JPS6272793A - Method for concentrating and separating eicosapentaenic acidfrom fish oil - Google Patents

Method for concentrating and separating eicosapentaenic acidfrom fish oil

Info

Publication number
JPS6272793A
JPS6272793A JP21350285A JP21350285A JPS6272793A JP S6272793 A JPS6272793 A JP S6272793A JP 21350285 A JP21350285 A JP 21350285A JP 21350285 A JP21350285 A JP 21350285A JP S6272793 A JPS6272793 A JP S6272793A
Authority
JP
Japan
Prior art keywords
fish oil
separating
fatty acids
eicosapentaenoic acid
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21350285A
Other languages
Japanese (ja)
Inventor
俊之 上田
古江 俊樹
松崎 晴美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP21350285A priority Critical patent/JPS6272793A/en
Publication of JPS6272793A publication Critical patent/JPS6272793A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fats And Perfumes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、魚油を原料とするエイコサペンタエン酸(E
 P A)の濃縮分藏1法にかかり、高4度の製品を効
率的に得るに好適な方法に関するものである。
Detailed Description of the Invention [Field of Application of the Invention] The present invention provides eicosapentaenoic acid (E
The present invention relates to a method suitable for efficiently obtaining a high-4 degree product using the concentrated fraction 1 method of PA).

〔発明の背景〕[Background of the invention]

イワシ油等の魚油に多く含まれるエイコサペンタエン酸
(E P A)は、動脈硬化を防止する働き等の効果が
あり、健康食品、医薬品の素材として最近注目されてき
ている。
Eicosapentaenoic acid (EPA), which is abundantly contained in fish oils such as sardine oil, has an effect such as preventing arteriosclerosis, and has recently been attracting attention as a material for health foods and medicines.

魚油中の脂肪酸は、トリグリセリドの形で存在するが、
炭化水素基の構造および性質により、次の3種に大別さ
れる。
Fatty acids in fish oil exist in the form of triglycerides,
Depending on the structure and properties of the hydrocarbon group, it is roughly divided into the following three types.

+11  飽和脂肪酸トリグリセリド (炭化水素基に二重結合の無い構造のもの)(2)低度
不飽和脂肪酸トリグリセリド(炭化水素基の二重結合数
が比較的少ないもの)(3)高度不飽和脂肪酸トリグリ
セリド(炭化水素基の二重結合数が比較的多いもの)E
PAは、高度不飽和脂肪酸に属し、比較的炭素数の大き
い、高度不飽和脂肪酸の一種である。
+11 Saturated fatty acid triglycerides (those with a structure in which the hydrocarbon group has no double bonds) (2) Lowly unsaturated fatty acid triglycerides (those with a relatively small number of double bonds in the hydrocarbon group) (3) Highly unsaturated fatty acid triglycerides (Those with a relatively large number of double bonds in the hydrocarbon group) E
PA belongs to highly unsaturated fatty acids, and is a type of highly unsaturated fatty acids having a relatively large number of carbon atoms.

EPAは濃縮分離には、現在(1)尿素付加法、(2)
真空蒸留法、(3)クロマトグラフィー法の方法が採用
されている。
EPA currently uses (1) urea addition method, (2)
Vacuum distillation method and (3) chromatography method are employed.

尿素付加法は、脂肪酸トリグリセリドに、アルコール及
びアルカ1ノアルコキシドを添加し、脂肪酸トリグリセ
リドのエステル交換により得られる脂肪酸エステルの内
、飽和脂肪酸エステルおよび低度不飽和脂肪酸エステル
が原素と反応し、結晶体の尿素包接体が生成され、これ
をろ過することによって分離しEPAをlQ縮する方法
である。ところが、この尿素付加法では、EPA以外の
高度不飽和脂肪酸のエステルも尿素包接体を生成しない
ためEPAと分離されないので製品中のEPA濃度は約
40%以下にしかならない。
In the urea addition method, alcohol and alkanoalkoxide are added to fatty acid triglyceride, and among the fatty acid esters obtained by transesterification of the fatty acid triglyceride, saturated fatty acid esters and low unsaturated fatty acid esters react with atoms to form crystals. In this method, a urea clathrate is produced in the body, which is separated by filtration and EPA is reduced. However, in this urea addition method, esters of highly unsaturated fatty acids other than EPA do not form urea clathrates and are not separated from EPA, so the EPA concentration in the product is only about 40% or less.

