JPS6272501A - Method for decomposing methanol - Google Patents

Method for decomposing methanol

Info

Publication number
JPS6272501A
JPS6272501A JP21116485A JP21116485A JPS6272501A JP S6272501 A JPS6272501 A JP S6272501A JP 21116485 A JP21116485 A JP 21116485A JP 21116485 A JP21116485 A JP 21116485A JP S6272501 A JPS6272501 A JP S6272501A
Authority
JP
Japan
Prior art keywords
methanol
water
catalyst
reaction
decomposing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21116485A
Other languages
Japanese (ja)
Inventor
Yoshio Miyairi
宮入 嘉夫
Mitsuharu Murakami
村上 光春
Mamoru Tamai
玉井 守
Tetsuya Imai
哲也 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP21116485A priority Critical patent/JPS6272501A/en
Publication of JPS6272501A publication Critical patent/JPS6272501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To produce gas contg. CO by decomposing methanol stably for a long period with high activity at low temp. in the presence of water using a methanol decomposition catalyst. CONSTITUTION:Gas contg. CO is produced by decomposing methanol in the presence of 1-20mol water per 100mol methanol using methanol decomposition catalyst. If the amt. of water is <1mol per 100mol methanol, the effect of the added water is insufficient, insufficient effect for preventing deposition of carbon and for improving the life of the catalyst is obtd. If the amt. of water is >20mol, consumption of water or steam is increased and decomposed gas of high CO content is not produced. Preparation of a mixture of water with methanol may be executed by mixing methanol with water both being in the liquid state, or by mixing the vapor of methanol with steam.

Description

【発明の詳細な説明】 く浬業上の利用分野〉 本発明は、メタノール分解方法に関するものである。[Detailed description of the invention] Fields of commercial use> The present invention relates to a methanol decomposition method.

更に詳しくは、メタノール分解触媒、例えば銅、亜鉛、
V In族金属からなる群の一種以上の金属又は金属酸
化物を含有する触媒を用いてメタノールを分解して一酸
化炭素含有ガス′に製造する方法において長時間安定し
てメタノールを分解する方法に関するものである〇 く従来の技術〉 現在、化学工業において、特に有機合成反応に用いらn
る一酸化炭素や一酸化炭素と水素の混合ガス(オキソガ
ス等)の原料には、原油及びそれから精製された石油類
が使用されているが、最近の石油価格の高騰のため、原
料の多様化が指向されて原油以外の化石原料からも合成
されるメタノールが原料として注目されている。
More specifically, methanol decomposition catalysts such as copper, zinc,
V Relating to a method for stably decomposing methanol over a long period of time in a method for producing carbon monoxide-containing gas by decomposing methanol using a catalyst containing one or more metals or metal oxides of the group consisting of In group metals 〇Conventional technology〉 Currently, in the chemical industry, there are
Crude oil and petroleum products refined from it are used as raw materials for carbon monoxide and mixed gases of carbon monoxide and hydrogen (oxo gas, etc.), but due to the recent rise in oil prices, raw materials are diversifying. methanol, which can be synthesized from fossil raw materials other than crude oil, is attracting attention as a raw material.

またメタノールはナフサよりはるかに低温で一酸化炭素
含有ガスに分解されるので、上記分解反応の熱源として
廃熱の利用か可能であるという優位性をもっている。
Furthermore, since methanol is decomposed into carbon monoxide-containing gas at a much lower temperature than naphtha, it has the advantage that waste heat can be used as a heat source for the decomposition reaction.

メタノールに水を共存させた分解反応式は下記(0式で
ある。
The decomposition reaction formula when water coexists with methanol is shown below (equation 0).

