JPS6272584A - Composite method for refractories - Google Patents

Composite method for refractories

Info

Publication number
JPS6272584A
JPS6272584A JP21409885A JP21409885A JPS6272584A JP S6272584 A JPS6272584 A JP S6272584A JP 21409885 A JP21409885 A JP 21409885A JP 21409885 A JP21409885 A JP 21409885A JP S6272584 A JPS6272584 A JP S6272584A
Authority
JP
Japan
Prior art keywords
gas
film
atmosphere
furnace
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21409885A
Other languages
Japanese (ja)
Inventor
成田 雄司
隆夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP21409885A priority Critical patent/JPS6272584A/en
Publication of JPS6272584A publication Critical patent/JPS6272584A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、無機素材の表面に例えば、5iJ4膜を被覆
せしめて成る耐火物の複合方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a composite method for refractories in which the surface of an inorganic material is coated with, for example, a 5iJ4 film.

(従来の技術およびその問題点) 例えば高純度のSi素材の製造において、溶解、凝固の
工程で溶湯と接触する容器からの不純成分の混入は、素
材の品質を悪化させる。従って、Si溶解ルツボあるい
はSi凝固用鋳型では、高純度のSiインゴットを作る
ために内面に5iJa粉末を塗型剤として使用している
。しかし、塗型の接着剤として従来はリン酸塩等の無機
系バインダーを使用していた為、容器からの不純成分の
拡散は抑制できるのであるが、バインダーからの不純成
分が侵入するという問題があった。また、塗型膜自体も
塗布後の乾燥期における脱水過程でポーラスになる為、
緩衝層としての役割が不十分であった。
(Prior Art and its Problems) For example, in the production of a high-purity Si material, impurity components from a container that comes into contact with the molten metal during the melting and solidification steps deteriorate the quality of the material. Therefore, in a Si melting crucible or a Si solidification mold, 5iJa powder is used as a mold coating agent on the inner surface in order to produce a high purity Si ingot. However, since inorganic binders such as phosphates have traditionally been used as adhesives for coating molds, diffusion of impurities from the container can be suppressed, but there is a problem of impurities entering from the binder. there were. In addition, the coating film itself becomes porous during the dehydration process during the drying period after application.
Its role as a buffer layer was insufficient.

更に、塗布膜の接着性も不安定で容器素材との接触によ
る成分の浸透も生じ易かった。いずれにせよ従来の方法
では高純度のインゴットの確保が困難で黒皮として切削
すべき量が多かった。
Furthermore, the adhesion of the coating film was unstable, and components were likely to penetrate through contact with the container material. In any case, with the conventional method, it was difficult to secure high-purity ingots, and a large amount of black rind had to be cut.

ところで、このようなSiの溶製、凝固の過程で容器か
らの成分の拡散浸透を回避するためには、容器素材とし
て耐熱性が高く、溶湯金属に濡れにく(、しかも、化学
的にも安定な5i3Nnが適当である。しかる−に、セ
ラミックス素材としての5iJ4は5i3Na粉末を所
要形状に成形焼成させたものや、Si粉を成形後反応焼
結させたものである為、大半は焼結助剤として種々の物
質(Y、03、MgO1Al2O2、Fe2O,、BN
等)を含有し、多くは酸化物として5isNa粒子を結
合するMi織形態をとる。
By the way, in order to avoid the diffusion and permeation of components from the container during the melting and solidification process of Si, the container material must be highly heat resistant, resistant to getting wet by molten metal (and chemically resistant). Stable 5i3Nn is suitable.However, 5iJ4 as a ceramic material is made by molding and firing 5i3Na powder into the desired shape, or by reaction-sintering Si powder after molding, so most of it is sintered. Various substances (Y, 03, MgO1Al2O2, Fe2O,, BN
etc.), and most take the form of a Mi weave that binds 5isNa particles as an oxide.