真空蒸留法は、各種脂肪酸の沸点の違いを利用する方法
である。しかしこの方法では魚油中にEPAと沸点のほ
ぼ同じ脂肪酸(飽和脂肪酸も含む)が多く存在するため
、製品として得られるEPAの濃度は約40%が限界で
ある。また真空蒸留法では、脂肪酸トリグリセリドが常
圧下、沸点よりもかなり低い温度で重合、異性化、分解
等を起こすので、to−’〜10−’l■Hg程度の高
真空状態で蒸留する必要がある。また濃縮分離のために
蒸留塔を数塔設ける必要があり、スチームを多く必要と
し、ユーティリティコストが高い。
The vacuum distillation method is a method that takes advantage of the differences in boiling points of various fatty acids. However, in this method, since there are many fatty acids (including saturated fatty acids) that have almost the same boiling point as EPA in fish oil, the concentration of EPA obtained as a product is limited to about 40%. In addition, in the vacuum distillation method, fatty acid triglycerides undergo polymerization, isomerization, decomposition, etc. under normal pressure and at a temperature considerably lower than the boiling point, so it is necessary to distill under a high vacuum of about to-' to 10-' l Hg. be. Furthermore, it is necessary to provide several distillation columns for concentration and separation, which requires a large amount of steam, resulting in high utility costs.

各脂肪酸の吸着性や分配係数の差異に基づく移動速度の
差を利用して分離するクロマトグラフィー法には、薄層
クロマトグラフィー法、カラムクロマトグラフィー法、
ガスクロマトグラフィー法、液体クロマトグラフィー法
等がある。これらの方法においては、製品EPAの濃度
は70〜90%と高くなるが、1回の操作で分離できる
量は非常に少なく、現在、工業的には利用されていない
Chromatography methods that utilize the difference in migration speed based on the adsorption properties and distribution coefficients of each fatty acid include thin layer chromatography, column chromatography,
There are gas chromatography methods, liquid chromatography methods, etc. In these methods, the concentration of the product EPA is as high as 70 to 90%, but the amount that can be separated in one operation is very small and is not currently used industrially.

以上のように、現状のEPA濃縮分離方法は、それぞれ
欠点を有しており、高濃度のEPAを効率的に生産する
ことが大きな課題となっている。
As described above, the current EPA concentration and separation methods each have their drawbacks, and it is a major challenge to efficiently produce high-concentration EPA.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来技術の欠点をなくし、魚
油から効率的に高濃度のEPAを濃縮分離する方法を提
供することにある。
An object of the present invention is to provide a method for efficiently concentrating and separating high-concentration EPA from fish oil, eliminating the drawbacks of the prior art described above.

〔発明の概要〕[Summary of the invention]

