JPS6272411A - Speed control method for continuous rolling mill - Google Patents

Speed control method for continuous rolling mill

Info

Publication number
JPS6272411A
JPS6272411A JP60213895A JP21389585A JPS6272411A JP S6272411 A JPS6272411 A JP S6272411A JP 60213895 A JP60213895 A JP 60213895A JP 21389585 A JP21389585 A JP 21389585A JP S6272411 A JPS6272411 A JP S6272411A
Authority
JP
Japan
Prior art keywords
plate thickness
stand
actual
amount
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60213895A
Other languages
Japanese (ja)
Other versions
JPH0613129B2 (en
Inventor
Yuichi Tsuji
辻 勇一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60213895A priority Critical patent/JPH0613129B2/en
Publication of JPS6272411A publication Critical patent/JPS6272411A/en
Publication of JPH0613129B2 publication Critical patent/JPH0613129B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/48Tension control; Compression control
    • B21B37/52Tension control; Compression control by drive motor control

Abstract

PURPOSE:To quickly absorb tension variations between stands by correcting a roll circumferential speed at an adjacent stand based on both a difference between a predictive value and an actual value of a rolling schedule setting calculation and a plate thickness variation amount during a plate thickness control. CONSTITUTION:A quotient by dividing a difference between the prescribed outlet side plate thickness of a rolling shedule setting calculation and an actual outlet side plate thickness just after biting by the prescribed outlet side plate thickness at both adjacent stands is obtained and a roll circumferential speed of either stand is corrected to the extent of a proportional amount to the difference between the quotient at both the stands. An amount of drafting down movement and an actual outlet side plate thickness are monitored and a difference between an actual outlet side plate thickness variation amount and an arithmetic value of a proportional variation amount in a plate thickness depending on the drafting down movement is obtained. Then, a roll circumferential speed of either adjacent stand is corrected. to the extent of a proportional amount to a quotient given by dividing the above obtained difference value by the actual outlet side plate thickness. In this method, a tension variation between adjacent stands is absorbed quickly.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、連続式圧延機の隣接する2スタンド間の張力
変化を補償するための速度制御方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a speed control method for compensating for changes in tension between two adjacent stands of a continuous rolling mill.

(従来の技術) 従来、スタンド間の張力制御方法としては、スタンド間
にルーパー装置を設け、ルーパーの高さと押し上げ力を
制御することにより行なう方法(ルーパー制御と呼ぶ)
、あるいは圧延機の荷重およびトルクより推定した張力
にもとづいて速度制御を行なう方法(ルーパレス制御と
呼ぶ)が一般的である。(日本鉄鋼協会編「板圧延の理
論と実際」張力制御の項、発行日昭59.9.1社団法
人日本鉄鋼協会発行) (発明が解決しようとする問題点) しかし、特に張力変動が激しく、速い応答が要7ドされ
る圧延材先端部の噛込み直後の制御性についてみた場合
、前者のルーバー制御では、ルーパーが立りっでから圧
延材に接触するまでの時間がむだ時間となるし、後者の
ルーパレス制御では、jl−達機の(多段スタンドでは
張力検出精度が前段スタンドに比し低下するので制御積
度が著しく低下するという理由から有効な制御効果を期
待できなか−、た。
(Prior Art) Conventionally, as a method for controlling the tension between stands, a method is performed by providing a looper device between the stands and controlling the height and pushing force of the looper (referred to as looper control).
Alternatively, a method (referred to as loopless control) of controlling the speed based on the tension estimated from the load and torque of the rolling mill is common. (Tension control section in "Theory and Practice of Plate Rolling" edited by the Japan Iron and Steel Institute, published on September 1, 1989, published by the Japan Iron and Steel Institute) (Problems that the invention aims to solve) However, especially when the tension fluctuates rapidly, When looking at the controllability immediately after the tip of the rolled material is bitten, which requires a quick response, in the former louver control, the time from when the looper stands up to when it contacts the rolled material is dead time. However, with the latter looperless control, an effective control effect cannot be expected because the tension detection accuracy in the multi-stage stand is lower than that in the previous stage stand, and the control product is significantly reduced. .

