【発明の詳細な説明】[Detailed description of the invention]
【産業上の利用分野】[Industrial application field]
本発明は、重両用のベルト式無段変速機にJ3いて、ラ
イン圧および変速制御20する油圧制御系で油圧源を生
じるオイルポンプ装置に関するものである。The present invention relates to an oil pump device for generating a hydraulic power source using a hydraulic control system for line pressure and speed change control 20 in a belt-type continuously variable transmission for heavy duty use.
【従来の技術1
従来、この種の無段変速機の油圧制御系におけるオイル
ポンプ装置は、一般にエンジンにより常に駆動されるオ
イルポンプを1個有している。ところで、無段変速傭で
は発進時のような条件にJ5いてライン圧を最大にして
ベルトスリップを生じない制御を行っていることから、
上記オイルポンプは最低大官ffi型にする必要があり
、このためポンプによる動力損失が大きい。
そこで、例えば待間昭59−17054Q公報の先行技
術により、エンジンにより駆動されるオイルポンプを2
@設(プ、一方のオイルポンプでセカンダリブーりに給
油し、他方のオイルポンプでプライマリプーリに給油す
るように構成し、ポンプの動力損失の低下を図るものが
示されている1゜【発明が解決しようとJる問題点)
ところで、上記先行技術の構成のものにあっては、2個
のオイルポンプがJ(にエンジンにJ、り駆動されるも
のであるから、エンストの場合は1個のオイルポンプと
同様にポンプ吐出圧が消失して、これに対処できない。
ここで、電磁式クラッチと組合わlた無段変速機では、
減速時に設定車速以下にあるとエンストを防ぐためクラ
ッチが自動的に切れるが、このクラッチ切断状態でエン
ストするとオイルポンプb停由する。そのため、無段変
速機の油圧制(ip系のライン圧は直ちに低下して、所
定のブーり押付+゛)カを生じなくなる。次いで、エン
ジンを起動すると、この場合のエンジン回転数の上品に
伴ってクラッチが接続し、瞬時にエンジン出力が無段変
速(幾に入力することになり、このときオイルポンプの
吐出圧によるライン圧の立上りが遅れて充分なプーリ押
付は力を生じていない場合は、ベルトがスリップして[
11mすることがある。
一方、無段変速機のプーリシリンダ内にはスプリングが
設【)られて、ブーり押付は力を補う構成になっている
が、低速段でのベルトスリップの防1F対策として充分
とは言えない。
また、減速時の燃料カット(CFC)を行う場合につい
て述べると、燃料カット時にクラッチを切ると、上述と
同様にオイルポンプが停止して無段変速機の油圧制御不
能な状態になる。このため、燃料カット時はクラッチを
接続さIて車輪の逆駆動ツノでオイルポンプを駆動させ
る必要がおる。
このことから、エンジン以外により駆動する油圧源を付
加して、クラッ切断後所後のエンストに対処し、または
高速で走行中に、アクセルを解放するなどして燃料カッ
ト条件が整った燃料カット時には、例えば100 km
/hからの減速では常時係合していtcクラッヂをf3
0klll/ hまで切ることを可能にすることが望ま
れる。
本発明は、このような点に鑑みてなされたもので、エン
ジン以外のものにより駆動する油圧源を付加して、エン
ジンが停止したり、またはクラッチが切断した場合でも
、走行中は無段変速機の制御を可0ヒにするようにした
無段変速機のオイルポンプ装置を提供することを目的と
している。
【問題点を解決するための手段】
上記目的を達成するため、本発明は、エンジン駆動の第
1のオイルポンプと、lit輪駆動の第2のオイルポン
プを有し、それら2個のオイルポンプの吐出側をチェッ
ク弁を介し1本に連通して、油圧tII+御系へ給油す
るように構成されている。
[作 用]
上記構成にすづき、クラッチ切断後のエンスト、または
燃料カット時にクラッチ切断することで、エンジンと共
に第1のオイルポンプが停止する場合でも、車両走行中
は車輪の逆駆動力で第2のオイルポンプから給油するよ
うになり、これにより無段変速機の油圧制御系は正常に
変速制御することが可能となる。
【実 施 例)
以下、本発明の実施例を図面に基づいて説明する。
図面において、本発明が適用される無段変速機を含む伝
動系の概略について説明すると、エンジン1が7f1…
式クラッチ21前後進17J j’tl!装置3を介【
ノて無段変速機4の主軸5に連結する。無段変速機4は
主軸5に対して副軸Gが平行配置され、主軸5にはプラ
イマリプーリ7が、副軸6にはセカンダリプーリ8が設
()られ、各プーリ7.8には可動側に油圧シリンダ9
,10が装備されると共に、駆動ベルト11が巻付けら
れている。ここで、プライマリシリンダ9の方が受圧面
積を大きく設定され、そのプライマリ圧により駆動ベル
ト11のプーリ7.8に対する巻付け(¥の比率を変え
