JPS6273186A - Apparatus for discriminating geology of sea bottom - Google Patents

Apparatus for discriminating geology of sea bottom

Info

Publication number
JPS6273186A
JPS6273186A JP60213939A JP21393985A JPS6273186A JP S6273186 A JPS6273186 A JP S6273186A JP 60213939 A JP60213939 A JP 60213939A JP 21393985 A JP21393985 A JP 21393985A JP S6273186 A JPS6273186 A JP S6273186A
Authority
JP
Japan
Prior art keywords
geology
sea bottom
rubbing
transmission means
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60213939A
Other languages
Japanese (ja)
Inventor
Yoshinobu Maniwa
間庭 愛信
Teru Okubo
大久保 輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marine Instr Co Ltd
Original Assignee
Marine Instr Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marine Instr Co Ltd filed Critical Marine Instr Co Ltd
Priority to JP60213939A priority Critical patent/JPS6273186A/en
Publication of JPS6273186A publication Critical patent/JPS6273186A/en
Pending legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To quantitatively discriminate the geology of a sea bottom to easily perform continuous investigation over a wide range, by analyzing slide friction sound generated when a sliding sound emitter moves and slides on the geology of the sea bottom. CONSTITUTION:The slide friction sound generated by a sliding sound emitter 1 is sensed by a sonic wave sensor 2 to be converted to an electric signal which is, in turn, transmitted to a signal analyser 4 by a transmission means 3. A wire system using a cable or a wireless system using a carrying ultrasonic wave is used as the transmission means 3. The apparatus 4 performs the analysis of the frequency spectrum, wave form and sound pressure level, etc. of the signal inputted through the transmission means and compares the analytical results with the various characteristics inherent to the geology of the sea bottom to accurately judge the same. By this method, the geology of the sea bottom is discriminated and continuous investigation over a wide range is easily performed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、魚類の棲息地域調査、海砂の採集場所調査、
海中工事の事前調査等に必要な海底の地質(海底底質)
の判別を行う装置に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention is applicable to fish habitat surveys, sea sand collection site surveys,
Geology of the seabed (seafloor sediment) necessary for preliminary surveys of underwater construction, etc.
The present invention relates to a device for determining.

(従来技術と問題点) 従来、このような海底底質の調査手段としては採泥器や
ポーリングによる方法および音響地層探査装置を用いる
方法等が行われていた。しかしながら、採泥器やポーリ
ングによる方法は周知のように、調査点における海底の
泥・砂・礫等を一々採取して調査するという、点の調査
でありそのため調査船を調査点毎に停止させて行わなけ
ればならない、従って、1調査点毎に時間と手数を必要
とするため限られた時間や経費では調査点の数を多くと
ることができず、また、広い範囲にわたって精密な調査
を行おうとすると多くの時間と経費を必要とするという
問題があった。
(Prior Art and Problems) Conventionally, as methods for investigating the bottom sediments of the seabed, there have been methods using a sediment collector or polling, methods using an acoustic strata exploration device, and the like. However, as is well known, the method using a mud sampler or polling is a point survey in which mud, sand, gravel, etc. from the seabed are collected and surveyed one by one at each survey point, and therefore the survey vessel must be stopped at each survey point. Therefore, since each survey point requires time and effort, it is not possible to collect a large number of survey points with limited time and money, and it is difficult to carry out detailed surveys over a wide area. The problem was that it required a lot of time and money.

また、音響地層探査装置による方法は、調査船を移動さ
せながら例えば記録機の記録紙上に現われた海底記録像
の濃淡や紋様等を手掛りとする方法であるが、この海底
記録像の濃淡や紋様からの判断は定量的なものより、経
験と勘に頼って行われる事が多かった。従って観測者に
よって判断が異なるという問題があった0本発明の目的
は、上記従来技術の問題点に顧みて、従来よりも低費用
で短時間に、しかも定量的な海底底質の調査を広範囲に
わたり連続的に行うことができる海底底質判別装置を提
供しようとするものである。
In addition, the method using an acoustic geological exploration device is a method that uses the shading and pattern of the seafloor record image that appears on the recording paper of the recorder as clues while moving the research vessel. Judgments were often made based on experience and intuition rather than quantitative ones. Therefore, there was a problem that judgments differed depending on the observer.In consideration of the above-mentioned problems of the conventional technology, the purpose of the present invention is to conduct a quantitative investigation of seafloor sediment over a wide range of areas at lower cost and in a shorter time than before. The purpose is to provide a seafloor sediment determination device that can continuously perform the determination over a long period of time.