このため、Y 、 Mg、 AI、Fe、 B等の拡散
が生し、とくに大量のOがSi素地に供給される。従っ
て、不純成分の侵入を遮断する意味で完全でなく、また
、素材そのものも高価であるため、工業規模での実用に
耐えず、試用段階である。このような状況から、この種
の容器に対しては、密着性が良く純度の高いS:J<膜
の形成が望まれていた。
Therefore, diffusion of Y, Mg, AI, Fe, B, etc. occurs, and in particular, a large amount of O is supplied to the Si substrate. Therefore, it is not perfect in terms of blocking the intrusion of impure components, and the material itself is expensive, so it cannot be put to practical use on an industrial scale and is still in the trial stage. Under these circumstances, it has been desired to form a S:J< film with good adhesion and high purity for this type of container.

近年、溶射とくにセラミックス溶射は、様々な素材をコ
ートして新たな機能を付与する表面処理法として発展し
てきた。
In recent years, thermal spraying, especially ceramic thermal spraying, has developed as a surface treatment method that coats various materials to impart new functions.

しかしながら、大気下の溶射の場合、■窒化物は高融点
であること(>2000℃)、■大気下では融点を持た
ず酸化分解し易いこと、■粉形状が針状でガス搬送が困
難であること、の理由から劣られず、多くはサーメット
溶射されている。
However, in the case of thermal spraying in the atmosphere, 1) nitrides have a high melting point (>2000℃), 2) they do not have a melting point in the atmosphere and are easily oxidized and decomposed, and 2) the powder shape is acicular, making gas transport difficult. For this reason, many are thermally sprayed with cermet.

最近になって減圧上溶射や真空溶射と呼ばれるシステム
が開発されているが、これもサーメット溶射の範昭を出
す、粉の酸化防止に主眼をおいたちのである。とくに5
iJa膜自体の形成は不可能視されている。
Recently, systems called reduced-pressure thermal spraying and vacuum thermal spraying have been developed, but these also focus on preventing oxidation of powder, which represents a breakthrough in cermet thermal spraying. Especially 5
Formation of the iJa film itself is considered impossible.

一方、表面処理法としてはPVD、CVD方法等種々の
蒸着法があり、生成される窒化物膜は極めて高品位のも
のである。しかし、得られる皮膜の生成速度は最大50
μm/日程度であり、また、蒸着面の形態で膜形成が不
均一になり易く、更に、蒸着容器の大きさに供試料が制
約される欠点もあり、本格的な利用の点で困難な面が多
い。
On the other hand, surface treatment methods include various deposition methods such as PVD and CVD, and the nitride films produced are of extremely high quality. However, the formation rate of the resulting film is up to 50
μm/day, and film formation tends to be uneven depending on the shape of the deposition surface.Furthermore, the sample size is limited by the size of the deposition container, making it difficult to use on a full-scale basis. There are many faces.

しかし、この方法によれば、膜中ボア量を軽減できる。However, according to this method, the amount of bores in the membrane can be reduced.

そこで本発明者等は、種々、実験、研究の結果、金属膜
の形成段階と膜の窒化段階との組合わせで容易に窒化膜
で被覆された複合材料を製造する方法を確立させたので
ある。
As a result of various experiments and research, the present inventors established a method for easily manufacturing a composite material coated with a nitride film by combining a metal film formation step and a film nitridation step. .

すなわち本発明は、上記問題点に鑑みて成されたもので
あり、無機素材の表面に容易に窒化物あるいは炭窒化物
皮膜を被覆せしめることができる耐火物の複合方法を提
供せんとするものである。
That is, the present invention has been made in view of the above problems, and it is an object of the present invention to provide a composite method for refractories that can easily coat the surface of an inorganic material with a nitride or carbonitride film. be.

(問題を解決するための手段) 本発明は、大気下若しくはN2ガス雰囲気下において静
ガス、N2ガス若しくはこれらの混合ガスを作動ガスと
してSt、 Ti、 Zr、 AI金属粉を無機素材の
表面にプラズマ溶射した後、当該溶射基材をN2雰囲気
中において800〜1400℃で熱処理することを要旨
とするものである。
(Means for Solving the Problems) The present invention applies St, Ti, Zr, and AI metal powder to the surface of an inorganic material in the air or in an N2 gas atmosphere using static gas, N2 gas, or a mixture thereof as a working gas. The gist of this method is to heat-treat the sprayed base material at 800 to 1400°C in an N2 atmosphere after plasma spraying.