ト発明は、以上のような背景に鑑み、特に圧延材の先端
部において、圧延スケジ工−ル設定計算の予測と実績の
誤差から隣接するスタンド間に生しる過大な張力変動や
、Fj、rg、制御の中の絶対値AGC機能や高速X線
モニター機能による材料先端部での惣峻な圧下の動きに
ともなって発生する急激な張力変化を、速やかに吸収す
るための連続式圧延機の速度制御方法を提供することを
目的とするものである。
In view of the above-mentioned background, the present invention was developed to solve the problem of excessive tension fluctuations occurring between adjacent stands, particularly at the leading end of a rolled material, due to errors between predictions and actual results in rolling schedule setting calculations, Fj, rg, the continuous rolling mill is designed to quickly absorb sudden changes in tension that occur due to the sharp rolling movement at the tip of the material due to the absolute value AGC function and high-speed X-ray monitor function in the control. The object is to provide a speed control method.

(問題点を解決するための手段) 本発明は、連続式圧延機の隣接するスタンド間の張力変
化を補償するための速度制御方法において、圧延スケジ
ュール設定計算により決定されるtit定出側扱厚と、
圧延スタンドに材料が噛込んだ直後の実績出側板厚との
差を指定出側板Jv(もしくは実績出側板厚)で除した
値を、当該および上流側の隣接する2スタンドについて
それぞれ求め、当該スタンドに材料が噛込んだ直後に、
両者の差に比例した量だけ上流側スタンドもしくは当該
スタンドのロール周速度を修正するとともに、当該スタ
ンドに材料が噛込んだ直後から一定の期間、圧下移動口
および実績出側板厚を監視しつつ圧下移動口に圧延機の
ミル定数および材料の塑性係数から決定されるパラメー
タを乗することにより圧下移動にともなう板厚相当変化
量を求めるとともにこの値と実績出側板厚変化量との差
を求め、この差の値を実績出側板厚で除した値に比例し
た口だけ上流側スタンドもしくは当該スタンドのロール
周速度を修正することを特徴とするものである。
(Means for Solving the Problems) The present invention provides a speed control method for compensating for changes in tension between adjacent stands of a continuous rolling mill. and,
The value obtained by dividing the difference between the actual outlet plate thickness and the actual outlet plate thickness immediately after the material is caught in the rolling stand by the designated outlet plate Jv (or the actual outlet plate thickness) is calculated for each of the two adjacent stands on the upstream side, and Immediately after the material is bitten into the
The roll circumferential speed of the upstream stand or the relevant stand is corrected by an amount proportional to the difference between the two, and rolling is continued for a certain period of time immediately after the material is bitten by the relevant stand while monitoring the rolling opening and the actual thickness of the plate on the exit side. By multiplying the moving mouth by a parameter determined from the mill constant of the rolling mill and the plasticity coefficient of the material, the amount of change equivalent to the plate thickness due to the rolling movement is determined, and the difference between this value and the actual amount of change in plate thickness on the exit side is determined. The present invention is characterized in that the roll circumferential speed of the upstream stand or the stand concerned is corrected by a value proportional to the value obtained by dividing the value of this difference by the actual sheet thickness on the exit side.

圧延材の噛込時に発生する過大な張力変動は、主として
圧延スケジュール設定計算における予測■延荷重と実績
圧延荷重との誤差等によって設定計算どうりの実績板厚
が得られず、そのために隣接するスタンド間のマスフロ
ーハランスカ<スレることに起因する。そのアンバラン
ス量は、先進率の変化は小さいのでほとんど無視するこ
とができて、下式のように記述できる。
Excessive tension fluctuations that occur when rolled materials are bitten are mainly caused by predictions made in the rolling schedule setting calculations.Due to errors between the rolling load and the actual rolling load, the actual plate thickness cannot be obtained as per the setting calculations, and therefore the adjacent This is caused by the mass flow between the stands. The amount of unbalance can be almost ignored since the change in the advance rate is small, and can be expressed as shown in the following equation.

・・・・・・・・(1)式 ただし、 したがって、当該スタンドに材料が噛込んで実績板厚値
が得られた直後に、上記(1)式によりマスフローアン
バランス率を計算し、それに比例した量だけたとえば上
流側スタンドのロール周速度を修正してやれば、噛込み
時に発生する過大張力変動を抑制することができる。こ
れを第1の制御と呼ぶ。なお、ロール周速度修正1Δ■
1−1は下記の(2)式によって与えられる。
・・・・・・・・・Formula (1) However, Immediately after the actual plate thickness value is obtained by the material being bit into the relevant stand, the mass flow imbalance rate is calculated using the above equation (1), and then By correcting, for example, the roll circumferential speed of the upstream stand by a proportional amount, it is possible to suppress excessive tension fluctuations that occur during biting. This is called first control. In addition, roll circumferential speed correction 1Δ■
1-1 is given by the following equation (2).