0H10H+nH10−+ (1−n ) CO+(2
+n )H2+nc02 @−(1)ここで、0 (n
 (1 反応(1)において、 n=oの場合、Cu2O3→OO+211鵞−21,7
’Ih1l (2)n = 1の場合、0130H+H
2O−+002 +!SH!−11,8Kng(3)と
なる・口が大きくなるに従い、CO主属量は減少し、H
210Oのモル比は2から次第に大きな頌になって行く
0H10H+nH10-+ (1-n) CO+(2
+n )H2+nc02 @-(1) Here, 0 (n
(1 In reaction (1), if n=o, Cu2O3→OO+211鵞−21,7
'Ih1l (2) If n = 1, 0130H+H
2O−+002 +! SH! -11.8 Kng (3) ・As the mouth becomes larger, the main metal content of CO decreases, and H
The molar ratio of 210O gradually becomes larger from 2.

al化学で代表さnるCo f便用する化学工業におい
ては、たとえば仄のような合成反応が行わnる。
In the chemical industry, which uses Cof, typified by alchemistry, the following synthetic reactions are carried out, for example.

オキソ反応、ROI(=OH2+OO+H,→ROH2
・CH2・0HO(4)(例えば、R:アルキル基) カルボニル化反応、01(30H+OO−+0H300
0H・・・(5)多くの場合、原料として要求さnるガ
スは、H2/COのモル比が0〜1である。従って、理
想的にはCO生成量の最も多い反応(2)、すなわち、
n=oの場合が快求さ扛る。
Oxo reaction, ROI (=OH2+OO+H, →ROH2
・CH2・0HO(4) (e.g. R: alkyl group) Carbonylation reaction, 01 (30H+OO−+0H300
0H (5) In many cases, the gas required as a raw material has a H2/CO molar ratio of 0 to 1. Therefore, ideally, the reaction (2) that produces the largest amount of CO, i.e.,
The case where n=o is very satisfying.

この場合であっても、分解ガスから水素を除去し、H2
/COのモル比が1以下または高純度−酸化酸素を得る
ために、分解ガス虫取工程の後段に膜や吸看剤による水
素分離工程が通常必要となる。’E7t、発電や自動車
の内燃機関においては、メタノール分解によるガスター
ビン、ガスタービン/蒸気タービン複合、内燃機関等の
動力向上による高効率化が注目さnている。こnらは、
反応(2)2反応(3)の吸熱反応全利用して高効率化
を狙うもので、吸熱量の多い反応(2)すなわちn=o
の反応の方が通常好ましい。
Even in this case, hydrogen is removed from the cracked gas and H2
In order to obtain high-purity oxidized oxygen with a /CO molar ratio of 1 or less, a hydrogen separation step using a membrane or absorbent is usually required after the decomposed gas removal step. In internal combustion engines for power generation and automobiles, attention has been focused on increasing efficiency by improving the power of gas turbines, combined gas turbines/steam turbines, internal combustion engines, etc. using methanol decomposition. These n et al.
The aim is to achieve high efficiency by fully utilizing the endothermic reactions of reaction (2) and reaction (3).
The reaction is usually preferred.

以上のごとく、産業界において反応(2)すなわちn=
oの場合を好んで使おうとする分野が多々存在する。
As mentioned above, in industry, reaction (2), that is, n=
There are many fields that prefer to use case o.

従来、メタノールを分解する触媒とし1は、アルミナな
どの担体に白金などの白金族元素又は銅、ニッケル、ク
ロム、亜鉛などの卑金属元素の金属又はその酸化物など
を担持した触媒、亜鉛、クロムさらKは銅を含有するメ
タノール合成用触媒など銅、亜鉛、vm展金族からなる
群の一種以上の金属又はその酸化物を含有する触媒が提
案さnている。
Conventionally, catalysts for decomposing methanol (1) include catalysts in which platinum group elements such as platinum or base metal elements such as copper, nickel, chromium, and zinc or their oxides are supported on a carrier such as alumina, zinc, chromium, etc. For K, a catalyst containing one or more metals or oxides thereof from the group consisting of copper, zinc, and the VM-extended metal group, such as a copper-containing catalyst for methanol synthesis, has been proposed.