すなわち、本発明方法において、溶射て金属膜を生成す
る段階では、溶射ガンとしてガスプラズマ溶射機を用い
る。そして、作動ガスとしてN2ガス、Arガス若しく
はこれらの混合ガスを用いる。
That is, in the method of the present invention, a gas plasma spray machine is used as a spray gun in the step of spraying to generate a metal film. Then, N2 gas, Ar gas, or a mixed gas thereof is used as the working gas.

いわゆる1次ガスはN2ガス若しくはArガスであると
同時に、2次ガスは静ガス若しくはN2ガスを用いる。
The so-called primary gas is N2 gas or Ar gas, and the secondary gas is static gas or N2 gas.

ところで、これらの量比の選定は、主に作動プラズマの
性質と溶射の物性との関係で決まるものであり、本発明
者等は溶射粒子の溶融付着性を良くする観点と、膜の緻
密性を良くする観点で使いわけた。すなわち、熱量を確
保する上ではN2ガス等の二原子ガスが有利であり、ま
た流速の大きいプラズマを得る上では静ガス等の単原子
ガスが有利である。また、これらの混合ガスの場合には
両面の特性が得られ、結果的に皮膜性状が向上する。
By the way, the selection of these quantitative ratios is determined mainly by the relationship between the properties of the working plasma and the physical properties of thermal spraying. I used them differently from the perspective of improving the. That is, diatomic gases such as N2 gas are advantageous in securing the amount of heat, and monatomic gases such as static gas are advantageous in obtaining plasma with a high flow rate. Further, in the case of a mixed gas of these, characteristics of both sides can be obtained, resulting in improved film properties.

なお、Heガス、N2ガスも同様の趣旨で2次ガスとし
て使用できるのであるが、経済性と作業の安全性で好ま
しくなく、しかも高電圧を要するため任意に量比を調整
することができない。また、0□ガス、CO2ガスある
いは空気を用いた作動プラズマでは、02−イオン状態
になるので溶射材であるSt粉の酸化防止の観点で除外
される。しかし、酸化防止の観点では、シールド溶射、
真空下溶射法は有効であり、同時に溶射基材が予熱状態
になるため付着率で大きく寄与する。
Note that He gas and N2 gas can be used as secondary gases for the same purpose, but they are unfavorable in terms of economy and work safety, and furthermore, they require high voltage, so the ratio of amounts cannot be adjusted arbitrarily. In addition, operating plasma using 0□ gas, CO2 gas, or air is excluded from the viewpoint of preventing oxidation of St powder, which is a thermal spray material, because it becomes a 02-ion state. However, from the perspective of preventing oxidation, shield spraying,
The vacuum thermal spraying method is effective, and at the same time the thermal spraying substrate is preheated, which greatly contributes to the adhesion rate.

N2ガスと計ガスの混合比を流量比10010〜0/1
00とし、N2ガス流量比(Nz/Ar)が1OO10
〜50150の場合には出力電流を700    ′〜
400Aにし、また、50150〜O/100即ちAr
ガス流量比(Ar/Nz)が10010〜50150の
場合には出力電流を700〜100OAにする必要があ
る。すなわち、N2ガス比が大きい場合には、溶射ガン
の負電極が急激に消耗し易くなり、溶射膜が電極のWイ
オンで汚染されるためである。またArガス比が大きい
場合には、電極に及ぼす熱負荷が小さいものの、プラズ
マの流速を最大限確保する上で高出力に設定する必要が
あるからである。いずれもガン構造の機能上の制約に基
き、金属を溶射する上では高電流化が望ましいと言える
が、本発明ではMetco7MB (米国メテコ社製、
80KW型)を用いた。
The mixing ratio of N2 gas and gauge gas is the flow rate ratio of 10010 to 0/1.
00, and the N2 gas flow rate ratio (Nz/Ar) is 1OO10.
~50150, the output current is 700'~
400A, and 50150~O/100, that is, Ar
When the gas flow rate ratio (Ar/Nz) is 10010 to 50150, the output current needs to be 700 to 100OA. That is, when the N2 gas ratio is large, the negative electrode of the thermal spray gun tends to be rapidly worn out, and the sprayed film is contaminated with W ions from the electrode. Furthermore, when the Ar gas ratio is large, although the thermal load exerted on the electrode is small, it is necessary to set the output to a high output in order to ensure the maximum plasma flow rate. In either case, it can be said that high current is desirable for thermal spraying metals due to functional limitations of the gun structure.
80KW type) was used.