なお実績出側板厚については、たとえば実績圧延荷重お
よびロール間隙より、一般に知られたゲージメータ板厚
計算式を用いて求めることができる。
The actual exit plate thickness can be determined, for example, from the actual rolling load and roll gap using a generally known gauge meter plate thickness calculation formula.

次に、材料噛込み直後から一定の期間実績出側板厚およ
び圧下移動量を監視し、第1の制御だけでは吸収しきれ
ない誤差、あるいは材料先端部での板厚制御による圧下
の急激な動きによって生しる張力変動を速やかに吸収す
るための制御方法について説明するが、これには板厚が
張力の挙動にともなって変化するという知見を利用して
いる。
Next, the actual exit side plate thickness and rolling movement amount are monitored for a certain period of time immediately after the material is bit into the material, and errors that cannot be absorbed by the first control alone or sudden movements in rolling due to plate thickness control at the leading edge of the material are monitored. We will explain a control method to quickly absorb the tension fluctuations caused by this, which utilizes the knowledge that the plate thickness changes with the behavior of the tension.

すなわち、当該スタンド噛込み直後の実績板厚を基準に
して、そこからの実績板厚変化を監視すれば、噛込み時
に発生した張力変化を推定することができる。ただしこ
の場合、板厚変化の要因としては、張力変化の他に、板
厚制御にともなう圧下の変化、あるいは温度変動による
圧延荷重の変化もあるので、これらと区別するために下
記の方法を考案した。
That is, by using the actual plate thickness immediately after the stand biting as a reference and monitoring the change in the actual plate thickness from there, it is possible to estimate the change in tension that occurred at the time of biting. However, in this case, in addition to tension changes, the factors that cause plate thickness changes include changes in rolling reduction due to plate thickness control, and changes in rolling load due to temperature fluctuations, so we devised the following method to distinguish between these. did.

まず圧下が変化することによって生じる板厚相当変化量
を下記の(3)式によって求める。
First, the amount of change equivalent to the plate thickness caused by changing the rolling reduction is determined using the following equation (3).

ただし、 オン値 次に、実績板厚変化量を下記の(4)式によって求め、
先の圧下変化に対応する板厚相当変化量との差をとれば
、主として張力変動に起因する板厚変化量が(5)式に
よって与えられることになる。
However, when the on value is determined, the actual thickness change is calculated using the following formula (4),
By taking the difference from the plate thickness equivalent change amount corresponding to the previous reduction change, the plate thickness change amount mainly due to tension fluctuation is given by equation (5).

Δhi (actual) = hi −hi (Lo
ck on ) ・++−(41式ただし、 績扱厚ロックオン値 * Δhi=Δhi (actual)−Δhi (Loc
k on )・・・・・・(5)式 ただし、Δhj*:Fiスタンド張力変動起因板厚変化
量 ここで未考慮の温度変動による板厚変化についてみれば
、圧延材噛込み時の先端部制御期間は、スキッドマーク
、サーマルランダウン等にもとづく温度変動のピッチに
比べて短くできるのでほとんど無視することができる・ なお、この場合の張力変動起因板厚変化量を精度良く検
出する技術的ポイントは、制御開始の基準となる噛込み
直後のロックオンタイミングを、噛込み直後の速度アン
バランスにより生じる張力発生の時定数に比べてできる
だけ早くとることにある。
Δhi (actual) = hi −hi (Lo
ck on) ・++-(Formula 41 However, actual handling thickness lock-on value * Δhi=Δhi (actual)−Δhi (Loc
k on )・・・・・・Equation (5) However, Δhj*: Amount of plate thickness change due to Fi stand tension fluctuation Looking at the plate thickness change due to temperature fluctuation, which is not considered here, the tip part when the rolled material is bitten Since the control period can be shortened compared to the pitch of temperature fluctuations caused by skid marks, thermal rundown, etc., it can be almost ignored. In this case, the technical point of accurately detecting the amount of plate thickness change due to tension fluctuations is The aim is to set the lock-on timing immediately after biting, which is a reference for starting control, as early as possible compared to the time constant of tension generation caused by speed imbalance immediately after biting.