ま九、発明者らは、上記の従来公知の触媒よりも低温活
性が高くかつ副反応の起こVVC<い触媒として銅、亜
鉛、クロムからなる泪の一種以上の金属の酸化物全ベー
スに酸化ニッケル全担持又は混合し友触媒(特開昭57
7174138.174139号公報)、アルミナをあ
らかじめ塩基性酸化物で被覆したものケ担体に白金、パ
ラジウムを担持し几触媒(特開昭57−68140号公
報)などをすでに提案している。
9. The inventors have developed a catalyst that has higher low-temperature activity than the conventionally known catalysts and is less likely to cause side reactions, and is based on oxides of one or more metals consisting of copper, zinc, and chromium. Fully supported or mixed nickel catalyst (Japanese Patent Application Laid-open No. 1983
7174138.174139), and a catalyst in which platinum or palladium is supported on a support of alumina coated with a basic oxide (Japanese Unexamined Patent Publication No. 57-68140) have already been proposed.

〈発明が解決しょうとする問題点〉 しかし、上記触媒はメタノールのみ全原料とする、すな
わちn=0の場合、低温活性が十分でなく、またカーボ
ンの析出が起こりやすい友め寿命が短かいという問題点
がある。
<Problems to be solved by the invention> However, when the above catalyst uses methanol as the only raw material, that is, when n=0, low-temperature activity is insufficient and carbon precipitation tends to occur, resulting in a short lifespan. There is a problem.

本発明の目的は上記の如き問題点′1?:解決し、メタ
ノールのみ全原料とする場合の一酸化炭素生成量に比べ
、その減少量を極力低く抑え、エリ低温下で活性が高く
、耐久性に優nたメタノール分解方法全提供することに
ある。
Is the purpose of the present invention to solve the problem '1' mentioned above? : We have solved the problem and provided a complete methanol decomposition method that suppresses the amount of carbon monoxide production as low as possible compared to the amount of carbon monoxide produced when methanol is the only raw material, has high activity at low temperatures, and has excellent durability. be.

く問題点全解決するための手段〉 本発明者らは、上記の問題点全解決すべく、鋭意実験検
討を重ね友結果、メタノール100モルに対して水を1
〜20モルの割合で水を共存させてメタノールを分解す
ることにより・目的生成物である一酸化炭素含有率の高
い分解ガスを得ることができ、低温活性が高くかつカー
し、本発明に至った。
Means for solving all the problems> In order to solve all the problems mentioned above, the inventors of the present invention have carried out extensive experimental studies and found that by adding 1 mol of water to 100 mol of methanol.
By decomposing methanol in the coexistence of water at a ratio of ~20 moles, it is possible to obtain a cracked gas with a high content of carbon monoxide, which is the target product, and which has high low-temperature activity and carbon content, which led to the present invention. Ta.

すなわち、本発明はメタノール分解触媒の存在下、メタ
ノールを分解して一酸化炭素含有ガスを製造する方法に
おいて、メタノール100モルに対して水を1〜20モ
ルの割合で水金共存させることを特徴とするメタノール
分解方法である。
That is, the present invention is a method for decomposing methanol to produce carbon monoxide-containing gas in the presence of a methanol decomposition catalyst, characterized in that water is allowed to coexist with water at a ratio of 1 to 20 moles per 100 moles of methanol. This is a methanol decomposition method.

本発明のメタノール分解方法は、メタノール100モル
に対して水金1〜20モルの割合で共存させることt−
特徴とするものである。
The methanol decomposition method of the present invention requires coexistence of water at a ratio of 1 to 20 moles with respect to 100 moles of methanol.
This is a characteristic feature.

このように水金共存させる割合を限定しているのは、メ
タノール100モルに対して水が1モル未満で4添加効
果が少なくカーボンの析出を防止し耐久性全向上させる
効果が少ない。ま九本が20モルを超える場合、水又は
スチームの消費量が多くなるという欠点、目的生成物で
ある一酸化炭素含有率の高い分解ガスを得ることができ
ず、通常の水蒸気改質反応(C)130H十H20→5
 H2+OO2,ΔH25℃= 11.8 Kcal/
 mot)の吸熱景Vr近づ告、 昼’MA filF
 囚I  I! M、n IJ−+(! 0−1− Z
I H,ΔTJ 7 ’I T”、=21、7 K(E
lll/ mot)の吸熱量と比較し生成ガスのカロリ
ーアップのメリットが低減するという欠点かあるからで
ある。
The reason why the proportion of water and gold in coexistence is limited is that when water is less than 1 mole per 100 moles of methanol, the effect of adding 4 is small and the effect of preventing carbon precipitation and improving the overall durability is small. When the number of moles exceeds 20 moles, the disadvantage is that water or steam consumption increases, the target product, cracked gas with a high carbon monoxide content, cannot be obtained, and the normal steam reforming reaction ( C) 130H 10H20→5
H2+OO2, ΔH25℃= 11.8 Kcal/
mot)'s endothermic view Vr approaching, noon'MA filF
Prisoner II! M, n IJ-+(! 0-1- Z
I H, ΔTJ 7 'IT', = 21, 7 K(E
This is because it has the disadvantage that the advantage of increasing the calories of the generated gas is reduced compared to the amount of heat absorbed by the gas.