溶射材料である金属粉の粒度は、100〜5μmの範囲
が適当である。すなわち、100μmを超える場合には
粉末の溶融が不完全になって付着率も低下し、かつ膜と
して積層する粒子間の気孔径が大きくなって付着強度が
さがるからであり、また5μm未満の場合にはプラズマ
炎に導かれるガス搬送が困難になり、プラズマ炎中で粒
子が過熱蒸発する場合があって不適当だからである。一
方窒化処理時の金属膜へのNイオンの浸透あるいは窒化
時の体積膨張を肝案すると、膜中の気孔径は10〜2μ
mの範囲が適当であり、また、これに応じて粉体粒度は
、50〜15μmの範囲が最適であった。また、上記体
積膨張の点で溶射膜の膜厚は0.5μmが限度である。
The particle size of the metal powder, which is the thermal spray material, is suitably in the range of 100 to 5 μm. In other words, if it exceeds 100 μm, the melting of the powder will be incomplete and the adhesion rate will decrease, and the pore size between the particles stacked as a film will increase and the adhesion strength will decrease, and if it is less than 5 μm, the adhesion strength will decrease. This is because it becomes difficult to transport the gas guided to the plasma flame, and particles may be overheated and evaporated in the plasma flame, making it unsuitable. On the other hand, if we consider the penetration of N ions into the metal film during nitriding or the volume expansion during nitriding, the pore diameter in the film will be 10 to 2μ.
The range of m was appropriate, and the particle size of the powder was optimal in the range of 50 to 15 μm. Further, in view of the above-mentioned volumetric expansion, the thickness of the sprayed film is limited to 0.5 μm.

溶射膜の気孔量としては、Ntガス通気による反応焼結
を促進するために見掛気孔率が10%以内となる調整を
要し、この点でも粉体粒度は重要である。
The amount of pores in the sprayed film must be adjusted so that the apparent porosity is within 10% in order to promote reaction sintering by Nt gas aeration, and the powder particle size is also important in this respect.

このように溶射膜中に形成される気孔は基本的に粒度に
負うのであるが、施工条件によっても調整可能である。
The pores formed in the sprayed film basically depend on the particle size, but they can also be adjusted depending on the construction conditions.

すなわち、溶射される基材面に対して溶射ガンの軸つま
り、プラズマ炎の芯軸を67〜85°の範囲にすれば、
液滴積層時のShadow−effectにより気孔を
形成し易くなるのである。
In other words, if the axis of the thermal spray gun, that is, the core axis of the plasma flame, is set within the range of 67 to 85 degrees with respect to the surface of the substrate to be thermally sprayed,
The shadow effect during the stacking of droplets facilitates the formation of pores.

しかし、85°を超えると前記Shadow−effe
ctは現われず、また、67°未満ではポーラスな皮膜
になり実用に供しない、あるいは、N2ガスを1次ガス
とした低速度のプラズマで溶射すれば、積層中の気孔が
増加する。この時、速度調整のためArガスの添加量を
変えれば、気孔形成が調整される。
However, if the angle exceeds 85°, the shadow-effe
ct does not appear, and if it is less than 67 degrees, the film becomes porous and cannot be used for practical use, or if thermal spraying is performed with low-velocity plasma using N2 gas as the primary gas, the number of pores in the stack increases. At this time, pore formation can be adjusted by changing the amount of Ar gas added to adjust the speed.