(問題点を解決するための手段) 本発明は上記目的を達成するために次の構成を有する。(Means for solving problems) The present invention has the following configuration to achieve the above object.

即ち、本発明の海底底質判別装置は、海底を摺擦する摺
擦発音体と、該摺擦発音体が発生する摺擦音を感知する
音波センサと、該音波センサで感知された音波信号を分
析する信号分析手段と、前記音波センサが発生する音波
信号を前記信号分析手段へ伝送する伝送手段を有するこ
とを特徴としている。第1図は本発明の海底底質判別装
置の構成を示すブロック図である。1は摺擦発音体、2
は音波センサ、3は伝送手段、4は信号分析装置である
That is, the submarine bottom sediment determination device of the present invention includes a rubbing sounding body that rubs the seabed, a sonic sensor that detects the rubbing sound generated by the rubbing sounding body, and a sound wave signal sensed by the sonic sensor. The present invention is characterized in that it includes a signal analysis means for analyzing a signal, and a transmission means for transmitting a sound wave signal generated by the sound wave sensor to the signal analysis means. FIG. 1 is a block diagram showing the configuration of the submarine sediment discriminating device of the present invention. 1 is a rubbing sounding body, 2
is a sound wave sensor, 3 is a transmission means, and 4 is a signal analyzer.

(作用) 以下、本発明装置の作用を図面に基づいて説明する。摺
擦発音体lは海底にあってロープなどによって調査船に
繋がれ、調査船の移動によって海底を引き摺られる。こ
の時海底との摺擦により摺擦音を発生する。この摺擦音
は海底の地質が粘土であるか、泥であるか、砂であるか
、礫であるかによってその周波数スペクトラムや波形に
m著な差異を有する。更に砂の場合でも、粒径の大小に
よって周波数スペクトラム音圧レベル等に差異がある。
(Function) Hereinafter, the function of the device of the present invention will be explained based on the drawings. The rubbing sounding body 1 is located on the ocean floor and is connected to a research vessel using a rope or the like, and is dragged along the ocean floor by the movement of the research vessel. At this time, rubbing noise is generated by the friction with the seabed. The frequency spectrum and waveform of this rubbing sound vary greatly depending on whether the geology of the ocean floor is clay, mud, sand, or gravel. Furthermore, even in the case of sand, there are differences in frequency spectrum, sound pressure level, etc. depending on the size of the particles.

本発明の海底底質判別装置はこのように、海底の地質に
よ−)て摺擦音の周波数スペクトラムその他の特性が異
なることに着眼し、この摺擦音2分析することによ−ノ
て海底底質を判別しようとするものである。
As described above, the submarine bottom sediment determination device of the present invention focuses on the fact that the frequency spectrum and other characteristics of the rubbing sound differ depending on the geology of the seabed, and analyzes this rubbing sound2. This is an attempt to identify seafloor sediment.

このため、摺擦発音体1で発生した摺擦音は音波センサ
2によって感知されて電気信号に変換された後、伝送手
段3によって信号分析装置4へ送られる。音波センサ2
は摺擦音を充分に感知しうる位1に設けられその周波数
帯域特性も海底底質による差異を充分識別し得るものが
用いられる。
Therefore, the rubbing sound generated by the rubbing sounding body 1 is detected by the sonic sensor 2, converted into an electrical signal, and then sent to the signal analysis device 4 by the transmission means 3. Sonic sensor 2
1 is set at a level where the rubbing noise can be sufficiently detected, and its frequency band characteristics are set so as to be able to sufficiently distinguish differences due to the bottom sediment of the ocean floor.

また伝送手段3はケーブルを用いた有線方式であっても
よいし、また搬送用の超音波を用いた無線方式であって
もよい。
Further, the transmission means 3 may be a wired system using a cable, or a wireless system using ultrasonic waves for conveyance.