て無段変速するようになっている。
またtel * 6は、1組のりダクションギψ12を
介して出力軸13に連結し、出力軸13は、ファイナル
ギ1714.ディファレンシャルギヤ15を介して駆動
輪16に伝動構成されている。
次いで、無段変速機4の油圧制御系について説明すると
、エンジン1のクランク軸に直結するポンプ軸17が電
磁式クララ129前後進切換装置3および主軸5の内部
を口過して突出し、このポンプ軸17にオイルポンプ2
0aが駆動サベく設(〕られる。また、車輪側の例えば
副軸6に他のオイルポンプ20bが設りられ、両オイル
ポンプ20a、20bの吐出側の油路1jlay18b
は、それぞれチェック弁19a、1’lbを介してライ
ン圧油路21に連通する。そしてこのライン圧油路21
が、セカンダリシリンダ10゜ライン圧制御弁22.変
速速度制御弁23に連通し、変速速度制御弁23から油
路24を介してプライマリシリンダ9に連通ずる。ライ
ン圧油路21は更にレギュレータ弁25に連通し、レギ
ュレータ弁25からの一定なレギュレータ圧の油路2G
が、ソレノイドQ27.28および変速速度制御弁23
の一方に連通ずる。各ソレノイド弁27.28は制御ユ
ニット4oがらのデユーティ信号により例えばオンして
排圧し、オフしてレギュレータ圧PRを出力するもので
あり、このようなパルス状の制御圧を生成する。そして
ソレノイド弁27からのパルス状の制御圧は、アキュム
レータ30で平均化されてライン圧制御弁22に作用す
る。これに対しソレノイド弁28からのパルス状の制押
圧は、そのまま変速速度1IIIJ御弁23の他方に作
用する。なお、図中符号29はドレン油路、31はオイ
ルパン、32はオリフィスである。
ライン圧制御弁22は、ソレノイド弁27からの平均化
した制御圧によりライン圧PLのj[、+1rIJを行
う。
変速速度制御弁23は、レギュレータ圧とソレノイド弁
28からのパルス状の制御圧の関係により、ライン圧油
路21.24を接続する給油位置と、ライン圧油路24
をドレンする抽油位置とに初作する。
そして、デユーティ比により2位置の仙作状態を変えて
プライマリシリンダ9への給油または排油の流行tQを
制御し、変速速度di/dtにより変速制御するように
なっている。
次いで、このように構成された無段変速機の作用につい
て説明する。
先ず、エンジン1からのアクセルの踏込みに応じた動力
が、クラッチ2.切換装置3を介して無段変速′f14
のプライマリプーリ7に入力し、駆動ベルト11.セカ
ンダリプーリ8により変速した動力が出力し、これが駆
動輪1G側に伝達づ−ることで走行する。
このとき、エンジン1が駆動している場合は常にポンプ
軸17によりオイルポンプ20aも駆動して油圧を生じ
、走(jを開始して副軸6が回ると他のオイルポンプ2
0bが駆動して油圧を生じる。そこでオイルポンプ20
aまたはそれとオイルポンプ20bの油圧が、ライン圧
制御弁22で調圧されてライン几を生じ、これが常にヒ
カンダリシリンダ10に導入される。またライン圧は変
速速度制御弁23によりプライマリシリンダ9に給排油
されて変速制御するのであり、各シリンダ9.10の油
圧によりベル1−伝)ヱトルクに応じたブーり押付(ツ
カを作用する。
これにより、減速時の設定車速以下1:電磁式クラッチ
2が切れた状態でエンストしたり、またはエンジン1の
燃料カット時にクラッチ2が切断して惰行制御される場
合はオイルポンプ20aが停止するが、他のオイルポン
プ20bがrJr速に応じた油圧を生じ続ける。そのた
め、油圧制御系はこの場合でも上述と同様にライン圧お
よび変速1tIII御した状態を保つ。
以上、本発明の一実施例について述べたが、他の無段変
速機の油圧制御系にら適用できる。
【発明の効果1
以上述べてきたように、本発明によれば、車輪駆動のオ
イルポンプが付加されて、走行中に油圧源になるので、
クラッチ切断後のエンストの場合に油圧1t、II i
ll系を補正することになって、エンジン始動時のベル
トスリップを防止しくりる。
燃料カット制御においてクラッチ切断することが可能に
なり、惰行距離、燃費の点で右利にイする。
エンジン駆動と車輪駆動の2個のオイルポンプの容量を
選択することで、エンジン駆動オイルポンプを補助して
燃費向上を図ることができる。[Prior Art 1] Conventionally, an oil pump device in a hydraulic control system of this type of continuously variable transmission generally has one oil pump that is always driven by an engine. By the way, in a continuously variable transmission vehicle, the line pressure is maximized under J5 conditions such as when starting, and control is performed to prevent belt slip.