本発明は、魚油から前処理により飽和脂肪酸、低度不飽
和脂肪酸を分離して得られる高度不飽和脂肪酸から超臨
界状態の二酸化炭素によりEPAに富む高度不飽和脂肪
酸を抽出し、その後段の抽出領域で温度及び圧力を所定
値に調整し、EPAに富む高度不飽和脂肪酸からEPA
以外の成分を選択的に分離し、高濃度のEPAを生成す
るようにしたものである。すなわち、本発明は、抽出領
域での温度及び圧力を調整することによって超臨界状態
の二酸化炭素の密度を調整し、エステル体としてのEP
Aと、EPA以外の高度不飽和脂肪酸のエステルとの蒸
気圧の差、すなわち沸点の差を利用して抽出分離するよ
うにしたものである。
The present invention involves the extraction of EPA-rich polyunsaturated fatty acids from highly unsaturated fatty acids obtained by separating saturated fatty acids and low-degree unsaturated fatty acids from fish oil by pretreatment using carbon dioxide in a supercritical state, and the subsequent extraction step. Adjust the temperature and pressure to predetermined values in the area, and extract EPA from EPA-rich polyunsaturated fatty acids.
This method selectively separates other components to produce high-concentration EPA. That is, the present invention adjusts the density of carbon dioxide in a supercritical state by adjusting the temperature and pressure in the extraction region, and extracts EP as an ester.
A and esters of highly unsaturated fatty acids other than EPA are extracted and separated using the difference in vapor pressure, that is, the difference in boiling point.

〔発明の実施例〕 以下、添付図面に基づいて本発明の詳細な説明する。[Embodiments of the invention] Hereinafter, the present invention will be described in detail based on the accompanying drawings.

第1図は魚油からEPAを濃縮分離するフローの一例で
ある。
FIG. 1 is an example of a flow for concentrating and separating EPA from fish oil.

原料である魚油lは、添加槽5に供給される。Fish oil 1, which is a raw material, is supplied to an addition tank 5.

添加槽5にはナトリウムエトキシド等のアルカリアルコ
キシド3とエタノール等の低級アルコール4が添加され
る。魚油の主成分である脂肪酸トリグリセリドは、アル
カリアルコキシド3を触媒として低級アルコールとエス
テル交換され、脂肪酸エステルとグリセリンに転化され
る。
An alkali alkoxide 3 such as sodium ethoxide and a lower alcohol 4 such as ethanol are added to the addition tank 5. Fatty acid triglyceride, which is the main component of fish oil, is transesterified with lower alcohol using alkali alkoxide 3 as a catalyst and converted into fatty acid ester and glycerin.

CH20COR 1(CzHs○Na) CHOCOR+CH2CHjOH CH20COR CH2OH CHOH+  3 RCOOCz Hs冒 H2OH また添加槽5には尿素2が添加される。上記したエステ
ル交換によって生成した脂肪酸エステルの内、飽和脂肪
酸エステル及び低度不飽和脂肪酸エステルは、尿素2と
反応し、尿素包接脂肪酸エステル6となる。尿素包接脂
肪酸エステル6は比重が大きいので添加槽5の下部に沈
澱し、かつ融点が高いため常温において結晶化する。添
加槽5の下部には加熱トレース22が設置され、添加槽
5内は40℃以上に保持されている。このため添加槽5
の下部に沈澱した尿素包接脂肪酸エステル6は、流動性
が高くなり、添加槽5から容易に抜き出される。
CH20COR 1 (CzHs○Na) CHOCOR+CH2CHjOH CH20COR CH2OH CHOH+ 3 RCOOCz Hs-infused H2OH Further, urea 2 is added to the addition tank 5. Among the fatty acid esters produced by the above-described transesterification, saturated fatty acid esters and low unsaturated fatty acid esters react with urea 2 to become urea clathrate fatty acid esters 6. Since the urea clathrate fatty acid ester 6 has a high specific gravity, it precipitates at the bottom of the addition tank 5, and because it has a high melting point, it crystallizes at room temperature. A heating trace 22 is installed at the bottom of the addition tank 5, and the inside of the addition tank 5 is maintained at 40° C. or higher. For this reason, addition tank 5
The urea clathrate fatty acid ester 6 precipitated at the bottom of the tank has high fluidity and can be easily extracted from the addition tank 5.