18号分析装置4は伝送手段を経て入力されて来た信号
につき、周波数スペクトラム、波形、音圧レベル等の分
析を行ない、各種の海底底質固有の特性と比較して海底
底質が何であるかを的確に判断する。このように、本発
明装置を用いた海底底質判別法は、調査船を移動させな
がら連続的に行なうことができるので採泥器やポーリン
グ等による点の調査とは異なり広い範囲にわたる連続的
な調査を容易に行うことができる。またその判別は調査
者の経験や勘にたよるものではなく定量的な分析手法に
よっているため的確な判別結果が得られる。
The No. 18 analyzer 4 analyzes the frequency spectrum, waveform, sound pressure level, etc. of the signal input through the transmission means, and compares it with the unique characteristics of various seabed sediments to determine what kind of seafloor sediment it is. accurately judge whether In this way, the seabed sediment determination method using the device of the present invention can be carried out continuously while the research vessel is moving, so unlike spot surveys using a mud sampler or polling, it is possible to conduct continuous surveys over a wide area. Investigations can be conducted easily. In addition, since the determination is based on a quantitative analysis method rather than on the researcher's experience or intuition, accurate determination results can be obtained.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。摺擦
発音体により発生する摺擦音の伝搬経路は、曳航発音体
構造物を伝搬するものと、海中に放射されて伝搬するも
のとがある9両者には海底面の起伏による雑音や船体雑
音による影響の仕方により各々特異性があるので、音波
センサの種類や取付構造に違いがあるが両者には本発明
の原理に違いがないから実施例は海中伝搬の場合につい
て図面に基づいて説明する。第2図は実施例装置の構成
および該装置の使用状況を示す図である。
(Example) Hereinafter, an example of the present invention will be described based on the drawings. The propagation path of the rubbing noise generated by the rubbing sounding body is that it propagates through the towed sounding body structure, and it radiates into the sea.9 Both include noise caused by the undulation of the seabed and ship noise Each type of sound wave sensor has its own specificity depending on how it is influenced by the sound waves, so there are differences in the type of sound wave sensor and the mounting structure, but there is no difference in the principle of the present invention between the two. Therefore, the embodiment will be explained based on the drawings for the case of underwater propagation. . FIG. 2 is a diagram showing the configuration of the embodiment device and the usage status of the device.

1は摺擦発音体、2′は音波センナとしての水中マイク
ロホンで摺擦音を感知し易いように曳航発音体構造物1
1に取り付けられている。3′は伝送手段としてのケー
ブルである。7は増幅器、5は周波数分析器、6はレコ
ーダで、この3者は信号分析装置を構成し、通常、調査
船8に搭載される。9は摺擦発音体を引き摺るためのロ
ーブ、10は海底である。
1 is a sliding sounding body, and 2' is a towed sounding body structure 1 so that it is easy to detect the sliding sound with an underwater microphone serving as a sonic sensor.
It is attached to 1. 3' is a cable as a transmission means. Reference numeral 7 is an amplifier, 5 is a frequency analyzer, and 6 is a recorder, and these three components constitute a signal analysis device, which is normally mounted on the research vessel 8. 9 is a lobe for dragging the rubbing sounding body, and 10 is the seabed.

摺擦発音体としては摺擦面が第3図に示すようにやすり
状になっているもの摺擦面が第4図に示すようにそり状
になっているもの等がある。第5図はやすり状摺擦発音
体を用いた水槽実験によって得られた各海底地質の摺擦
音の周波数分析データである。第6図は同じくそり状摺
擦発音体を用いた場合の周波数分析データである。第5
図および第6図を観察すると発音体の違いによる差異は
あまり認められないが、いずれの図においても粘土、泥
、砂、礫によってその周波数スペクトラムにはそれぞれ
特徴があり項著な差異を示している、また砂の場合でも
粒径によって音圧レベルが異なっており粒径が大きくな
るにつれて音圧が上昇する傾向が見られる。
As the sliding sounding body, there are those whose sliding surface is in the shape of a file as shown in FIG. 3, and those whose sliding surface is curved as shown in FIG. 4. Figure 5 shows the frequency analysis data of the rubbing sound of each seabed geology obtained in a water tank experiment using a file-like rubbing sounding body. FIG. 6 shows frequency analysis data when a curvature-like sliding sounding body is also used. Fifth
Looking at Figure 6 and Figure 6, there are not many differences due to differences in sounding bodies, but in both figures, the frequency spectra of clay, mud, sand, and gravel each have their own characteristics and show significant differences. Even in the case of sand, the sound pressure level varies depending on the particle size, and there is a tendency for the sound pressure to increase as the particle size increases.

