JPS6272975A - Thermosensitive type flow adjusting valve - Google Patents
Thermosensitive type flow adjusting valveInfo
- Publication number
- JPS6272975A JPS6272975A JP20960885A JP20960885A JPS6272975A JP S6272975 A JPS6272975 A JP S6272975A JP 20960885 A JP20960885 A JP 20960885A JP 20960885 A JP20960885 A JP 20960885A JP S6272975 A JPS6272975 A JP S6272975A
- Authority
- JP
- Japan
- Prior art keywords
- valve
- heat
- fluid
- temperature
- sensitive element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Temperature-Responsive Valves (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
この発明は、弁を通過する流体の温度又は別の流体等の
温度に応じて前記弁の開度が変化してその流量を調節す
る熱感応型流量調節弁に関する。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a heat treatment system that adjusts the flow rate by changing the degree of opening of the valve depending on the temperature of a fluid passing through the valve or the temperature of another fluid. This invention relates to a sensitive flow rate control valve.
〈従来の技術〉
従来のこの種の弁には、特公昭59−’7880号公報
に開示されて贋るようなものがある。すなわち。<Prior Art> Among the conventional valves of this type, there is one disclosed in Japanese Patent Publication No. 59-'7880, which is a fake. Namely.
第3図に示すように、弁体11に対して作用するバイメ
タルブロック9及びコイルばね14を設けており、そこ
を流れる流体の温度が低温から高温に変化する場合に弁
体11は閉弁方向に変位し、その逆の場合に弁体11は
閉弁方向に変位する。図示の状態は、人口5側の流体温
度が高温でバイメタルブロック9を構成しているバイメ
タルディスク10の、総湾曲力かコイルばね14の弾性
力に勝り、弁体上lが弁口6を閉じた全開状態である。As shown in FIG. 3, a bimetal block 9 and a coil spring 14 are provided that act on the valve body 11, and when the temperature of the fluid flowing therein changes from low to high temperature, the valve body 11 moves in the valve closing direction. In the opposite case, the valve body 11 is displaced in the valve closing direction. In the illustrated state, the fluid temperature on the side of the valve body 5 is high and exceeds the total bending force of the bimetal disk 10 constituting the bimetal block 9 or the elastic force of the coil spring 14, and the valve body 1 closes the valve port 6. It is fully open.
人口5IlliIの流体温度が低温になり、コイルばね
14の弾性力かバイメタルブロック9の侭湾曲力より勝
り、且つこの開弁力が弁口已に作用する差圧力から成る
閉弁力に勝ると、弁体11は弁口6を開き1入口側5の
低温流体を出口側7に排出するようになる。弁口6側の
圧力は弁体18に作用するコイルばね19を調節するこ
とにより任意に設定できるため、開閉弁温度を変更でき
るものである。When the temperature of the fluid at population 5IlliI becomes low and the elastic force of the coil spring 14 exceeds the bending force of the bimetal block 9, and this valve opening force exceeds the valve closing force consisting of the differential pressure acting across the valve opening, The valve body 11 opens the valve port 6 and discharges the low temperature fluid on the inlet side 5 to the outlet side 7. Since the pressure on the valve port 6 side can be set arbitrarily by adjusting the coil spring 19 acting on the valve body 18, the opening/closing valve temperature can be changed.
〈発明が解決しようとする問題点〉
前述した従来の弁(温調トラップ)は、その感熱素子で
あるバイメタルブロックが* k 通過する流体に直接
さらされる横這になってbる。従って。<Problems to be Solved by the Invention> In the conventional valve (temperature control trap) described above, the bimetal block, which is the heat-sensitive element, lies horizontally and is directly exposed to the fluid passing through it. Therefore.
流体の種類によっては感熱素子かさびたり、腐蝕したり
する問題がある。Depending on the type of fluid used, there is a problem that the heat-sensitive element may rust or corrode.
く問題点を解決するための手段〉
こLニア:、発明の手段は、感熱素子の熱変形により弁
体が開閉作動する熱感応型流量調節弁において。Means for Solving the Problems> This invention provides a heat-sensitive flow control valve in which a valve body opens and closes by thermal deformation of a heat-sensitive element.