The oil pump described above must be at least of the large size FFI type, and therefore the power loss due to the pump is large. Therefore, for example, according to the prior art of Publication No. 59-17054Q of Machima, two oil pumps driven by an engine were used.
@Invention (1゜Invention) A structure is shown in which one oil pump supplies oil to the secondary pulley and the other oil pump supplies oil to the primary pulley, thereby reducing the power loss of the pump. By the way, in the configuration of the prior art described above, two oil pumps are driven by the engine, so in the case of an engine stall, one As with other oil pumps, the pump discharge pressure disappears and it cannot be dealt with.Here, in a continuously variable transmission combined with an electromagnetic clutch,
If the vehicle speed is below the set speed during deceleration, the clutch is automatically disengaged to prevent the engine from stalling, but if the engine stalls with the clutch disengaged, the oil pump b will stop. Therefore, the hydraulic control (IP system line pressure) of the continuously variable transmission immediately decreases, and the predetermined boolean press force does not occur. Next, when the engine is started, the clutch engages as the engine speed increases, and the engine output is instantaneously shifted to a continuously variable speed (input to a variable speed). If the start-up is delayed and the pulley is not pressed sufficiently to generate force, the belt may slip and [
It may be 11m long. On the other hand, a spring is installed in the pulley cylinder of a continuously variable transmission () to supplement the force when pressing the boob, but it cannot be said to be a sufficient measure to prevent belt slip at low speeds. . Regarding the case where a fuel cut (CFC) is performed during deceleration, if the clutch is disengaged during the fuel cut, the oil pump stops as described above, and the continuously variable transmission becomes unable to control the hydraulic pressure. Therefore, when fuel is cut, it is necessary to connect the clutch and drive the oil pump with the reverse drive horn of the wheel. For this reason, a hydraulic power source driven by something other than the engine can be added to deal with engine stalling after the crack has been disconnected, or when the fuel cut conditions are met, such as by releasing the accelerator while driving at high speed. , for example 100 km
When decelerating from /h, the tc clutch, which is always engaged, is set to f3.
It is desirable to be able to cut down to 0kll/h. The present invention has been made in view of these points, and by adding a hydraulic power source driven by something other than the engine, even if the engine stops or the clutch is disengaged, continuously variable speed can be achieved while driving. It is an object of the present invention to provide an oil pump device for a continuously variable transmission which enables control of the machine. [Means for Solving the Problems] In order to achieve the above object, the present invention has an engine-driven first oil pump and a lit wheel-driven second oil pump, and these two oil pumps The discharge side of the hydraulic pressure tII+ is connected to one pipe through a check valve to supply oil to the hydraulic pressure tII+ control system. [Function] Based on the above configuration, even if the first oil pump stops together with the engine due to the engine stalling after the clutch is disengaged or the clutch is disengaged during fuel cut, the first oil pump is operated by the reverse driving force of the wheels while the vehicle is running. Oil is now supplied from the oil pump No. 2, which allows the hydraulic control system of the continuously variable transmission to normally control the speed change. [Example] Hereinafter, an example of the present invention will be described based on the drawings. In the drawings, an outline of a transmission system including a continuously variable transmission to which the present invention is applied will be explained. Engine 1 is 7f1...
Type clutch 21 forward and backward 17J j'tl! Via device 3 [
The knob is connected to the main shaft 5 of the continuously variable transmission 4. In the continuously variable transmission 4, a sub-shaft G is arranged parallel to a main shaft 5, a primary pulley 7 is provided on the main shaft 5, a secondary pulley 8 is provided on the sub-shaft 6, and each pulley 7.8 has a movable Hydraulic cylinder 9 on the side
, 10, and a drive belt 11 is wound around it. Here, the primary cylinder 9 is set to have a larger pressure receiving area, and the primary pressure is used to wind the drive belt 11 around the pulley 7.8 (by changing the ratio of the drive belt 11, the speed is continuously variable. *6 is connected to the output shaft 13 via a set of reduction gears ψ12, and the output shaft 13 is configured to transmit power to the driving wheels 16 via a final gear 1714 and a differential gear 15. To explain the hydraulic control system No. 4, a pump shaft 17 directly connected to the crankshaft of the engine 1 protrudes through the inside of the electromagnetic Clara 129 forward/reverse switching device 3 and the main shaft 5, and the oil pump 2 is attached to this pump shaft 17.