従って、所要の皮膜性状を得るためには、溶射材の物性
と共に施工条件の調整も必要であり、このためには、任
意に流量比を変換し得る作動ガスが必要であって、Ar
ガスとN2ガスの使用が最も適したガス種と言える。
Therefore, in order to obtain the desired film properties, it is necessary to adjust the physical properties of the thermal spray material as well as the construction conditions.
It can be said that the most suitable gas types are gas and N2 gas.

次に、窒化雰囲気の熱処理段階では、大気を遮断するに
必要十分な密封された加熱炉で行なう。
Next, the step of heat treatment in a nitriding atmosphere is carried out in a heating furnace that is sealed sufficiently to block the atmosphere.

この場合、窒化の影響を受けない点でカーボン質の発熱
体を用いた抵抗加熱炉や電気炉が有効である。但し、N
2ガス等の発生を考慮し、加熱中はガス投入分の排気が
必要である。このために排気孔には逆火防止弁をとりつ
けた配管系にする等の配慮が必要である。
In this case, a resistance heating furnace or an electric furnace using a carbon heating element is effective because it is not affected by nitriding. However, N
In consideration of the generation of two gases, etc., it is necessary to exhaust the amount of gas input during heating. For this reason, it is necessary to take precautions such as installing a piping system with a flashback prevention valve in the exhaust hole.

N2分圧は高圧程窒化が進むのであるが、10時間以上
の十分な熱処理時間をとれば、所要の窒化が得られる。
The higher the N2 partial pressure, the more nitriding progresses, but if a sufficient heat treatment time of 10 hours or more is allowed, the required nitriding can be obtained.

例えば、膜厚Q、jam、気孔量7゜5%の皮膜に対し
ては10時間の熱処理時間が必要である。速度換、算で
は10〜20μm/時間の範囲で窒化は達成できる。
For example, a heat treatment time of 10 hours is required for a film having a film thickness Q, jam, and a pore volume of 7.5%. In terms of speed, nitriding can be achieved within a range of 10 to 20 μm/hour.

金属S+の融点(1410℃)を肝案じて熱処理温度は
1400℃以下が必要である。また、所要の窒化速度を
得るためには800℃以上が必要である。NH3を用い
た場合500℃以上の温度でも窒化が得られるが、この
場合にはFe等の触媒を必要とし、また、Si溶製用ル
ツボ被覆の場合、不純成分混入の点で不適当である。ま
た、カーボン質発熱体を使用した炉の場合には、Si3
N、と共にSiCが生成されることもある。これは加熱
初期に発生するCOの影響によるもので、昇温過程50
0℃で脱気すれば、SiC生成量は少なくなる。但し、
基材がカーボン系の場合には膜界面でのSiC生成は回
避できない。また、基材中に酸素イオンが含有される場
合も同様である。しかし、N2雰囲気と接する膜表面で
は窒化がほぼ完全に進行し、発明の目的である膜機能は
確保できる。従って、昇温過程800℃までに雰囲気中
酸素の除去のため、10−’torr以下に一旦炉内を
減圧させ、N2もしくはNH3置換を促すことが必要で
ある。
Considering the melting point (1410°C) of metal S+, the heat treatment temperature must be 1400°C or lower. Further, in order to obtain the required nitriding rate, a temperature of 800° C. or higher is required. When NH3 is used, nitriding can be obtained even at temperatures above 500°C, but in this case a catalyst such as Fe is required, and in the case of coating a crucible for Si melting, it is unsuitable due to the contamination of impurities. . In addition, in the case of a furnace using a carbonaceous heating element, Si3
SiC may also be produced together with N. This is due to the influence of CO generated at the initial stage of heating, and is due to the influence of CO generated during the heating process.
If the gas is degassed at 0° C., the amount of SiC produced will be reduced. however,
When the base material is carbon-based, SiC generation at the film interface cannot be avoided. The same applies when oxygen ions are contained in the base material. However, nitridation progresses almost completely on the film surface in contact with the N2 atmosphere, and the film function, which is the object of the invention, can be ensured. Therefore, in order to remove oxygen in the atmosphere during the heating process up to 800° C., it is necessary to once reduce the pressure in the furnace to 10-'torr or less to promote N2 or NH3 substitution.