入口側から弁孔奮進って出口側に至る弁の流体通路から
感熱素子を流体密に区画して設け、上記流体通路内の流
体又は上記流体通路内を通る流体の流量制御に関係した
温度の上記流体とは別の温源吉上記感熱素子との間を熱
的に連結する二うにヒートパイプを設けたことを特徴と
するものである。A heat-sensitive element is fluid-tightly partitioned from a fluid passage of the valve extending from the inlet side to the valve hole and extending to the outlet side. The present invention is characterized in that a heat pipe is provided on the second side that thermally connects the heat-sensitive element, which is different from the fluid, to the heat-sensitive element.
く作 用〉
前記手段によれば、感熱素子が弁を通過する流体から区
画されていてその流体にざらされないが、(1&熱素子
に対して(・ハヒートバイブにより熱が所望の温度検出
位置から伝達されるから、その温度に応じて:、:<熱
素子が熱変形して弁体を開閉作動させる。According to the above means, the heat-sensitive element is separated from the fluid passing through the valve and is not exposed to the fluid; Therefore, depending on the temperature, the thermal element thermally deforms and opens and closes the valve body.
〈実施例〉
第1実施例を第1図に示す。図において、この流量調節
弁20は、本体21の下部に人口22.弁孔23、出口
24が順次連なる流体通路を有している。弁孔23を開
閉する弁体25がヒートパイプ26によって形成された
弁棒に取付けられ、そのヒートパイプ26は弁体25か
ら流体通路を横切って正方へ伸延し、区画壁29を流体
密にかつ摺動自在て貫通してさらに正方へ伸延し、上端
を調節筒体28の内孔28aに摺動自在に嵌入して保持
されて層る。<Example> A first example is shown in FIG. In the figure, this flow rate control valve 20 has an opening 22. It has a fluid passageway in which the valve hole 23 and the outlet 24 are connected in sequence. A valve body 25 for opening and closing the valve hole 23 is attached to a valve stem formed by a heat pipe 26, which extends squarely from the valve body 25 across the fluid passage to make the partition wall 29 fluid-tight and The upper end is slidably inserted into the inner hole 28a of the adjustment cylinder 28 and held there.
上記流体通路の区画壁27の上側の本体21内には感熱
素子29及び戻しばね30を収容する中空gl<31i
形成されている。その中空部31内においてヒートパイ
プ26の中途にばね受32を固定してあり、ばね受32
と区画壁27との間に戻しばね30を介在させてあり、
ばね受32と調節筒体28の下端との間にバイメタルデ
ィスク33をいくつか交互に反転させて重ねた感熱素子
29であるバイメタルブロックを嵌め込んである。この
感熱素子2つは温度上昇によりバイメタルディスク33
の湾曲程度が増加して図中の上下方向寸法が増大する構
成のものである。Inside the main body 21 above the partition wall 27 of the fluid passage is a hollow gl
It is formed. A spring receiver 32 is fixed in the middle of the heat pipe 26 in the hollow portion 31.
A return spring 30 is interposed between the partition wall 27 and the partition wall 27,
A bimetal block, which is a heat-sensitive element 29, is fitted between the spring receiver 32 and the lower end of the adjustment cylinder 28, which is a heat-sensitive element 29 in which several bimetal disks 33 are alternately inverted and stacked. These two heat-sensitive elements become bimetallic disk 33 due to temperature rise.
This is a configuration in which the degree of curvature increases and the vertical dimension in the figure increases.
前記調節筒体28は本体21の区画壁34を貫通し上下
に移動調節できるように螺合し、外界に出た上端に回転
操作部35を設けである。The adjustment cylinder 28 penetrates the partition wall 34 of the main body 21 and is screwed together so that it can be moved up and down, and is provided with a rotation operation part 35 at its upper end exposed to the outside world.