メタノールに水を共存させる方法としては、液の段階で
混合してもメタノール蒸気に水蒸気を混合する方法でも
艮い。
Methods for making water coexist with methanol include mixing it in the liquid stage and mixing methanol vapor with water vapor.

また本発明の反厄条件としては、圧力0〜50に97c
m”、温度150〜600℃の範囲、メタノール100
モルに対して水金1〜20モルの割合で共存させること
が好ましく、特に好ましくはメタノール100モルに対
して水を1〜10モルの割合で共存させることである。
In addition, the anti-nuisance conditions of the present invention include 97c at a pressure of 0 to 50.
m”, temperature range of 150 to 600°C, methanol 100
It is preferable to coexist water at a ratio of 1 to 20 moles per mole of water, particularly preferably water to coexist at a ratio of 1 to 10 moles per 100 moles of methanol.

マ文本発明でいうメタノール分解触媒としては公知のい
ずれのものでもよく、例えば銅、亜鉛、V ItI族金
属からなる群の一種以上の金属又はその酸化物を含有す
る触媒が使用さnる。その例としては次のものがある。
The methanol decomposition catalyst used in the present invention may be any known catalyst, and for example, a catalyst containing one or more metals from the group consisting of copper, zinc, and VItI group metals or oxides thereof is used. Examples include:

(1)  酸化鋼、酸化クロムを主成分とする触媒で、
さらにはマンガン、バリウムなどの金属の酸化物を含有
する触媒(特公昭54−11274号公報) (2)酸化銅、酸化亜鉛を主成分とする触媒で・さらに
酸化クロムを含有する触媒(%開昭57−174138
号公報)、またさらに酸化アルミニウムを含有する触媒
、ま几さらに酸化アルミニウム及び酸化マンガン、酸化
ホウ素などを含有する触媒(特開昭59−151501
号公報) (3)酸化亜鉛、酸化クロムを主成分とする触媒(4)
銅、亜鉛、クロムからなる群の一種以上の金属の酸化物
をベースに酸化ニッケル會担持又は混合し友触媒(特開
昭57−174138.174139号公報) (5)  アルミナ、シリカなどの担体に酸化鋼管担持
した触媒(特開昭58−17836号公報;竹澤暢恒1
表面、  vo420 、 No、 10 F、 55
5゜(6)  アルミナを担体に酸化ニッケル、酸化ク
ロム、酸化銅を担持し九触媒(特公昭58−46346
.45286号公報) (7)  アルミナにニッケル及びカリウムを担持し次
触媒(特開昭57−144031号公報)(8)  白
金族金属全担持し次触媒で、例えばアルミナ金あらかじ
め塩基性物質の酸化物で被覆した担体上に白金、パラジ
ウムを担持した触媒(LP5開昭57−68140)、
箇たアルミナにロジウム及びカリウムを担持した触媒(
水封光−2表面、  voム19 、  No、 9.
 P、 515゜以上は例示であって本発明を特に限定
するものではない。
(1) A catalyst whose main components are oxidized steel and chromium oxide.
Furthermore, catalysts containing oxides of metals such as manganese and barium (Japanese Patent Publication No. 11274/1983) (2) Catalysts whose main components are copper oxide and zinc oxide, and catalysts containing chromium oxide (% Showa 57-174138
(Japanese Unexamined Patent Publication No. 151501/1989), catalysts further containing aluminum oxide, catalysts further containing aluminum oxide, manganese oxide, boron oxide, etc.
(3) Catalyst containing zinc oxide and chromium oxide as main components (4)
Friendly catalyst supported or mixed with nickel oxide based on oxides of one or more metals from the group consisting of copper, zinc, and chromium (Japanese Unexamined Patent Publication No. 57-174138.174139) (5) Support for alumina, silica, etc. Catalyst supported on oxidized steel pipe (JP-A-58-17836; Takezawa Nobutsune 1
Surface, vo420, No, 10 F, 55
5゜(6) Nine catalysts with nickel oxide, chromium oxide, and copper oxide supported on alumina (Japanese Patent Publication No. 58-46346)
.. 45286) (7) A secondary catalyst in which nickel and potassium are supported on alumina (JP-A-57-144031) (8) A secondary catalyst in which all platinum group metals are supported, for example, an oxide of a basic substance in advance of alumina gold A catalyst in which platinum and palladium are supported on a carrier coated with (LP5 1986-68140),
Catalyst with rhodium and potassium supported on solid alumina (
Water seal light-2 surface, vom 19, No. 9.
P, 515° or more is an example and does not particularly limit the present invention.