In addition, another oil pump 20b is installed on the wheel side, for example, on the subshaft 6, and the oil passages 1jlay18b on the discharge side of both oil pumps 20a and 20b are installed.
communicate with the line pressure oil passage 21 via check valves 19a and 1'lb, respectively. And this line pressure oil passage 21
However, the secondary cylinder 10° line pressure control valve 22. The transmission speed control valve 23 communicates with the primary cylinder 9 via an oil passage 24 from the transmission speed control valve 23 . The line pressure oil passage 21 further communicates with the regulator valve 25, and the oil passage 2G with constant regulator pressure from the regulator valve 25.
However, the solenoid Q27, 28 and the speed change control valve 23
connected to one side. Each solenoid valve 27, 28 is turned on, for example, to exhaust pressure, and turned off, and outputs the regulator pressure PR, and generates such a pulse-like control pressure. The pulsed control pressure from the solenoid valve 27 is averaged by the accumulator 30 and acts on the line pressure control valve 22. On the other hand, the pulse-shaped control pressure from the solenoid valve 28 directly acts on the other of the speed change speed 1IIIJ control valves 23. In the figure, reference numeral 29 is a drain oil passage, 31 is an oil pan, and 32 is an orifice. The line pressure control valve 22 uses the averaged control pressure from the solenoid valve 27 to adjust the line pressure PL to j[, +1rIJ. The gear change speed control valve 23 has a refueling position connecting the line pressure oil passage 21.24 and a line pressure oil passage 24 depending on the relationship between the regulator pressure and the pulse-like control pressure from the solenoid valve 28.
The first work is done at the oil extraction position where the oil is drained. Then, the duty ratio is used to change the operating conditions of the two positions to control the frequency tQ of oil supply or oil drain to the primary cylinder 9, and the speed change is controlled by the speed change speed di/dt. Next, the operation of the continuously variable transmission configured as described above will be explained. First, the power from the engine 1 in response to the depression of the accelerator is transferred to the clutch 2. Continuously variable speed 'f14 via the switching device 3
input to the primary pulley 7 of the drive belt 11. The power that has been shifted by the secondary pulley 8 is output, and this is transmitted to the drive wheel 1G side, thereby driving the vehicle. At this time, when the engine 1 is driving, the oil pump 20a is always driven by the pump shaft 17 to generate oil pressure, and when the subshaft 6 rotates after starting running (J), the other oil pump 2
0b is driven to generate oil pressure. So oil pump 20
A or the oil pressure of the oil pump 20b is regulated by the line pressure control valve 22 to generate a line, which is always introduced into the secondary cylinder 10. In addition, the line pressure is supplied to and discharged from the primary cylinder 9 by the transmission speed control valve 23 to control the transmission. As a result, the oil pump 20a will stop if the set vehicle speed during deceleration is 1 or less: If the electromagnetic clutch 2 is disengaged and the engine stalls, or if the clutch 2 is disengaged and coasting control is performed when the engine 1 fuel is cut, the oil pump 20a will stop. However, the other oil pump 20b continues to generate oil pressure according to the rJr speed.Therefore, even in this case, the oil pressure control system maintains the line pressure and the speed change 1tIII controlled state in the same way as described above.As described above, one embodiment of the present invention However, it can also be applied to the hydraulic control system of other continuously variable transmissions. [Effect of the invention 1] As described above, according to the present invention, a wheel-driven oil pump is added, Since it becomes a hydraulic power source,
In case of engine stall after clutch disengagement, oil pressure 1 t, II i
This corrects the ll system to prevent belt slip when starting the engine. It is now possible to disengage the clutch during fuel cut control, which is advantageous in terms of coasting distance and fuel efficiency. By selecting the capacities of the two oil pumps, one for engine drive and one for wheel drive, it is possible to assist the engine drive oil pump and improve fuel efficiency.
【図面の簡単な説明】[Brief explanation of drawings]
図面は本発明の4イルポンプ装置の実施例を示す構成図
である。
1・・・エンジン、4・・・無段変速機、6・・・副軸
、17・・・ポンプ軸、18a、18b・・・チェック
弁、20a 、 20b・・・オイルポンプ。The drawing is a configuration diagram showing an embodiment of the 4-il pump device of the present invention. DESCRIPTION OF SYMBOLS 1... Engine, 4... Continuously variable transmission, 6... Subshaft, 17... Pump shaft, 18a, 18b... Check valve, 20a, 20b... Oil pump.