JPS627218B2 - - Google Patents

Info

Publication number
JPS627218B2
JPS627218B2 JP965178A JP965178A JPS627218B2 JP S627218 B2 JPS627218 B2 JP S627218B2 JP 965178 A JP965178 A JP 965178A JP 965178 A JP965178 A JP 965178A JP S627218 B2 JPS627218 B2 JP S627218B2
Authority
JP
Japan
Prior art keywords
film
powder
solution
membrane
vinylidene fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP965178A
Other languages
Japanese (ja)
Other versions
JPS54102359A (en
Inventor
Takayuki Katsuto
Shunzo Endo
Hideaki Doi
Naohiro Murayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP965178A priority Critical patent/JPS54102359A/en
Publication of JPS54102359A publication Critical patent/JPS54102359A/en
Publication of JPS627218B2 publication Critical patent/JPS627218B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電気抵抗の小さい荷電膜の製法に関
し、更に詳しくは弗化ビニリデン系ポリマー粉末
を粉末状態のままでスルホン化処理し、しかる後
該スルホン化物を溶液とし、この溶液からキヤス
ト膜を形成する事による電気抵抗の小さい荷電膜
の製法に関する。 ポリマー荷電膜はイオン交換膜として海水の淡
水化、食塩の濃縮の様な電気透析、各種塩類の電
解、あるいは溶液系での物質分離膜としての逆浸
透膜、限外過膜等の工業的に用途が広く、更に
発展が期待されている。 イオン交換膜として利用する場合、選択透過
性、機械的強度、耐薬品性、電気抵抗の小さい事
が望まれ、また物質分離膜の場合も選択透過性、
機械的強度、耐薬品性、耐熱性、透過流束の大な
る事が望まれる。 高分子膜に荷電基を導入する一つの方法として
高分子膜を膜状のままで荷電基賦与剤と反応させ
る事によつて荷電基を膜に導入する方法が知られ
ている。この方法の欠点としては、反応が表面か
ら進行しやすいので膜表面と内部で反応度が異な
りやすい事があげられ、特に膜が厚い場合にこの
不均一性が顕著である。例えばポリ弗化ビニリデ
ンフイルムを発煙硫酸又はクロロスルホン酸等で
スルホン化する方法が知られているが、反応が表
面から進行しやすいため、スルホン化のされ方が
膜表面と内部で差がありスルホン化度が不均一に
なりやすい。 本発明者等は鋭意研究の結果、均一にスルホン
化された弗化ビニリデン系ポリマー荷電膜を得る
方法を発明するに至つた。即ち本発明は、弗化ビ
ニリデン系ポリマー粉末を分散媒体中でスルホン
化剤により粉末状でスルホン化し、しかる後該ス
ルホン化ポリマー粉末を溶解しうる溶媒に溶解
し、該溶液よりキヤスト膜を形成する事を特徴と
する電気抵抗の小さい弗化ビニリデン系ポリマー
荷電膜の製造方法である。本発明の特徴はポリマ
ーを粉末の状態でスルホン化する事であり、フイ
ルムに較べて表面積が大なる為、スルホン化が進
行しやすく、またフイルムの場合より均一に進行
する。またスルホン化された粉末を溶媒に溶解し
て溶液とし、この溶液よりキヤスト膜を作製する
ので、膜表面と内部とでのスルホン化度の均一性
が、フイルムでスルホン化する場合より高い事が
特徴である。 特に弗化ビニリデン共重合体あるいは塩素化ポ
リ弗化ビニリデンなどを膜状のままでスルホン化
する場合、内部迄スルホン化が進行し難く、長時
間スルホン化反応を行なつても膜抵抗の小さい膜
が得られにくいのに較べ、本発明の如く粉末状で
スルホン化した後、溶液としこれよりキヤスト膜
を作成した場合は膜抵抗の小さい荷電膜が得られ
やすい利点がある。又、本発明により得られる荷
電膜は電気抵抗が小さく、かつ強度に優れた荷電
膜を得る事ができる。 以下本発明を詳述する。本発明に用いる弗化ビ
ニリデン系ポリマー粉末としては、ポリ弗化ビニ
リデン、弗化ビニリデンを主成分としこれと共重
合可能な一種又はそれ以上の単量体との共重合
体、及びこれらのポリマーの塩素化物の粉末であ
る。弗化ビニリデンと共重合させる単量体として
は、四弗化エチレン、三弗化塩化エチレン、三弗
化エチレン、六弗化プロピレン、六弗化イソブチ
レンから選ばれる。 上記の様な弗化ビニリデン系ポリマーは、より
望ましくは懸濁重合粉末粒子又は乳化重合により
得られた粉末粒子の形で使用されるが、特にこれ
に限定されるものではない。例えば溶液重合によ
り得られたポリマー溶液をポリマーの非溶媒中に
注いで生成した粉末を用いる事なども有用であ
る。 まず上記の様な弗化ビニリデン系ポリマー粉末
を分散させる為に溶媒に分散させる。この分散用
溶媒としては、弗化ビニリデン系ポリマー粉末を
こまかく分散させるものであればよいが、スルホ
ン化剤と反応しにくい溶媒である事が望ましい。
この様な溶媒として、例えばクロロホルム、塩化
メチレン、1・2ジクロロエタン、1・1・2・
2・テトラクロロエタンなどの溶媒が適当であ
る。分散溶媒の量は特に制限はないが、ポリマー
粉末全体を浸すに足る量以上は必要である。 スルホン化剤としては、例えばクロロスルホン
酸、発煙硫酸、あるいは三酸化イオウ―トリエチ
ルホスフエート錯体などを用いる事ができる。 反応温度は特に限定はないが、室温乃至100℃
程度が反応が温和にスムーズに進行する意味で望
ましい。尚、反応をより均一にする意味で撹拌下
に反応させる事が有利である。スルホン化剤の量
は特に制限はないが、例えばポリマー粉末10g、
分散溶媒50〜200mlに対してクロロスルホン酸10
ml〜1100mlの割合が反応をすみやかに且つ温和に
進行させる意味でよく使われる。 反応時間は反応温度によつて大きく変るが、ス
ルホン化が進行しすぎると後でキヤスト膜を作成
する際、脆弱な膜しか得られなくなる。例えばポ
リ弗化ビニリデン粉末10gをクロロホルム100ml
へ分散し、クロロスルホン酸50mlを添加後、クロ
ロホルムの還流する温度で5時間反応を行なつた
粉末をアセトン溶液よりキヤスト膜(20μ)とし
たものは、0.5N塩化ナトリウム水溶液中で膜抵
抗1Ω―cm2程度の値を有する。所定の反応時間