〔実施例〕〔Example〕

以下、実施例により本発明のメタノール分解方法を具体
的に説明する。
Hereinafter, the methanol decomposition method of the present invention will be specifically explained with reference to Examples.

(触媒の調製) アルミナ担体上所定組成比の硝酸カリウム、硝酸ニッケ
ルの混合水溶液に浸漬、乾燥後SOO℃で焼成してNi
O及びに、L)を七詐それ15重量%担持した触媒1を
調製し友。
(Preparation of catalyst) An alumina carrier is immersed in a mixed aqueous solution of potassium nitrate and nickel nitrate at a predetermined composition ratio, dried, and then calcined at SOO°C.
A catalyst 1 was prepared in which 15% by weight of O, L) was supported.

次に所定m酸比の硝酸鋼、硝酸亜鉛、硝酸クロムの混合
水浴液と炭酸す) IJクロム水浴液tそnぞ−n、a
o℃に加熱し艮〈攪拌しながら混合して生成させた沈殿
を洗浄乾燥後350℃で焼成することにエフ触媒2 (
Cub: zno:at−2o、のモル比=20:50
:5(lt−得文。
Next, carbonic acid is added to a mixed water bath solution of nitric acid steel, zinc nitrate, and chromium nitrate at a predetermined acid ratio).
The precipitate produced by mixing with stirring was washed and dried at 350°C and then heated to 350°C.
Cub: molar ratio of zno:at-2o = 20:50
:5(lt-tokubun.

アドキンス(Adkins )法と呼はれる1g1l!
法、即ち硝酸銅の水溶液に重クロム酸ソーダとアンモニ
ア水との混合水浴液を加え、更に硝酸マンガンを添加し
、良く混合して生成させた沈殿を洗浄、乾燥後350℃
で焼成することにエリ調製したもの(20uO:0r2
03 :MnO2のモル比=10:10:、1)t−担
体として硝酸ニッケルの水溶液に浸漬、乾燥、500℃
で焼成後NiOt″2重を係担持し几触媒3を調製した
◎ アルミナ担体を硝酸カルシウムの水溶液に浸漬、乾燥し
550℃で焼成しアルミナに刈してCaO1−I Q重
量嘔担持した担体を調製した。このようにして得らnた
担体を白金の硝酸塩水溶液に浸漬、乾燥後550℃で焼
成して白金?l−α5重量嘔担持した触媒4t−調製し
几@ 上記触媒1〜3i200℃で10時間、2チ水素気流(
触媒4のみは450℃で3時間、4チ水累気流)中で還
元し、圧力15 KCf/cm2G。
1g1l called the Adkins method!
In other words, a mixed bath solution of sodium dichromate and aqueous ammonia is added to an aqueous solution of copper nitrate, manganese nitrate is further added, and the precipitate formed by mixing well is washed, dried, and heated at 350°C.
(20uO:0r2)
03: MnO2 molar ratio = 10:10:, 1) Immersed in an aqueous solution of nickel nitrate as a t-carrier, dried, 500°C
Alumina carrier was immersed in an aqueous solution of calcium nitrate, dried and calcined at 550°C, and cut into alumina to prepare a carrier with a weight of CaO1-IQ supported. The carrier thus obtained was immersed in an aqueous solution of platinum nitrate, dried, and then calcined at 550°C to prepare 4 tons of catalysts supported with platinum ?l-α5 weight at 200°C. for 10 hours, 2 hours hydrogen flow (
Only catalyst 4 was reduced at 450° C. for 3 hours in a cumulative water stream) at a pressure of 15 KCf/cm2G.