この流量調節弁20は、入口22から流入する流体が低
温でおるときは弁体25か弁孔23の弁座23aから離
れIW弁状態となり、その状態を持続する。流入する流
体の温度か高温になったときは、弁体25念支持してい
る弁棒のヒートパイプ26か一ド端乞加熱されるから、
その熱かヒート・バrブ26を介して感熱素子29に伝
わり、感熱素子2つの上F方向寸法を温度に応じて増大
させ、これによってはね受32がF降作用力を受け、戻
しばね3oを圧縮して弁体25を閉弁方向に移動させる
。所定温度を越えると感熱素子29の下方向押圧力が戻
しばね30の作用力に完全に打勝って弁体25が下降し
て弁孔23ト閉じる。弁20内の流体の温度が低下して
くると、感熱素子2つの温度も低下して上下方向寸法が
縮小するから、戻しばね30の作用で弁体25が上昇し
て弁孔23が開く。この弁20の開閉する温度は調節筒
体28の回転操作によって調節できる。When the fluid flowing in from the inlet 22 is at a low temperature, the flow rate regulating valve 20 moves away from the valve seat 23a of the valve hole 23 and enters the IW valve state, and maintains this state. When the temperature of the inflowing fluid reaches a high temperature, the heat pipe 26 of the valve stem, which supports the valve body 25, becomes extremely heated.
The heat is transmitted to the heat-sensitive element 29 via the heat bulb 26, increasing the upper F direction dimension of the two heat-sensitive elements in accordance with the temperature, and thereby the spring receiver 32 receives an F lowering force, causing the spring to return. 3o is compressed to move the valve body 25 in the valve closing direction. When the temperature exceeds a predetermined temperature, the downward pressing force of the heat sensitive element 29 completely overcomes the acting force of the return spring 30, causing the valve body 25 to descend and close the valve hole 23. When the temperature of the fluid in the valve 20 decreases, the temperature of the two heat-sensitive elements also decreases and the vertical dimension decreases, so the valve body 25 rises due to the action of the return spring 30 and the valve hole 23 opens. The temperature at which this valve 20 opens and closes can be adjusted by rotating the regulating cylinder 28.
第2実施例を第2図に示す。この流量調節弁4゜は、弁
40が流量を制御する流体とは別の第2流体の温度変化
に基いて開閉作動するものである。図において、本体4
1の下部に人口42.弁孔43、出口44か順次連なシ
、流量−を制御される流体の通路を形成している。弁孔
43にはこれを開閉する弁体45が弁棒46に取付けら
れ、その弁棒46は弁体45から正方へ伸延し、区画壁
47を流体密にかっ摺動自在に貫通してその上端か中空
vA48内に達して感熱素子49に結合されている。A second embodiment is shown in FIG. This flow rate control valve 4° is opened and closed based on a temperature change of a second fluid different from the fluid whose flow rate is controlled by the valve 40. In the figure, main body 4
Population 42 at the bottom of 1. The valve hole 43 and the outlet 44 are connected in sequence and form a fluid passage whose flow rate is controlled. A valve body 45 for opening and closing the valve hole 43 is attached to a valve stem 46, and the valve stem 46 extends squarely from the valve body 45 and slidably penetrates the partition wall 47 in a fluid-tight manner. The upper end reaches into the hollow vA 48 and is coupled to a heat sensitive element 49.
感熱素子49は、上記制御される流体の通路の区画壁4
7の上側の本体41内に形成されている中空部48内に
収容されていて、ベローズ5o内に周知の感熱流体(ワ
ックスあるいはエーテル等)を封入したもので、熱によ
シ内邪の感熱流体が膨張してベローズ50の上下方向寸
法が増大する構成のものである。この感熱素子49は上
端を上部壁51に固定され、下端を前記弁棒46に結合
されていて、熱変形によシ弁体45を開閉動作させる。The heat sensitive element 49 is a partition wall 4 of the fluid passage to be controlled.
It is housed in a hollow part 48 formed in the upper body 41 of the bellows 5o, and a well-known heat-sensitive fluid (wax, ether, etc.) is sealed in the bellows 5o. This configuration is such that the vertical dimension of the bellows 50 increases as the fluid expands. This heat-sensitive element 49 has an upper end fixed to the upper wall 51 and a lower end connected to the valve stem 46, and opens and closes the valve body 45 by thermal deformation.
