周辺も明らかに着色し表示は極めて不鮮
明であった0 尚精製したポリ(N−メチル−4−ビニルピリジニウム
クロライド)中の無機塩は30 ppmであった。また
精製したポリ(N−メチル−4−ビニルピリジニウムク
ロライド)の分子MU約40,000であった。未′t
Pi製のポリマー中Vcr、r分子目loo。
On the other hand, for comparison, a cation exchange membrane was prepared without dialysis and purification of nipolystyrene sulfonic acid during the total synthesis of the above cation exchange membrane, and the same procedure was used when making poly(N-methyl-4-vinylpyridinium chloride). When used without toluene-pyridine purification or dialysis purification, (n, m
) The periphery of the segment was also clearly colored and the display was extremely unclear.The content of the inorganic salt in the purified poly(N-methyl-4-vinylpyridinium chloride) was 30 ppm. The molecular MU of purified poly(N-methyl-4-vinylpyridinium chloride) was approximately 40,000. Not yet
Vcr in polymer made of Pi, r molecule loo.

以下のものが約20チ含まれていた。It contained approximately 20 pieces of the following:

実施例4 ノン−フル4口(3,6−ノオキ”)−4−#fk−7
−オクテンスルポニルフルメライド)とデトラフルオロ
エチレンの共重合体で加水分解(−てスルホン酸とした
ときの交換容−が0.91ミリ当皺の0171のフィル
ム(rl規定塩酸とメタノールの1:1の混合清液に浸
漬してスルホン酸型に児全に変換した。こ7′1全イソ
ゾロビルアルコールと水の4=1の混合浴液中に入7し
て加圧下に加熱I7て大部分のフィルム會溶解させた。
Example 4 Non-full 4 mouths (3,6-noki”)-4-#fk-7
A film of 0171 with a copolymer of octene sulfonyl flumeride) and detrafluoroethylene (exchange volume when converted to sulfonic acid) of 0.91 mm (rl normal hydrochloric acid and methanol) It was immersed in a 1:1 mixed solution to convert it into the sulfonic acid form.7'1 It was immersed in a 4=1 mixed bath solution of total isozorobyl alcohol and water and heated under pressure. I7 dissolved most of the film.

ここでJuらnた溶液全EC膜と対向電極上に均一にく
り返【2酋布l。
Here, Jun et al. repeated the solution uniformly over the entire EC membrane and the counter electrode.

てスルホン酸分持ったノゼーフルオロカーがンの薄膜?
形成した。次いで実施例1で合成したポリアミン音用い
て三層の電解jIR層會層成形成発明のECr)8子と
した。実施例1と同様にしてマトリックス駆動全シタと
ころセグメント15.15tま極めて鮮明に着消色した
が未精製のアミン、透析外液のポリアミンを用いると実
施例1と同様、着消色V1不鮮明であった。
Is it a thin film of a nose fluorocarbon with sulfonic acid content?
Formed. Next, using the polyamine synthesized in Example 1, a three-layer electrolytic IR layer was formed to form an ECr) 8 layer according to the invention. In the same manner as in Example 1, the matrix-driven all-segment segment 15.15 t was very clearly colored and faded, but when unpurified amine and polyamine from the external dialysis fluid were used, as in Example 1, the coloring and fading V1 was unclear. there were.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面第1図は実施例1で実施したECD素子の電圧
に対するtl−大電荷MV測定した結果をグラフ化[7
たもので々)る。
Figure 1 of the attached drawing is a graph of the results of measuring tl vs. large charge MV against the voltage of the ECD element carried out in Example 1 [7
There are a lot of things.

Claims (9)