Ll(BYC液空間速度) 1 h−’ 、反応温度2
70℃(触媒4のみは640℃)でメタノール全原料と
した活性評価を行った。
Ll (BYC liquid space velocity) 1 h-', reaction temperature 2
Activity evaluation was performed at 70°C (640°C for catalyst 4 only) using methanol as the entire raw material.

なお、メタノールと水の各種混合液(57a=H20/
CHSOHのモル比=0.  [Lol、  α05゜
α1.(12,(14)’に原料トシ友。
In addition, various mixed liquids of methanol and water (57a=H20/
Molar ratio of CHSOH=0. [Lol, α05°α1. (12, (14)' is the raw material Toshitomo.

q!r種条件に対する反応率ケ表1に示す。q! The reaction rate for r type conditions is shown in Table 1.

いずれの触媒にお1/−1でt1メタノールのみ(S/
C=0 )で分解上行うと、約1500時間後位から反
応率が急速に低下しはじめ、2500時間後には、50
チケ切り、反応温度を20℃上げて反応速度の促進金回
っても、8096以上には回復せず、触媒劣化がはげし
かった。
Only t1 methanol (S/
When decomposition is carried out at C=0), the reaction rate begins to decrease rapidly after about 1,500 hours, and after 2,500 hours, the reaction rate decreases to 50
Even though the reaction rate was accelerated by increasing the reaction temperature by 20°C, the catalyst did not recover to 8096 or higher, and the catalyst deteriorated significantly.

一方、メタノール原料に水を少量式nると、いすnの触
媒の場合も反応率の低下は抑えられ、触媒3でに、57
a=α05.  Q、1.  α2.α4のいずnも4
000時間経過しても85%以上の反応率が保持でき友
。但し、510=α4の場合にCOの生成量か少なくな
り、実用上メリットが小さい。ま之、反応温度を10〜
20℃上げて反応速度の速進全図ることにニジ、初ル1
の反応率まで回復させることができ、未反応メタノール
は反応糸へ再循環させることに工9、分解さnることも
確認され友。
On the other hand, when a small amount of water is added to the methanol raw material, the decrease in reaction rate is suppressed even in the case of the catalyst of Isu, and the catalyst 3 has a reaction rate of 57
a=α05. Q.1. α2. Izun of α4 is also 4
A reaction rate of over 85% can be maintained even after 1,000 hours. However, when 510=α4, the amount of CO produced is small, and there is little practical advantage. Man, the reaction temperature is 10~
I decided to raise the temperature by 20℃ to speed up the reaction rate.
It has also been confirmed that the reaction rate can be recovered to 100%, and that unreacted methanol can be recycled to the reaction yarn and decomposed.

表2には、反応開始10時間後のメタノール1モル当几
りの一酸化炭素と水素の平均的生成量(モル)全示し友
。どの触媒の場合でも、大差がないので平均値を採用し
た。B/Cの値が増大して行くに遅n、−酸化炭素の生
成量は低下して行くことがわかった□
Table 2 shows the average amount (mol) of carbon monoxide and hydrogen produced per mol of methanol 10 hours after the start of the reaction. Regardless of the catalyst, there was no significant difference, so the average value was used. It was found that as the value of B/C increases, the amount of n,-carbon oxide produced decreases □

Claims (1)

【特許請求の範囲】[Claims] メタノール分解触媒の存在下、メタノールを分解して一
酸化炭素含有ガスを製造する方法において、メタノール
100モルに対して水を1〜20モルの割合で水を共存
させることケ特徴とするメタノール分解方法。
A methanol decomposition method for producing carbon monoxide-containing gas by decomposing methanol in the presence of a methanol decomposition catalyst, characterized by coexisting water at a ratio of 1 to 20 moles per 100 moles of methanol. .
JP21116485A 1985-09-26 1985-09-26 Method for decomposing methanol Pending JPS6272501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21116485A JPS6272501A (en) 1985-09-26 1985-09-26 Method for decomposing methanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21116485A JPS6272501A (en) 1985-09-26 1985-09-26 Method for decomposing methanol