エステル交換によって生成した脂肪酸エステルの内、高
度不飽和脂肪酸エステル8及びグリセリンと、未反応の
アルコール4等は、尿素包接脂肪酸エステル6に比較し
て比重が小さいので添加槽5から取り出されポンプ7に
より加圧され、抽出器12に供給される。抽出器12の
下部には超臨界状態の二酸化炭素(以下、5C−Co2
と記す)21が供給される。
Among the fatty acid esters produced by the transesterification, highly unsaturated fatty acid esters 8, glycerin, unreacted alcohols 4, etc. have lower specific gravity than the urea clathrate fatty acid esters 6, so they are taken out from the addition tank 5 and sent to the pump 7. is pressurized and supplied to the extractor 12. At the bottom of the extractor 12, carbon dioxide in a supercritical state (hereinafter referred to as 5C-Co2
) 21 is supplied.

二酸化炭素は、第2図に示すように温度31°C以上、
圧カフ8atn+以上で超臨界状態となる。この超臨界
状態の二酸化炭素(SC−Cog)は強い溶解力及び速
い物質輸送速度、大きな拡散係数を持ち、更にその安定
、安全性の点で、迅速な精密抽出の抽出剤として優れて
いる。高度不飽和脂肪酸エステル8、グリセリン、アル
コール4等の5c−co、への溶解度は、各成分の蒸気
圧の高い順、即ちアルコール4、高度不飽和脂肪酸エス
テル8、グリセリンの順に大きく、また5C−C02の
密度(第2図に温度、圧力により5C−CO2の密度を
)に比例する。
As shown in Figure 2, carbon dioxide has a temperature of 31°C or higher,
A supercritical state occurs when the pressure cuff is 8atn+ or more. This supercritical carbon dioxide (SC-Cog) has a strong dissolving power, a fast mass transport rate, and a large diffusion coefficient, and is excellent as an extractant for rapid precision extraction due to its stability and safety. The solubility of highly unsaturated fatty acid ester 8, glycerin, alcohol 4, etc. in 5c-co increases in the order of the vapor pressure of each component, that is, in the order of alcohol 4, highly unsaturated fatty acid ester 8, glycerin, and 5c-co. It is proportional to the density of C02 (Figure 2 shows the density of 5C-CO2 depending on temperature and pressure).

そこで抽出器12において、適当な温度条件、圧力条件
に維持することによって選択的な物質の抽出を行うこと
ができる。
Therefore, by maintaining appropriate temperature and pressure conditions in the extractor 12, selective extraction of substances can be performed.

すなわち、まず、高度不飽和脂肪酸エステル8の内、E
PAのエステル体と、EPAのエステル体よりも高い蒸
気圧(したがってBPAのエステル体よりも沸点の低い
)を存する不飽和脂肪酸エステルと、アルコールとを抽
出し、EPAのエステル体よりも蒸気圧の低いグリセリ
ン及び高度不飽和脂肪酸エステル等は抽出残9として分
離される。ここでの抽出物中のE P A 濃度は約4
0%である。
That is, first, among the highly unsaturated fatty acid esters 8, E
An ester of PA, an unsaturated fatty acid ester having a higher vapor pressure than the ester of EPA (and therefore a lower boiling point than the ester of BPA), and an alcohol are extracted. Low glycerin and highly unsaturated fatty acid esters are separated as extraction residue 9. The E P A concentration in the extract here is approximately 4
It is 0%.

EPAのエステル体を含む抽出物質は、第1分離器13
に供給される。この抽出物中の内、最も高沸点く低蒸気
圧)の物質はEPAのエステル体15であり、減圧弁1
0A、加熱器llAを操作し、第1分離器13における
5C−Cotの密度を若干下げる操作を行うことにより
、EPAのエステル体はSCCOzに溶解できなくなり
第1分離器13の残液として取り出される。
The extracted material containing the ester form of EPA is transferred to the first separator 13
is supplied to Among this extract, the substance with the highest boiling point and lowest vapor pressure is EPA ester 15, and pressure reducing valve 1
By operating 0A and heater 11A to slightly lower the density of 5C-Cot in the first separator 13, the ester form of EPA can no longer be dissolved in SCCOz and is taken out as a residual liquid in the first separator 13. .