よって(5)式で求めた張力変動起因板厚変化量を利用
して、下記の(6)式で決定される量だけ、たとえば上
流側スタンドのロール周速を材料噛込み直後の一定期間
修正することにより、材料先端部で発生する急激な張力
変動を速やかに吸収することができる。これを第2の制
御と呼ぶ。
Therefore, by using the amount of change in plate thickness due to tension fluctuation determined by equation (5), for example, the roll circumferential speed of the upstream stand is corrected for a certain period of time immediately after the material is bitten, by the amount determined by equation (6) below. By doing so, it is possible to quickly absorb sudden tension fluctuations occurring at the tip of the material. This is called second control.

ただし、 [ΔVi−1:上流側Fl−1スタンドにおけるローそ
して、第2の制御を、先に述べた第1の制御と併用する
ことによって、その効果は非常に大きいものとなる。
However, [ΔVi-1: Low at upstream Fl-1 stand] By using the second control together with the first control described above, the effect becomes very large.

第1図は本発明の実施態様を示すものである。FIG. 1 shows an embodiment of the invention.

同図において7.8は圧延機1.2の速度制御装置で、
圧延材3は圧延機1から圧延機2の方向に流れており、
いま仮に圧延機2側を速度基準スタンドと考える。4は
制御用計算機で、前述の第1の制御および第2の制御に
関わるロール周速度修正量を求めるモデルを有し、圧延
機1.2に設置された荷重検出器9,10とロール間隙
検出器17.18およびミル電動機5.6に付随する速
度検出器11.12より入力される圧延荷重信号p、、
、p、  とロール間隙信号S+−1、Si およびロ
ール周速度信号Vi−1、Vi をもとに、材料噛込み
直後の一定期間、隣接するスタンド間の速度アンバラン
ス量を84算し、それに対するロール周速度修正量ΔV
1−! を圧延機lの速度制御装置7に出力するが、そ
の際加算器14を通してセットアツプあるいはルーパー
制御等よりの速度基準EF Vl−1に加算される。
In the figure, 7.8 is the speed control device of rolling mill 1.2,
The rolled material 3 is flowing in the direction from the rolling mill 1 to the rolling mill 2,
Let us now temporarily consider the rolling mill 2 side as a speed reference stand. Reference numeral 4 denotes a control computer, which has a model for calculating the amount of roll circumferential speed correction related to the first control and second control described above, and has a model that calculates the roll circumferential speed correction amount related to the first control and second control, and calculates the load detectors 9 and 10 installed in the rolling mill 1.2 and the roll gap. Rolling load signal p input from detector 17.18 and speed detector 11.12 attached to mill motor 5.6,
, p, and the roll gap signals S+-1, Si and roll peripheral speed signals Vi-1, Vi, calculate the amount of speed imbalance between adjacent stands for a certain period of time immediately after the material is bitten, and calculate it. Roll circumferential speed correction amount ΔV for
1-! is outputted to the speed control device 7 of the rolling mill 1, at which time it is added to the speed reference EF Vl-1 from the setup or looper control through the adder 14.

なお荷重検出器9,10よりの(′iiJ正信号は同時
に噛込み検出回路13に入力され、ここで検出された材
料の噛込み信号が制御用計算機4に入って、制御開始タ
イミングを決定するのに供される。
Note that the ('iiJ positive signals from the load detectors 9 and 10 are simultaneously input to the biting detection circuit 13, and the material biting signal detected here is input to the control computer 4 to determine the control start timing. It is offered to.

以上、下流である圧延機2側を速度基準スタンドとし、
上流である(i−1)スタンドのロール周速度を制御す
る場合を例に挙げて説明したが、出力の極性を反転し、
かつ両スタンドの速度比を上置すれば、下流であるiス
タンドのロール周速度を制御することもできる。
In the above, the downstream rolling mill 2 side is used as the speed reference stand,
The explanation was given using the example of controlling the roll circumferential speed of the upstream stand (i-1), but it is also possible to reverse the polarity of the output and
Moreover, by setting the speed ratio of both stands higher, it is also possible to control the roll circumferential speed of the downstream i-stand.