後、反応混合物を吸湿させた後、水中に注ぎ洗
浄、乾燥する。 この様にして得られたスルホン化粉末を溶媒に
溶解する。溶媒としては、ジメチルホルムアミ
ド、ジメチルアセトアミド、アセトン、ジオキサ
ン、テトラヒドロフランなどである。 これらの溶液から平面膜を作製する場合はガラ
ス板、金属板上にキヤスト後、溶媒を蒸発して平
面膜を得る事ができる。その他に望みの形状の膜
を作製することができるし、要すれば支持体上に
キヤスト後、溶媒を除き、そのまま複合膜とする
事も可能である。 この様にして得られたフツ化ビニリデン系ポリ
マー荷電膜は膜抵抗の小さい且つ機械的強度の強
い膜となる。本発明では又スルホン化程度の異な
る二種又はそれ以上のスルホン化粉末を混合して
溶液とし、これよりキヤスト膜を形成する方法も
用いられる。 一般にスルホン化が極度に行なわれた粉末のみ
を溶液としてキヤスト膜を形成した場合、膜抵抗
は極端に小さく、物質透過性の良好な膜が得られ
るが、膜強度が非常に弱くなる傾向にある。一方
スルホン化程度の少ない粉末を溶液としてキヤス
ト膜を形成した場合、膜の強度は非常に強いが、
膜抵抗が大きく、物質透過性に乏しい欠点があ
る。この場合、スルホン化度のよく進んだ粉末と
スルホン化程度の少ない粉末(未処理粉末の場合
も本発明では含む)の混合物の溶液を作り、これ
よりキヤスト膜を形成せしめ、膜抵抗の小さい且
つ膜強度も保持された荷電膜を形成する事ができ
る。 本発明により得られる荷電膜は、イオン交換膜
あるいは限外過膜などの物質分離膜などとして
有用である。 以下実施例を示す。 実施例 1 懸濁重合により得られたポリ弗化ビニリデン
〔ジメチルホルムアミド溶液(0.4g/dl)のηinh
=1.8〕粉末50gを1セパラブルフラスコ中で
クロロホルム500mlに分散し、マグネチツクスタ
ーラーで撹拌しながらクロロスルホン酸100mlを
滴下した後、クロロホルムの還流温度迄昇温し5
時間反応させた。尚1時間、2時間、3.5時間及
び終了後で各サンプリングを行なつた。それぞれ
の反応混合物を大気中で一晩吸湿させた後、水中
に注ぎ、洗浄・乾燥した。 このスルホン化処理粉末を8wt%濃度のアセト
ン溶液とし、デシケーター中でガラス板上にキヤ
ストして茶色の透明フイルムを得た。これらの膜
の膜抵抗及びイオン交換容量を第1表に示す。
The present invention relates to a method for producing a charged film with low electrical resistance, and more specifically, it involves sulfonating vinylidene fluoride polymer powder in its powder state, then turning the sulfonated product into a solution, and forming a cast film from this solution. This invention relates to a method for producing a charged film with low electrical resistance. Polymer charged membranes can be used as ion exchange membranes for desalination of seawater, electrodialysis such as concentrating common salt, electrolysis of various salts, and industrial applications such as reverse osmosis membranes and ultrafiltration membranes as material separation membranes in solution systems. It has a wide range of uses, and further development is expected. When used as an ion exchange membrane, permselectivity, mechanical strength, chemical resistance, and low electrical resistance are desirable;
High mechanical strength, chemical resistance, heat resistance, and permeation flux are desired. One known method for introducing charged groups into a polymer membrane is to react the polymer membrane in its membrane form with a charged group imparting agent to introduce charged groups into the membrane. A disadvantage of this method is that the reaction tends to proceed from the surface, so the degree of reactivity tends to differ between the surface and the inside of the membrane, and this non-uniformity is particularly noticeable when the membrane is thick. For example, a method of sulfonating polyvinylidene fluoride film with fuming sulfuric acid or chlorosulfonic acid is known, but since the reaction tends to proceed from the surface, the way the sulfonation is done differs between the surface and the inside of the film. The degree of oxidation tends to be uneven. As a result of intensive research, the present inventors have come up with a method for obtaining a uniformly sulfonated vinylidene fluoride polymer charged