Publications (1)

Publication Number Publication Date
JPS6272501A true JPS6272501A (en) 1987-04-03

Family

ID=16601459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21116485A Pending JPS6272501A (en) 1985-09-26 1985-09-26 Method for decomposing methanol

Country Status (1)

Country Link
JP (1) JPS6272501A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638202A (en) * 1986-06-24 1988-01-14 Nippon Sanso Kk Production of hydrogen-carbon monoxide gas by methanolysis
WO2023237601A1 (en) * 2022-06-09 2023-12-14 Kuehl Olaf Production of syngas from methanol produced from syngas and/or co2

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51122102A (en) * 1975-04-17 1976-10-26 Hiroshima Gas Kk Process for producing fuel gas using methanol as the starting raw mate rial
JPS59184705A (en) * 1983-04-04 1984-10-20 Mitsubishi Heavy Ind Ltd Methanol reforming apparatus
JPS59184702A (en) * 1983-04-04 1984-10-20 Mitsubishi Heavy Ind Ltd Methanol reforming apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51122102A (en) * 1975-04-17 1976-10-26 Hiroshima Gas Kk Process for producing fuel gas using methanol as the starting raw mate rial
JPS59184705A (en) * 1983-04-04 1984-10-20 Mitsubishi Heavy Ind Ltd Methanol reforming apparatus
JPS59184702A (en) * 1983-04-04 1984-10-20 Mitsubishi Heavy Ind Ltd Methanol reforming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638202A (en) * 1986-06-24 1988-01-14 Nippon Sanso Kk Production of hydrogen-carbon monoxide gas by methanolysis
WO2023237601A1 (en) * 2022-06-09 2023-12-14 Kuehl Olaf Production of syngas from methanol produced from syngas and/or co2

Similar Documents

Publication Publication Date Title
JPH0336571B2 (en)
PL83243B1 (en)
HUT74934A (en) Process for producing hydrogen and carbon-oxydes from dimethyl-ether
PL121837B1 (en) Method of manufacture of acetic acid,ethanol,acetic aldehyde and possibly their derivativesal&#39;degida ili ikh proizbodnykh produktov
US4686313A (en) Low nitrogen iron-containing Fischer-Tropsch catalyst and conversion of synthesis gas therewith
US6238640B1 (en) Conversion method of carbon monoxide and catalyst
JPS6272501A (en) Method for decomposing methanol
KR101447682B1 (en) Catalyst for synthesis of methanol from syngas and preparation method thereof
JPS58193738A (en) Catalyst for production of gas enriched with hydrogen
JP2535760B2 (en) Method for producing catalyst for steam reforming of methanol
JPH039772B2 (en)
JP4512748B2 (en) Catalyst for water gas conversion reaction
US5767166A (en) Process for producing mixtures of methanol and higher alcohols
US4181809A (en) Production of tertiary-butyl methyl ether
JPS6161637A (en) Methanol reforming catalyst
CN1121844A (en) Catalyst for preparing ethylene by oxidation and dehydrogenation of ethane and process thereof
JPH11285638A (en) Use of compound having hydrotalcite type structure in preparation of beta-hydroxycarbonyl and/or alpha,beta-unsaturated carbonyl compound
JPH0576341B2 (en)
JPS6021680B2 (en) Method for producing methane-rich gas
JPS6327445A (en) Method for synthesizing ethylene glycol from methanol
JPH0456015B2 (en)
JPS59189937A (en) Preparation of steam reforming catalyst of methanol
SU446497A1 (en) The method of producing chloromethanes
CN115121262B (en) Method for preparing cinnamaldehyde by photocatalytic cinnamyl alcohol oxidation of water-skid-supported Au-Co alloy
JP2004136223A (en) Catalyst for dimethyl ether reformation and production method for hydrogen-containing gas using the catalyst