〔実施例〕〔Example〕

本発明を6スタンド(Fl〜F6)からなる熱間仕上連
続式圧延機の速度制御に適用し、目標量イズが板厚2.
2龍X板幅1040 amである材料を1延した結果を
第2図および第3図に表わす。
The present invention is applied to the speed control of a hot finishing continuous rolling mill consisting of 6 stands (Fl to F6), and the target amount is 2.
Figures 2 and 3 show the results of one roll of a material having a width of 1040 am.

第2図は、本発明に基づく速度制御出力の様子を、速度
基準スタンドであるF6スタンドを除く各スタンドにつ
いて示しているが、各スタンドともに隣接する下流側の
スタンドに圧延材が哨込んだ後第3図に示すように約0
.5秒という早いタイミング(従来のルーパー制御では
数秒かかる)で制御を開始し、マスフローアンバランス
を速やかに吸収するための出力(この例では増速方向)
を出している様子がうかがえる。なお、この出力は材料
が当該スタンドを抜けると同時にクリアーされる。なお
第2図の横軸は時間(SEC)、鰯輔の1い、位は%で
、電動機の定格(−ノブ速度にり(1−イ)・比で表わ
す。
Figure 2 shows the state of the speed control output based on the present invention for each stand except the F6 stand, which is the speed reference stand. As shown in Figure 3, approximately 0
.. Starts control at an early timing of 5 seconds (conventional looper control takes several seconds) and outputs to quickly absorb mass flow imbalance (in this example, in the direction of speed increase)
It can be seen that he is giving out. Note that this output is cleared as soon as the material leaves the stand. In addition, the horizontal axis of FIG. 2 is time (SEC), and the digits are %, which is expressed as the rating of the motor (-knob speed (1-a)/ratio).

第3図には、仕上圧延機で圧延された後の最終板厚およ
び板幅のチャートを、本発明による場合と従来法(ルー
パー制御)による場合とで比較して示しているが、本発
明を導入することによって、従来圧延スケジュール設定
計算の誤差が大きい場合に生じていた、材料噛込み時の
過大張力変動による先端部の板厚および板幅変動はほぼ
完全に吸収されることがわかる。
FIG. 3 shows a chart of the final plate thickness and width after rolling in a finishing mill, comparing the cases according to the present invention and the case according to the conventional method (looper control). It can be seen that by introducing this, changes in plate thickness and plate width at the tip due to excessive tension fluctuations during material biting, which occurred when conventional rolling schedule setting calculation errors were large, were almost completely absorbed.

〔発明の効果〕〔Effect of the invention〕

以上性べてきたように、本発明は、連続式圧延機におい
て、材料噛込み直後の通根性を向上さゼるとともに、板
厚および板幅等の品質向上にも貢献する発明である。
As described above, the present invention is an invention that improves root passability immediately after material is bitten in a continuous rolling mill, and also contributes to improvements in quality such as plate thickness and plate width.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施、聾様を示すブロック図、第2
図は本発明に基づく速度制御出力の様子を示すチャート
     1     − °゛   ・    −、第3図は第2図のA部拡大図
である。第4図は本発明にょろりJ果を従来法の場合と
比較した板厚・板幅チャートである。 1.2・・・圧延機、 3・・・圧延材、 4・・・制
御用計算機、 5.6・・・電動機、 7.8・・・速
度制御装置、 9.10・・・荷重検出器、  11.
12・・・速度検出器、 13・・・噛込み検出回路、
 14・・・加算器、  15.16・・・減算器、 
 17.18・・・ロール間隙検出器。
Fig. 1 is a block diagram showing one implementation of the present invention for a deaf person;
The figure is a chart showing the state of the speed control output based on the present invention. Figure 3 is an enlarged view of section A in Figure 2. FIG. 4 is a plate thickness/width chart comparing the Nyorori J-ka of the present invention with that of the conventional method. 1.2...Rolling mill, 3...Rolled material, 4...Control computer, 5.6...Electric motor, 7.8...Speed control device, 9.10...Load detection Vessel, 11.
12... Speed detector, 13... Biting detection circuit,
14...Adder, 15.16...Subtractor,
17.18...Roll gap detector.