このような金属膜の窒化処理は、Siに限らずTi、Z
r、A1等金属膜にも広く応用でき、材料の複合化法と
して極めて有効である。また、得られた5j3N4被覆
素材に5iJiを蒸着させれば、皮膜中にSi3N4が
析出して気孔量を減少させることもてき、素材は高品位
のSi3N4薄膜も含め二重に被覆され、複合機能が高
められる。
Such nitriding treatment of metal films is applicable not only to Si but also to Ti, Z, etc.
It can be widely applied to metal films such as r, A1, etc., and is extremely effective as a method for compositing materials. In addition, if 5iJi is deposited on the obtained 5j3N4 coated material, Si3N4 will precipitate in the film and reduce the amount of pores, and the material will be double coated, including a high-grade Si3N4 thin film, and will have multiple functions. is enhanced.

(作     用) 本発明方法は、Sis Ti5Zrx Al金属粉を無
機素材の表面にプラズマ溶射した後、当該溶射基材をN
2雰囲気中において熱処理する為、容易に無機素材の表
面に窒化物あるいは炭窒化物皮膜を被覆せしめることが
できる。
(Function) In the method of the present invention, after plasma spraying Sis Ti5Zrx Al metal powder onto the surface of an inorganic material, the sprayed base material is subjected to N
Since the heat treatment is performed in a 2 atmosphere, the surface of the inorganic material can be easily coated with a nitride or carbonitride film.

(実施例1) 金属Si (純度99.5%)を75〜50μmの粒度
に粉砕したものを溶射材とし、人造黒鉛板および溶融シ
リカ板を基材として、#60アルミナグリッドで表面研
掃したものに溶射した。溶射条件として作動ガスはN2
ガス: 76Nl/分、^rガス: 1.ONI/分と
し、出力電流600Aのプラズマを作動させて、150
μmの皮膜を形成した。
(Example 1) Metallic Si (purity 99.5%) was pulverized to a particle size of 75 to 50 μm as a thermal spraying material, and an artificial graphite plate and a fused silica plate were used as base materials, and the surface was polished with #60 alumina grid. Sprayed on things. The working gas is N2 as a thermal spraying condition.
Gas: 76Nl/min, ^rGas: 1. ONI/min, operating a plasma with an output current of 600A,
A film of μm was formed.

さらに、Po、 = 100ppm以下のN2ガス雰囲
気中のタンマン炉で1350℃±20℃で20時間熱処
理し、含を量約60%の5iJa膜を得た。その結果を
下記表1に示す。
Further, heat treatment was performed at 1350° C.±20° C. for 20 hours in a Tamman furnace in an N2 gas atmosphere with Po=100 ppm or less to obtain a 5iJa film with a content of about 60%. The results are shown in Table 1 below.

表1.1j6W1)での溶射条件と膜の性状※ 熱サイ
クルを与え酌躍する回数 上記表1における付着強度は、断面が2C艷のボルト(
材質5S−41)をエポキシ樹脂で皮膜上に固定し、ト
ルクレンチで捩り強さを測定した時のトルクでもって数
値化し、従来のリン酸バインダーで塗布した膜強度を1
00としてその比率で示した。また、耐熱衝撃性は、1
000℃の炉内に15分間加熱したものを15分間空中
放置して再度炉内に装入して皮膜に急熱急冷の衝撃を与
え、剥離が生ずる回数で優劣を示した。
Table 1. Thermal spraying conditions and film properties for 1j6W1)* Number of times of thermal cycling
Material 5S-41) was fixed on the film with epoxy resin, and the torsional strength was measured using a torque wrench.The torque was used to quantify the strength of the film coated with a conventional phosphoric acid binder.
The ratio is shown as 00. In addition, the thermal shock resistance is 1
The coatings were heated in a furnace at 000°C for 15 minutes, left in the air for 15 minutes, and then charged into the furnace again to give the coating a shock of rapid heating and cooling.