本体4]、の土端邪には前記第2流体の通路52を設け
てあシ、その通路52内と前記ベローズ50内との間を
熱的に連結するようにヒルドパイブ53&土部壁51を
貫通して設けである。熱は高温側から低温側へ移動する
から、感熱素子49の温度はヒートパイプ53を介して
通路52を通る第2流体の温度に一致するように常に近
ずけられることになる。A passage 52 for the second fluid is provided in the soil end of the main body 4], and a hild pipe 53 and soil wall 51 are provided to thermally connect the inside of the passage 52 and the interior of the bellows 50. It is provided through it. Since heat moves from the high temperature side to the low temperature side, the temperature of the heat sensitive element 49 will always be brought close to matching the temperature of the second fluid passing through the passage 52 via the heat pipe 53.
この流量調節弁40は、弁体45が通路52を流れる第
2流体の温度の上昇によって閉弁方向に移動し、第2流
体の温度の低下によって開弁方向に移動する。In this flow control valve 40, the valve body 45 moves in the valve closing direction as the temperature of the second fluid flowing through the passage 52 increases, and moves in the valve opening direction as the temperature of the second fluid decreases.
上記第2実施例の流量調節弁40は、例えば重油タンク
や輸送管を蒸気で加熱する場合に用いられ。The flow control valve 40 of the second embodiment is used, for example, when heating a heavy oil tank or a transport pipe with steam.
蒸気j′を調節し1重油を適温に保つことかできる。It is possible to maintain the single-fuel oil at an appropriate temperature by adjusting the steam j'.
この発明の流量調節弁に使用される感熱素子としては、
上記実施例におけるもののほかに、公知のダイヤフラム
型、ピストン型等のものであってもよい。The heat-sensitive element used in the flow control valve of this invention includes:
In addition to those in the above embodiments, a known diaphragm type, piston type, or the like may be used.
〈発明の効果ン
この発明によれば、感熱素子が流体にさらされないので
、さびや腐蝕か生じない効果が得られる。<Effects of the Invention> According to the present invention, since the heat-sensitive element is not exposed to fluid, the effect that rust or corrosion does not occur can be obtained.
また、ベローズ型、ダイヤフラム型、ピストン型等の感
熱素子?用いたさきでも、被制御流体の圧力を受けない
ので、設定通シに作動する効果も(()られる。Also, heat-sensitive elements such as bellows type, diaphragm type, and piston type? Even before use, it does not receive the pressure of the fluid to be controlled, so it has the effect of operating according to the settings.
第1図はこの発明の第1実施例を示す概略縦断側面図、
第2図はこの発明の第2実施例を示す概略縦断側面図、
第3図は従来の熱感応型流元調節弁の1例を示す縦断側
面図である。
20・・・流量調節弁、21・・・本体、22・・・入
口、23・・弁孔、24・・・出口、25・・・弁体、
26・・・ヒートパイプ、2゛7・・・区画壁、29・
・感熱素子、30・・・戻しばね、31・・・中空部、
32・・・ばね受、33・・・バイメタルディスク。FIG. 1 is a schematic longitudinal sectional side view showing a first embodiment of the present invention;
FIG. 2 is a schematic longitudinal sectional side view showing a second embodiment of the invention;
FIG. 3 is a longitudinal sectional side view showing an example of a conventional heat-sensitive flow control valve. 20...Flow control valve, 21...Body, 22...Inlet, 23...Valve hole, 24...Outlet, 25...Valve body,
26... Heat pipe, 2゛7... Partition wall, 29.
・Heat-sensitive element, 30... Return spring, 31... Hollow part,
32... Spring holder, 33... Bimetal disc.