なお、5C−CO2の密度を下げる操作において、減圧
又は加熱の一方のみの条件を変える操作は避けることが
望ましい。減圧による温度降下、または加熱による脂肪
酸の分解、重合等が生しやすくなるためである。第1分
離器13がら得られるEPAのエステル体は純度約80
%以上である。
In addition, in the operation of lowering the density of 5C-CO2, it is desirable to avoid changing only one of the conditions of pressure reduction or heating. This is because decomposition, polymerization, etc. of fatty acids are likely to occur due to temperature drop due to reduced pressure or heating. The ester form of EPA obtained from the first separator 13 has a purity of about 80
% or more.

次に製品となるべきEPAのエステル体15が分離され
たSCCotは、減圧弁10B、加熱器11Bを操作し
て密度を降下した後、第2分離器14に専大される。第
2分離器14では、アルコール4よりも高沸点の成分、
すなわちEPAエステル体1体上5も低沸点の不飽和エ
ステルおよび臭気成分の一部はここで液状IM16とし
て分離される。
Next, the SCCot from which the ester body 15 of EPA to be a product has been separated is operated to reduce the density by operating the pressure reducing valve 10B and the heater 11B, and then is sent to the second separator 14. In the second separator 14, a component with a higher boiling point than the alcohol 4,
That is, the EPA ester body 1, the unsaturated ester having a low boiling point, and a part of the odor components are separated here as liquid IM16.

アルコール 減圧弁10Cを操作することにより更に減圧され、気体
状態に戻された後、アルコール液化器17に導入される
。アルコール液化器17では冷媒により二酸化炭素を、
その圧力状態におけるアルコール4の沸点以下に冷却し
て、アルコール4を凝縮させることにより分離する0分
離されたアルコール4は減圧弁10Dを介して減圧され
た後、添加槽5における添加剤として再循環使用される
By operating the alcohol pressure reducing valve 10C, the pressure is further reduced and the alcohol is returned to a gaseous state, after which it is introduced into the alcohol liquefier 17. In the alcohol liquefier 17, carbon dioxide is converted into carbon dioxide using a refrigerant.
The alcohol 4 is cooled to below the boiling point of the alcohol 4 in that pressure state and separated by condensation. The separated alcohol 4 is depressurized via the pressure reducing valve 10D and then recirculated as an additive in the addition tank 5. used.

このようにしてアルコール4を除去されるとも臭気成分
を含む二酸化炭素は、臭気成分液化器18に導入される
。臭気成分液化器18で二酸化炭素を冷却し、このガス
中に含まれる臭気成分20を凝縮、除去する。この操作
によって二酸化炭素の循環系内に臭気成分が蓄積し、最
終的に製品中の臭気成分が増加することを未然に防止で
きる。
The carbon dioxide from which the alcohol 4 has been removed in this way and which also contains odor components is introduced into the odor component liquefier 18 . The carbon dioxide is cooled in the odor component liquefier 18, and the odor components 20 contained in this gas are condensed and removed. This operation can prevent odor components from accumulating in the carbon dioxide circulation system and ultimately increasing the amount of odor components in the product.

以上の工程により、不純物がほとんど除去された二酸化
炭素は、CO□液化器19に供給され、ここで冷却液化
した後、ポンプ7で加圧され、次いで加熱器11Cで昇
温され、超臨界状態となり、抽出器12の抽出剤として
循環使用される。
The carbon dioxide from which most impurities have been removed through the above steps is supplied to the CO□ liquefier 19, where it is cooled and liquefied, then pressurized by the pump 7, and then heated by the heater 11C to reach a supercritical state. This is used as an extractant for the extractor 12.

CO,液化器19に供給される二酸化炭素は、臭気成分
液化器18で既に低温領域まで冷却されているので少量
の冷却能力で容易に液化される。
Since the CO and carbon dioxide supplied to the liquefier 19 have already been cooled to a low temperature range in the odor component liquefier 18, they can be easily liquefied with a small amount of cooling capacity.