このように海底の地質によって、摺擦音の周波数スペク
トラムに特徴的な差異が認められるのであるから実測デ
ータの集積により各地質毎の特徴を把握して記憶装置に
記憶させておけば爾後の調査においては観測された摺擦
音を分析して記憶されているデータと比較することによ
り的確な地質の判別が可能となる。
In this way, there are characteristic differences in the frequency spectrum of rubbing sounds depending on the geology of the ocean floor, so if you collect actual measurement data to understand the characteristics of each geology and store it in a storage device, you can easily investigate it later. By analyzing the observed rubbing sounds and comparing them with stored data, it is possible to accurately determine the geology.

以上本実施例においては主として摺擦音の周波数スペア
1〜ラムに着眼した例を述べたが、この他音波の波形に
着眼した分析或いは音圧レベルの変化に着眼した分析等
種々の分析が考えられる。
In this embodiment, we have mainly focused on the frequency spare 1 to ram of the rubbing sound, but various other analyzes such as an analysis focusing on the waveform of the sound wave or an analysis focusing on changes in the sound pressure level can be considered. It will be done.

(発明の効果) 以上説明したように本発明装置は、摺擦発音体が海底地
質上を移動摺擦する際に発する摺擦音が海底地質の種類
によってそれぞれ異なった特徴を有する点に着眼し、こ
の摺擦音を分析することによって海底地質の判別を定量
的に行おうとする装置である。摺擦発音体の移動は該発
音体を取り付けた曳航発音体構造物にローブを接続しこ
れを調査船で引き廻わすことにより容易に行うことがで
き、また、摺擦音の感知も曳航発音体構造物に取り付け
られた音波センサによって容易に行うことができる。従
って、本発明装置は従来の音響地層探査装置を用いる方
法におけるような経験的要素に頼ることのない分析的定
量的調査が可能であり、且つ、従来の採泥器やポーリン
グによる点の調査に較べ、はるかに広い範囲にわたって
連続的な調査を短時開に行うことができるという利点が
ある。
(Effects of the Invention) As explained above, the device of the present invention focuses on the fact that the rubbing sound emitted when the rubbing sounding body moves and rubs on the seabed geology has different characteristics depending on the type of seabed geology. This is a device that attempts to quantitatively determine the geology of the ocean floor by analyzing this rubbing sound. The sliding sounding body can be easily moved by connecting a lobe to the towed sounding body structure to which the sounding body is attached and dragging it around by a research vessel.Furthermore, the sliding sound can also be detected by using the towed sounding body structure. This can be easily done with a sonic sensor attached to a body structure. Therefore, the device of the present invention is capable of analytical and quantitative investigation without relying on empirical elements, unlike methods using conventional acoustic strata exploration devices, and is capable of conducting point investigations using conventional soil sampling equipment or polling. In comparison, it has the advantage of being able to conduct continuous surveys over a much wider area in a shorter period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の構成を示すブロック図、第2図は
本発明の実施例装置の構成および該装置の使用状況説明
図、第3図はやすり状摺擦面の斜視図、第4図はそり状
摺擦面の斜視図、第5図はやすり状発音体を用いた水槽
実験データを示す図、第6図はそり状発音体を用いた水
槽実験データを示す図である。 1・・・・・・摺擦発音体、 2・・・・・・音波セン
サ、2′・・・・・・水中マイクロホン(音波センサ)
3・・・・・・伝送手段、 3′・・・・・・ケーブル
、4・・・・・・信号分析装置、 5・・・・・・周波
数分析器、6・・・・・・レコーダ、 7・・・・・・
増幅器、 8・・・・・・調査船、 9・・・・・・ロ
ープ、 10・・・・・・海底、11・・・・・曳航発
音体構造物。 代理人 弁理士  八 幡  義 博 本禿吠焚1の十1威 $ / 図 4佑号分析11 賛幾例娑1の、構成と梗爪臥ン兄説m図第2 図
FIG. 1 is a block diagram showing the configuration of the device of the present invention, FIG. 2 is an explanatory diagram of the configuration of the device according to the embodiment of the present invention and the state of use of the device, FIG. 3 is a perspective view of the file-like rubbing surface, and FIG. The figure is a perspective view of a warped rubbing surface, FIG. 5 is a diagram showing experimental data on a water tank using a file-like sounding body, and FIG. 6 is a diagram showing experimental data on a water tank using a warped sounding body. 1...Sliding sounding body, 2...Sound wave sensor, 2'...Underwater microphone (sound wave sensor)
3...Transmission means, 3'...Cable, 4...Signal analyzer, 5...Frequency analyzer, 6...Recorder , 7...
Amplifier, 8... Research vessel, 9... Rope, 10... Seabed, 11... Towed sounding body structure. Agent Patent Attorney Yoshi Hachiman Hiroshi Hakuhoki 1's 11 Wei$ / Figure 4 Yugo Analysis 11 The structure and theory of Kyouzume Gao's brother Figure 2