【特許請求の範囲】[Claims] (1)イオン交換基を有するか使用条件下にイオン交換
基に変る官能基を有する分子量3000以上のイオン性
高分子体で、使用条件下にイオンに解離する分子量が1
000以下のイオン性低分子物質が最大1000ppm
含まれるイオン性高分子体よりなるエレクトロクロミッ
クディスプレイ素子用イオン導電材。
(1) An ionic polymer with a molecular weight of 3,000 or more that has an ion exchange group or a functional group that converts into an ion exchange group under the conditions of use, and the molecular weight that dissociates into ions under the conditions of use is 1.
Maximum 1000ppm of ionic low molecular weight substances below 000
An ion conductive material for electrochromic display elements consisting of an ionic polymer.
(2)イオン性高分子体が分子量5000以上である特
許請求の範囲(1)記載のイオン導電材。
(2) The ion conductive material according to claim (1), wherein the ionic polymer has a molecular weight of 5,000 or more.
(3)イオン性高分子体が液状物である特許請求の範囲
(1)記載のイオン導電材。
(3) The ion conductive material according to claim (1), wherein the ionic polymer is a liquid substance.
(4)イオン性高分子体が、陽イオン交換基を有するか
使用条件下に陽イオン交換基となる陽イオン性高分子体
と陰イオン交換基を有するか使用条件下に陰イオン交換
基となる陰イオン性高分子体とがそれぞれ層状に少くと
も2層以上積層されて形成されてなる特許請求の範囲(
1)記載のイオン導電材。
(4) Does the ionic polymer have a cation exchange group, or does it have a cation exchange group and an anion exchange group that become a cation exchange group under the conditions of use? Claims formed by laminating at least two or more layers of anionic polymers (
1) The ionic conductive material described.
(5)陽イオン性高分子体又は陰イオン性高分子体のい
ずれかは液状物で、他は固体状物である特許請求の範囲
(4)記載のイオン導電材。
(5) The ion conductive material according to claim (4), wherein either the cationic polymer or the anionic polymer is a liquid, and the other is a solid.
(6)固体状物の細孔が液状物の陽イオン性高分子体又
は陰イオン性高分子体を通過しない大きさである特許請
求の範囲(5)記載のイオン導電材。
(6) The ion conductive material according to claim (5), wherein the pores of the solid material are of a size that does not allow passage through the cationic polymer or anionic polymer of the liquid material.
(7)イオン性低分子物質がイオン交換基を有するか使
用条件下にイオン交換基に変る官能基を有する低分子量
重合体である特許請求の範囲(1)記載のイオン導電材
(7) The ion conductive material according to claim (1), wherein the ionic low molecular substance is a low molecular weight polymer having an ion exchange group or a functional group that converts into an ion exchange group under usage conditions.
(8)イオン性低分子物質がイオン交換基を有するか使
用条件下にイオン交換基に変る官能基を有する単量体物
質である特許請求の範囲(1)記載のイオン導電材。
(8) The ion conductive material according to claim (1), wherein the ionic low-molecular substance is a monomeric substance having an ion exchange group or a functional group that converts into an ion exchange group under usage conditions.
(9)イオン性低分子物質が使用条件下にイオンに解離
する無機塩、無機酸又は無機塩基化合物である特許請求
の範囲(1)記載のイオン導電材。
(9) The ionic conductive material according to claim (1), wherein the ionic low-molecular substance is an inorganic salt, an inorganic acid, or an inorganic base compound that dissociates into ions under use conditions.
JP21264585A 1985-09-27 1985-09-27 Ion conductive material for electrochromic display element Granted JPS6273237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21264585A JPS6273237A (en) 1985-09-27 1985-09-27 Ion conductive material for electrochromic display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21264585A JPS6273237A (en) 1985-09-27 1985-09-27 Ion conductive material for electrochromic display element

Publications (2)

Publication Number Publication Date
JPS6273237A true JPS6273237A (en) 1987-04-03
JPH0466332B2 JPH0466332B2 (en) 1992-10-22

Family

ID=16626063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21264585A Granted JPS6273237A (en) 1985-09-27 1985-09-27 Ion conductive material for electrochromic display element

Country Status (1)

Country Link
JP (1) JPS6273237A (en)

Also Published As

Publication number Publication date
JPH0466332B2 (en) 1992-10-22

Similar Documents

Publication Publication Date Title
CA2812805C (en) Resilient ion exchange membranes
US4116545A (en) Polymeric electrolyte for electrochromic display devices
NO151482B (en) ELECTROCHROMIC DEVICE.
CN103237591A (en) Process for making monomer solution for making cation exchange membranes
US4715691A (en) Electrochromic display using bipolar ion-exchange membrane
US4514304A (en) Method for purifying and concentrating organic matters
US4806219A (en) Method of double decomposition of neutral salt
KR100451556B1 (en) Ion exchange membrane
JPS6273237A (en) Ion conductive material for electrochromic display element
WO2022207469A1 (en) Polymer films
JPS60233125A (en) Organic electro-color forming material and manufacture
JPS62238536A (en) Electrochromic display element
JPH10120730A (en) Solid polymer electrode and its production
KR100508687B1 (en) Preparation of nanoelectrochromic films and electrochromic devices therefrom
JPS61143727A (en) Electrochromic display element
JPS63270505A (en) Separation method
JPS61132933A (en) Electrochromic display element
JPS59203613A (en) Method for desalting organic compound by using amphoteric ion exchange membrane
JPS581130A (en) Manufacture of perfect solid type electrochromic cell
JPS6023806A (en) Preparation of multicolor polarizing plate
JPH0469929B2 (en)
WO1996006671A1 (en) A membrane having osmotic properties and a method of producing it
JPS6188224A (en) Display element
JPH06199934A (en) Three-component copolymer of polyvinyl alcohol, its production and color-developing and changing material composed of the polymer
JPS5842274B2 (en) Fukugoukamamaku