上記表1より明らかな如く、本発明方法による窒化物(
SisN4)皮膜は、従来方法による窒化物皮膜と比較
して、付着強度比、耐熱衝撃性共に大幅に優れている。
As is clear from Table 1 above, nitride (
The SisN4) film is significantly superior in both adhesion strength ratio and thermal shock resistance compared to nitride films produced by conventional methods.

(実施例2) 見掛気孔率20.2%の高炉用カーボンブロック表面に
、金属Ti (純度90%、残部Fe)を100〜70
μmの粒度に粉砕したものを溶射材料とし、Arガス5
ONl/分、N2ガス7.2NI/分の混合ガスを作動
ガスとして、出力電流800〜900Δのプラズマを作
動させて、前記カーボンブロック全面に50μmの皮膜
を形成した。これらのカーボンブロックをPo、=1%
の雰囲気下の電気炉で25時間熱処理した。なお、炉内
ではカーボンブロックをコークス粒中に埋込み、Ntガ
スを吹込みながら通電した。この時のN2ガスの吹込み
量は炉内容積1rrr当り、0.6〜0.9r//分と
した。この結果、Ti膜はTi(Co、4、No、h)
のチタン炭窒化皮膜に変化した。付着強度、耐熱衝撃性
は、カーボンブロックからピースを切り出したものを上
記(実施例1)と同様の方法で行った。比較材としてT
iN粉末を珪酸ソーダ液で混合したものを塗布した材料
とした。その結果を上記表1に示す。
(Example 2) Metal Ti (purity 90%, remainder Fe) was applied to the surface of a blast furnace carbon block with an apparent porosity of 20.2%.
The thermal spraying material is pulverized to a particle size of μm, and Ar gas 5
Using a mixed gas of ONl/min and N2 gas of 7.2NI/min as working gas, a plasma with an output current of 800 to 900Δ was operated to form a film of 50 μm on the entire surface of the carbon block. These carbon blocks are Po, = 1%
Heat treatment was performed for 25 hours in an electric furnace under an atmosphere of Note that in the furnace, carbon blocks were embedded in coke grains, and electricity was applied while blowing Nt gas. The amount of N2 gas blown at this time was 0.6 to 0.9 r//min per 1 rrr of furnace internal volume. As a result, the Ti film is made of Ti(Co, 4, No, h)
titanium carbonitride film. Adhesive strength and thermal shock resistance were tested using the same method as described above (Example 1) on pieces cut out from carbon blocks. T as a comparison material
The material was prepared by coating iN powder mixed with a sodium silicate solution. The results are shown in Table 1 above.

上記表1より明らかな如く、本実施例2の場合にも、従
来法と比較して付着強度比、耐熱衝撃性共に大幅に優れ
ている。
As is clear from Table 1 above, in the case of Example 2, both the bond strength ratio and the thermal shock resistance are significantly superior compared to the conventional method.

(実 施 例 3) (実施例1)C得た溶融シリカ板を密封炉に入れ、炉内
圧を10−’torrに減圧後、5iC1nガスを2O
N1/分通気させて、10℃/分の昇温速度で加熱して
870℃に保持後、10時間熱処理した。
(Example 3) (Example 1) The obtained fused silica plate was placed in a sealed furnace, and after reducing the furnace pressure to 10-'torr, 5iC1n gas was added to 2O
It was aerated with N1/min, heated at a temperature increase rate of 10°C/min, maintained at 870°C, and then heat-treated for 10 hours.

この結果、5iJa 量は65%まで増加し、気孔量も
0.10cc/gから0.04cC/gに減少して密封
効果が得られた。
As a result, the amount of 5iJa increased to 65%, the amount of pores decreased from 0.10 cc/g to 0.04 cC/g, and a sealing effect was obtained.