なお、本発明は、EPA同様、魚油からのドコサヘキサ
エン酸(DHA)の濃縮分離に対しても同等の効果を発
揮することができる。
In addition, the present invention can exhibit the same effect on concentration and separation of docosahexaenoic acid (DHA) from fish oil as well as EPA.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、EPAとEPA以外の高
度不飽和脂肪酸とを精度よく分離できるので魚油から約
80%以上の高濃度のEPAを大量に抽出分離すること
ができ、また、毒性のないCO□で処理するので安全な
製品を得ることができる。
As described above, according to the present invention, EPA and highly unsaturated fatty acids other than EPA can be separated with high accuracy, and therefore EPA with a high concentration of about 80% or more can be extracted and separated in large quantities from fish oil. Because it is processed with CO□, which is free of CO□, safe products can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による魚油からのEPAの濃縮分離法を
実施するための装置のフローシート、第2図は超臨界状
態における二酸化炭素の温度、圧力と密度との関係を示
すグラフである。 1・・・・・・魚油、   2・・・・・・尿素、3・
・・・・・アルカリアルコキシド、4・・・・・・アル
コール、 5・・・・・・添加槽、 6・・・・・・尿素包接脂肪酸エステル、7・・・・・
・ポンプ、 8・・・・・・高度不飽和脂肪酸エステル、9・・・・
・・グリセリン、 10A、IOB、IOC,IOD・・・・・・減圧弁、
11A、IIB、IIC・・・・・・加熱器、12・・
・・・・抽出器、 13・・・・・・第1分離器、14・・・・・・第2分
離器、15・・・・・・製品EPAエステル、16・・
・・・・低沸点不飽和脂肪酸エステル、17・・・・・
・アルコール液化器、 18・・・・・・臭気成分液化器、 19・・・・・・CO□液化器、20・・・・・・臭気
成分、21・・・・・・COt、22・・・・・・加熱
トレース。
FIG. 1 is a flow sheet of an apparatus for implementing the method of concentrating and separating EPA from fish oil according to the present invention, and FIG. 2 is a graph showing the relationship between temperature, pressure, and density of carbon dioxide in a supercritical state. 1...Fish oil, 2...Urea, 3.
... Alkali alkoxide, 4 ... Alcohol, 5 ... Addition tank, 6 ... Urea clathrate fatty acid ester, 7 ...
・Pump, 8...Highly unsaturated fatty acid ester, 9...
・・Glycerin, 10A, IOB, IOC, IOD・・・・・・Reducing valve,
11A, IIB, IIC... Heater, 12...
...Extractor, 13...First separator, 14...Second separator, 15...Product EPA ester, 16...
...Low boiling point unsaturated fatty acid ester, 17...
・Alcohol liquefier, 18...Odor component liquefier, 19...CO□ liquefier, 20...Odor component, 21...COt, 22. ...Heating trace.

Claims (5)