Claims (1)

【特許請求の範囲】[Claims] 海底を摺擦する摺擦発音体と、該摺擦発音体が発生する
摺擦音を感知する音波センサと、該音波センサで感知さ
れた音波信号を分析する信号分析手段と、前記音波セン
サが発生する音波信号を前記信号分析手段へ伝送する伝
送手段を有することを特徴とする海底底質判別装置。
A rubbing sounding body that rubs the seabed, a sonic sensor that detects the rubbing sound generated by the rubbing sounding body, a signal analysis means that analyzes a soundwave signal detected by the sonic sensor, and the soundwave sensor A seafloor sediment discrimination device characterized by comprising a transmission means for transmitting a generated sound wave signal to the signal analysis means.
JP60213939A 1985-09-27 1985-09-27 Apparatus for discriminating geology of sea bottom Pending JPS6273186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60213939A JPS6273186A (en) 1985-09-27 1985-09-27 Apparatus for discriminating geology of sea bottom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60213939A JPS6273186A (en) 1985-09-27 1985-09-27 Apparatus for discriminating geology of sea bottom

Publications (1)

Publication Number Publication Date
JPS6273186A true JPS6273186A (en) 1987-04-03

Family

ID=16647546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60213939A Pending JPS6273186A (en) 1985-09-27 1985-09-27 Apparatus for discriminating geology of sea bottom

Country Status (1)

Country Link
JP (1) JPS6273186A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5014547A (en) * 1988-11-15 1991-05-14 Stresswave Technology Limited Apparatus for determining the surface roughness of a material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546274B2 (en) * 1977-12-20 1980-11-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546274B2 (en) * 1977-12-20 1980-11-21

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5014547A (en) * 1988-11-15 1991-05-14 Stresswave Technology Limited Apparatus for determining the surface roughness of a material

Similar Documents

Publication Publication Date Title
US6587798B2 (en) Method and system for determining the speed of sound in a fluid within a conduit
US6612398B1 (en) Methods for measurement, analysis and assessment of ground structure
US7453763B2 (en) Geophysical data acquisition system
USH1561H (en) Method and apparatus for detection of seismic and electromagnetic waves
US6950747B2 (en) Methods of processing magnetotelluric signals
CA2676378C (en) Wave analysis using phase velocity processing
US5406530A (en) Pseudo-random binary sequence measurement method
US10677920B2 (en) High resolution underground analysis
US4813029A (en) Geophone apparatus and a seismic exploration method
US8639442B2 (en) Identifying invalid seismic data
CN111983686A (en) SEGY-based visual display method for shallow stratum profile original data
Park et al. Seismic characterization of geotechnical sites by multichannel analysis of surface waves (MASW) method
US2990904A (en) Method and apparatus for continuous geophysical exploration
JP2009162498A (en) Survey/classification method and device for object under water bottom
JPS6273186A (en) Apparatus for discriminating geology of sea bottom
KR101864307B1 (en) Method of seismic survey data processing for detecting sub-surface structure and swell effect correction using gradient analysis
Savic et al. Active ultrasonic monitoring of laboratory-scale hydraulic fracturing experiments: numerical modelling vs. experiment
US10859695B2 (en) Acoustic system and method for characterizing granular media
JP2008014830A (en) Hydrate existence domain survey method and survey system
CN103017892A (en) Earth surface specific acoustic impedance non-contact measurement device and method
Dong et al. Estimation of shear wave velocity in seafloor sediment by seismo-acoustic interface waves: A case study for geotechnical application
JPH0820438B2 (en) Nondestructive measurement method of physical properties of formation using acoustic wave
JPH07286490A (en) Discharge type elastic wave layer detecting device
Ge et al. Enhancing Wellbore Leak Localization with Continuous Logging Data from a Sonic Sensor Array
SU894643A1 (en) Method of registering signals in sounding systems