Claims (1)
体が感熱素子の熱変形により開閉作動するように感熱素
子と連結されている熱感応型流量調節弁において、上記
入口側から上記弁孔を通つて上記出口側に至る流体通路
から上記感熱素子を流体密に区画して設け、上記流体通
路内の流体又は上記流体通路内を通る流体の流量制御に
関係した温度の上記流体とは別の温源と上記感熱素子と
の間を熱的に連結するようにヒートパイプを設けたこと
を特徴とする熱感応型流量調節弁。(1) In a heat-sensitive flow control valve in which a valve body that opens and closes a valve hole between an inlet side and an outlet side of fluid is connected to a heat-sensitive element so as to be opened and closed by thermal deformation of the heat-sensitive element, the inlet The heat-sensitive element is fluid-tightly partitioned from a fluid passage extending from the side through the valve hole to the outlet side, and the temperature of the fluid in the fluid passage or the temperature related to the flow rate control of the fluid passing through the fluid passage is provided. A heat-sensitive flow rate control valve characterized in that a heat pipe is provided to thermally connect a heat source different from the fluid to the heat-sensitive element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20960885A JPS6272975A (en) | 1985-09-20 | 1985-09-20 | Thermosensitive type flow adjusting valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20960885A JPS6272975A (en) | 1985-09-20 | 1985-09-20 | Thermosensitive type flow adjusting valve |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6272975A true JPS6272975A (en) | 1987-04-03 |
JPH049950B2 JPH049950B2 (en) | 1992-02-21 |
Family
ID=16575621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20960885A Granted JPS6272975A (en) | 1985-09-20 | 1985-09-20 | Thermosensitive type flow adjusting valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6272975A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007227268A (en) * | 2006-02-24 | 2007-09-06 | Seiko Instruments Inc | Control valve and fuel cell system using the same |
JP2013256948A (en) * | 2012-06-12 | 2013-12-26 | General Electric Co <Ge> | Thermally actuated assembly for gas turbine system and method of controlling cooling airflow path |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57120847U (en) * | 1981-01-12 | 1982-07-27 | ||
JPS59106776A (en) * | 1982-12-11 | 1984-06-20 | Tlv Co Ltd | Thermostatic valve |
-
1985
- 1985-09-20 JP JP20960885A patent/JPS6272975A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57120847U (en) * | 1981-01-12 | 1982-07-27 | ||
JPS59106776A (en) * | 1982-12-11 | 1984-06-20 | Tlv Co Ltd | Thermostatic valve |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007227268A (en) * | 2006-02-24 | 2007-09-06 | Seiko Instruments Inc | Control valve and fuel cell system using the same |
JP2013256948A (en) * | 2012-06-12 | 2013-12-26 | General Electric Co <Ge> | Thermally actuated assembly for gas turbine system and method of controlling cooling airflow path |
Also Published As
Publication number | Publication date |
---|---|
JPH049950B2 (en) | 1992-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69534321D1 (en) | VALVE FOR A HEAT TRANSFER SYSTEM | |
US5228618A (en) | Thermal and flow regulator with integrated flow optimizer | |
JPS6272975A (en) | Thermosensitive type flow adjusting valve | |
EP0021202B1 (en) | Thermostatic expansion valve | |
US5065595A (en) | Thermostatic expansion valve | |
JP3292862B2 (en) | Heat exchange device using temperature sensing valve | |
US2107551A (en) | Steam trap and balanced valve | |
JPH0794958B2 (en) | Temperature control device for heat exchanger | |
JP3273345B2 (en) | Temperature sensing valve | |
US2013480A (en) | Temperature regulator | |
JPH0760346B2 (en) | Temperature control valve | |
JP2761674B2 (en) | Thermo-responsive steam trap | |
DK109894A (en) | Valve for a plant with a heat-carrying medium | |
JPH0828785A (en) | Thermally-actuated steam trap | |
JPS5920941B2 (en) | Consumable water heating device | |
US1720792A (en) | Thermostatic temperature regulator | |
JP3341187B2 (en) | Thermo-responsive steam trap | |
US1683317A (en) | Device for controlling the flow of fluids | |
JPH0313654Y2 (en) | ||
JPH0520944Y2 (en) | ||
US1348420A (en) | Thermostatic control for cooling mediums | |
SU943460A1 (en) | Valve thermal drive | |
JPH073108Y2 (en) | Temperature control valve for constant temperature bath | |
JPH07174295A (en) | Thermally-actuated steam trap | |
JP2961343B2 (en) | Pilot type steam trap |