【特許請求の範囲】[Claims] (1)魚油から前処理により飽和脂肪酸及び低度不飽和
脂肪酸を分離して得られる高度不飽和脂肪酸から超臨界
状態の二酸化炭素によりエイコサペンタエン酸に富む高
度不飽和脂肪酸を抽出した後、その後段の抽出領域で温
度及び圧力を所定値に調整し、前記エイコサペンタエン
酸に富む高度不飽和脂肪酸からエイコサペンタエン酸以
外の成分を選択的に分離して高濃度のエイコサペンタエ
ン酸を精製することを特徴とする魚油からのエイコサペ
ンタエン酸の濃縮分離法。
(1) After extracting polyunsaturated fatty acids rich in eicosapentaenoic acid from the polyunsaturated fatty acids obtained by separating saturated fatty acids and low-degree unsaturated fatty acids from fish oil by pretreatment with carbon dioxide in a supercritical state, the subsequent step The temperature and pressure are adjusted to predetermined values in the extraction region, and components other than eicosapentaenoic acid are selectively separated from the eicosapentaenoic acid-rich polyunsaturated fatty acids to purify high-concentration eicosapentaenoic acid. A method for concentrating and separating eicosapentaenoic acid from fish oil.
(2)前記前処理は、魚油にアルコール、アルカリアル
コキシド及び尿素を添加し、魚油中の飽和脂肪酸及び低
度不飽和脂肪酸を尿素包接体として沈降分離する特許請
求の範囲第1項記載の魚油からのエイコサペンタエン酸
の濃縮分離法。
(2) The fish oil according to claim 1, wherein the pretreatment is performed by adding alcohol, alkali alkoxide, and urea to the fish oil, and separating the saturated fatty acids and low-degree unsaturated fatty acids in the fish oil by precipitation as urea clathrates. Concentration and separation method of eicosapentaenoic acid from.
(3)エイコサペンタエン酸等の脂肪酸を分離した後の
二酸化炭素を冷却して、その二酸化炭素に同伴するアル
コールを凝縮させて分離した後、このアルコールを前処
理の添加剤として循環使用する特許請求の範囲第2項記
載の魚油からのエイコサペンタエン酸の濃縮分離法。
(3) A patent claim for cooling carbon dioxide after separating fatty acids such as eicosapentaenoic acid, condensing and separating the alcohol accompanying the carbon dioxide, and then recycling this alcohol as an additive for pretreatment. A method for concentrating and separating eicosapentaenoic acid from fish oil according to item 2.
(4)アルコールを分離した二酸化炭素を更に冷却し、
二酸化炭素に同伴する臭気成分を凝縮・分離する特許請
求の範囲第3項記載の魚油からのエイコサペンタエン酸
の濃縮分離法。
(4) Further cooling the carbon dioxide from which the alcohol has been separated,
4. A method for concentrating and separating eicosapentaenoic acid from fish oil according to claim 3, wherein odor components accompanying carbon dioxide are condensed and separated.
(5)臭気成分が除去された低温状態の二酸化炭素を更
に冷却して液化した後、加圧及び昇温により超臨界状態
とし、抽出剤として循環使用する特許請求の範囲第4項
記載の魚油からのエイコサペンタエン酸濃縮分離法。
(5) The fish oil according to claim 4, wherein carbon dioxide in a low-temperature state from which odor components have been removed is further cooled and liquefied, and then brought to a supercritical state by pressurization and temperature elevation, and then recycled as an extractant. Method for concentrating and separating eicosapentaenoic acid from.
JP21350285A 1985-09-26 1985-09-26 Method for concentrating and separating eicosapentaenic acidfrom fish oil Pending JPS6272793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21350285A JPS6272793A (en) 1985-09-26 1985-09-26 Method for concentrating and separating eicosapentaenic acidfrom fish oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21350285A JPS6272793A (en) 1985-09-26 1985-09-26 Method for concentrating and separating eicosapentaenic acidfrom fish oil

Publications (1)

Publication Number Publication Date
JPS6272793A true JPS6272793A (en) 1987-04-03

Family

ID=16640258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21350285A Pending JPS6272793A (en) 1985-09-26 1985-09-26 Method for concentrating and separating eicosapentaenic acidfrom fish oil

Country Status (1)

Country Link
JP (1) JPS6272793A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5013443A (en) * 1989-01-23 1991-05-07 Nihon Bunko Kogyo Kabushiki Kaisha Extraction and separation method and apparatus using supercritical fluid
JPH06212186A (en) * 1992-05-28 1994-08-02 Agency Of Ind Science & Technol Production of eicosapentaenoic acid from red alga fudaraku
JPH06247893A (en) * 1993-02-23 1994-09-06 Agency Of Ind Science & Technol Production of octadecatetraenoic acid
JPH0762385A (en) * 1993-08-27 1995-03-07 Chikyu Kankyo Sangyo Gijutsu Kenkyu Kiko Extracting method for fatty acid
WO2003089399A1 (en) * 2002-04-22 2003-10-30 Industrial Research Limited Improvements in or relating to separation technology