Claims (1)

【特許請求の範囲】[Claims] 連続式圧延機の隣接するスタンド間の張力変化を補償す
るための速度制御方法において、圧延スケジュール設定
計算により決定される指定出側板厚と、圧延スタンドに
材料が噛込んだ直後の実績出側板厚との差を指定出側板
厚(もしくは実績出側板厚)で除した値を、当該および
上流側の隣接する2スタンドについてそれぞれ求め、当
該スタンドに材料が噛込んだ直後に、両者の差に比例し
た量だけ上流側スタンドもしくは当該スタンドのロール
周速度を修正するとともに、当該スタンドに材料が噛込
んだ直後から一定の期間、圧下移動量および実績出側板
厚を監視しつつ圧下移動量に圧延機のミル定数および材
料の塑性係数から決定されるパラメータを乗することに
より圧下移動にともなう板厚相当変化量を求めるととも
にこの値と実績出側板厚変化量との差を求め、この差の
値を実績出側板厚で除した値に比例した量だけ上流側ス
タンドもしくは当該スタンドのロール周速度を修正する
ことを特徴とする連続式圧延機の速度制御方法。
In a speed control method to compensate for tension changes between adjacent stands of a continuous rolling mill, the designated exit plate thickness determined by rolling schedule setting calculations and the actual exit plate thickness immediately after the material is bitten by the rolling stand. The value obtained by dividing the difference between the two by the specified outlet plate thickness (or the actual outlet plate thickness) is calculated for each of the two adjacent stands on the upstream side, and immediately after the material is bitten into the stand, In addition to correcting the roll circumferential speed of the upstream stand or the relevant stand by the amount determined, the rolling machine adjusts the amount of reduction movement while monitoring the amount of reduction movement and actual plate thickness on the exit side for a certain period of time immediately after the material is bit into the stand. Multiply the mill constant by the parameter determined from the plasticity coefficient of the material to find the equivalent change in plate thickness due to the rolling movement, find the difference between this value and the actual thickness change on the exit side, and calculate the value of this difference. A speed control method for a continuous rolling mill, characterized in that the circumferential speed of a roll on an upstream stand or the stand concerned is corrected by an amount proportional to a value divided by the actual exit plate thickness.
JP60213895A 1985-09-27 1985-09-27 Speed control method for continuous rolling mill Expired - Lifetime JPH0613129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60213895A JPH0613129B2 (en) 1985-09-27 1985-09-27 Speed control method for continuous rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60213895A JPH0613129B2 (en) 1985-09-27 1985-09-27 Speed control method for continuous rolling mill

Publications (2)

Publication Number Publication Date
JPS6272411A true JPS6272411A (en) 1987-04-03
JPH0613129B2 JPH0613129B2 (en) 1994-02-23

Family

ID=16646788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60213895A Expired - Lifetime JPH0613129B2 (en) 1985-09-27 1985-09-27 Speed control method for continuous rolling mill

Country Status (1)

Country Link
JP (1) JPH0613129B2 (en)

Also Published As

Publication number Publication date
JPH0613129B2 (en) 1994-02-23

Similar Documents

Publication Publication Date Title
JPS6016850B2 (en) Rolling speed uniform method for cold tandem mill
JP5418244B2 (en) Control method for cold tandem rolling mill
JPS61283406A (en) Method for compensating and controlling crown control of multi-stage rolling mill
JPS6272411A (en) Speed control method for continuous rolling mill
JP4705466B2 (en) Thickness control method in cold tandem rolling
JP2547850B2 (en) Plate thickness controller for cold tandem rolling mill
JPH0569021A (en) Method and device for controlling rolling mill
JPH0545325B2 (en)
JPH09239418A (en) Velocity compensating arithmetic unit of continuous rolling mill
JP3400965B2 (en) Plate thickness controller
JPS62263856A (en) Cutting control method for casting slab in continuous casting
JP2000094023A (en) Method and device for controlling leveling in hot finishing mill
JP3205175B2 (en) Strip width control method in hot rolling
JP3062017B2 (en) Thickness control method in hot rolling
JPH048122B2 (en)
JP2006231395A (en) Tension control method for tandem hot rolling mill
JPS6264414A (en) Method for measuring deformation resistance of rolling plate
JP2540666B2 (en) Hot rolled sheet thickness control method using inter-stand thickness gauge
JPH06335719A (en) Method for controlling speed for continuous rolling mill
JPH06335720A (en) Plate thickness control method for continuous rolling mill
JP4818878B2 (en) Method and apparatus for measuring elongation of metal plate
JPH07116722A (en) Device for controlling meandering in hot rolling
JP2002028710A (en) Method of continuous rolling
JPS62176608A (en) Point tracking method for strip while under rolling
JPS6064718A (en) Device for automatically calculating factor