(発明の効果) 以上説明したように本発明によれば、容易に付着強度や
耐熱衝撃性の優れた窒化物あるいは炭窒化物皮膜が得ら
れ、従って優れた機能を有する複合材料を得ることがで
きる大なる効果を有する。
(Effects of the Invention) As explained above, according to the present invention, a nitride or carbonitride film with excellent adhesion strength and thermal shock resistance can be easily obtained, and therefore a composite material with excellent functions can be obtained. It has great effects.

Claims (1)

【特許請求の範囲】[Claims] (1)大気下若しくはN_2ガス雰囲気下においてAr
ガス、N_2ガス若しくはこれらの混合ガスを作動ガス
としてSi、Ti、Zr、Al金属粉を無機素材の表面
にプラズマ溶射した後、当該溶射基材をN_2雰囲気中
において800〜1400℃で熱処理することを特徴と
する耐火物の複合方法。
(1) Ar under air or N_2 gas atmosphere
After plasma spraying Si, Ti, Zr, and Al metal powder onto the surface of an inorganic material using gas, N_2 gas, or a mixture thereof as a working gas, heat-treating the sprayed base material at 800 to 1400°C in an N_2 atmosphere. A composite method for refractories characterized by:
JP21409885A 1985-09-26 1985-09-26 Composite method for refractories Pending JPS6272584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21409885A JPS6272584A (en) 1985-09-26 1985-09-26 Composite method for refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21409885A JPS6272584A (en) 1985-09-26 1985-09-26 Composite method for refractories

Publications (1)

Publication Number Publication Date
JPS6272584A true JPS6272584A (en) 1987-04-03

Family

ID=16650188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21409885A Pending JPS6272584A (en) 1985-09-26 1985-09-26 Composite method for refractories

Country Status (1)

Country Link
JP (1) JPS6272584A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006334671A (en) * 2006-09-25 2006-12-14 Kyocera Corp Method for manufacturing silicon casting mold

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006334671A (en) * 2006-09-25 2006-12-14 Kyocera Corp Method for manufacturing silicon casting mold

Similar Documents

Publication Publication Date Title
CN107814591B (en) Preparation method of boride modified silicon-based antioxidant coating on surface of carbon material
JPS60502246A (en) Composite improved silicon-aluminum-oxynitride cutting tool with coating
JPH0469119B2 (en)
JPS60502244A (en) Coated silicon nitride cutting tools
WO2011027756A1 (en) Process for production of silicon-carbide-coated carbon base material, silicon-carbide-coated carbon base material, sintered (silicon carbide)-carbon complex, ceramic-coated sintered (silicon carbide)-carbon complex, and process for production of sintered (silicon carbide)-carbon complex
JPS60502245A (en) Composite silicon nitride cutting tool with coating
JPS58211863A (en) Composite improved silicon-aluminum -oxygen nitride cutting tool also executing coating
JPS58171502A (en) Pulverized composite powder of ceramic and metal
JPS61190891A (en) Carbon or graphite body having protective film and manufacture thereof
JPS5913671A (en) Titanium carbonitride-metal boride ceramics material
CN115448731B (en) Preparation method of graphite crucible coating for vanadium-nitrogen alloy
JPS6272584A (en) Composite method for refractories
KR20040069837A (en) Method for Making Oxidation Protective Double Coating for Carbon/Carbon Composite
JP3403459B2 (en) Carbon member with ceramic spray coating
CA1245463A (en) Coated silicon nitride cutting tool and process for making
EP0095130B1 (en) Coated composite modified silicon aluminum oxynitride cutting tools
CN111410560A (en) Preparation method of silicified graphite with high-density SiC coating
JPS61143686A (en) Silicon carbide sintered body for heat-resistant jig having excellent dimensional accuracy
JPH03146470A (en) Silicon carbide-based material
JPH0224789B2 (en)
JPH0333676B2 (en)
CN107382364A (en) A kind of light weight low-loss carborundum series refractory material and preparation method thereof
CN117164386A (en) Coating for reducing carburization of graphite crucible and preparation method thereof
JPS61163180A (en) High size precision and anti-abrasivity silicon carbide composite body and manufacture
JPH0435436B2 (en)