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5013443A (en) * 1989-01-23 1991-05-07 Nihon Bunko Kogyo Kabushiki Kaisha Extraction and separation method and apparatus using supercritical fluid
JPH06212186A (en) * 1992-05-28 1994-08-02 Agency Of Ind Science & Technol Production of eicosapentaenoic acid from red alga fudaraku
JPH06247893A (en) * 1993-02-23 1994-09-06 Agency Of Ind Science & Technol Production of octadecatetraenoic acid
JPH0762385A (en) * 1993-08-27 1995-03-07 Chikyu Kankyo Sangyo Gijutsu Kenkyu Kiko Extracting method for fatty acid
WO2003089399A1 (en) * 2002-04-22 2003-10-30 Industrial Research Limited Improvements in or relating to separation technology
JP2005523323A (en) * 2002-04-22 2005-08-04 インダストリアル リサーチ リミティド Improvements in or relating to separation technology
US7709668B2 (en) 2002-04-22 2010-05-04 Industrial Research Limited Separation technology
KR100972703B1 (en) 2002-04-22 2010-07-27 인더스트리얼 리서치 리미티드 Improvements in or relating to separation technology

Similar Documents

Publication Publication Date Title
US5185481A (en) Method for the separation of impurities from crude ethanol aqueous solution
US5840944A (en) Method to produce highly pure eicosapentaenoic acid or its ester
US8076498B2 (en) Method for preparing fatty acid esters with alcohol recycling
JP2011527319A (en) Extraction method of squalene, sterol and vitamin E contained in physically refined condensate and / or deodorized distillate of vegetable oil
CN106916062B (en) A kind of circulating gas-lifting rectificating method that EPA & DHA are extracted from fish oil
CN107216252B (en) Preparation method of high-content Omega-3 fatty acid ethyl ester
WO1986004354A1 (en) Method for obtaining lipids from fungus bodies
KR100972703B1 (en) Improvements in or relating to separation technology
CN101765378A (en) Energy efficient separation of ethanol from aqueous solution
CN103804171A (en) Preparation method and device for polyenoic acid and ester monomer thereof
CN105695104B (en) In-tower pumping type high-vacuum rectification method and device for precisely separating C16-C22 fatty acids
CN101074258B (en) Method for separating and extracting phytosterin and Vitamin E from soyabean deodorization distillate
JPS6272793A (en) Method for concentrating and separating eicosapentaenic acidfrom fish oil
CN112430500A (en) Method for reducing anisidine value in polyunsaturated fatty acid oil
CN106673998B (en) A kind of circulating gas-lifting distillation system that EPA & DHA are extracted from fish oil
CN112521270B (en) Method for separating DHA (docosahexaenoic acid) and EPA (eicosapentaenoic acid) by high-vacuum continuous rectification method
CN206553429U (en) A kind of circulating gas-lifting distillation system that EPA & DHA are extracted from fish oil
JPH09310089A (en) Concentration of eicosapentaenoic acid-containing material
CN1181170C (en) Separating and purifying method for extracting unsaturated fatty acid from peanut oil
CN114394894B (en) Method and device for extracting Gao Chungeng acid from side line of vacuum batch distillation
CN106748780B (en) A kind of removal methods of injection Synthetic Oil metal residual
JP2726828B2 (en) Apparatus and method for concentration and separation of polyunsaturated fatty acids or their esters
CN205516575U (en) Ethanol recovery device among fish oil reation kettle
CN105688434B (en) It is a kind of can be used for separation physical property be similar or the tower of heat-sensitive substance in pump suction type high vacuum rectification method and apparatus
CN107383042A (en) A kind of method of separating-purifying sesamin