film. That is, in the present invention, vinylidene fluoride polymer powder is sulfonated in powder form using a sulfonating agent in a dispersion medium, and then the sulfonated polymer powder is dissolved in a solvent that can dissolve the sulfonated polymer powder, and a cast film is formed from the solution. This is a method for producing a vinylidene fluoride polymer charged film having low electrical resistance. A feature of the present invention is that the polymer is sulfonated in the form of a powder, and since the surface area is larger than that of a film, the sulfonation progresses more easily and more uniformly than in the case of a film. In addition, since the sulfonated powder is dissolved in a solvent to form a solution and a cast film is made from this solution, the degree of sulfonation on the surface and inside of the film is more uniform than when sulfonation is performed on a film. It is a characteristic. In particular, when sulfonating vinylidene fluoride copolymer or chlorinated polyvinylidene fluoride in the form of a film, sulfonation does not easily progress to the inside, and the film has low membrane resistance even if the sulfonation reaction is carried out for a long time. However, when a cast film is prepared from the sulfonated powder and then a solution as in the present invention, a charged film with low film resistance can be easily obtained. Further, the charged film obtained by the present invention has low electrical resistance and excellent strength. The present invention will be explained in detail below. The vinylidene fluoride polymer powder used in the present invention includes polyvinylidene fluoride, a copolymer containing vinylidene fluoride as a main component and one or more monomers copolymerizable therewith, and polyvinylidene fluoride. It is a chloride powder. The monomer to be copolymerized with vinylidene fluoride is selected from ethylene tetrafluoride, chlorinated ethylene trifluoride, ethylene trifluoride, propylene hexafluoride, and isobutylene hexafluoride. The vinylidene fluoride polymer as described above is more preferably used in the form of suspension polymerized powder particles or powder particles obtained by emulsion polymerization, but is not particularly limited thereto. For example, it is also useful to use a powder produced by pouring a polymer solution obtained by solution polymerization into a polymer non-solvent. First, the vinylidene fluoride polymer powder as described above is dispersed in a solvent. The dispersing solvent may be any solvent that can finely disperse the vinylidene fluoride polymer powder, but it is preferably a solvent that does not easily react with the sulfonating agent.
Examples of such solvents include chloroform, methylene chloride, 1,2 dichloroethane, 1,1,2,
Solvents such as 2.tetrachloroethane are suitable. The amount of dispersion solvent is not particularly limited, but it must be at least enough to soak the entire polymer powder. As the sulfonating agent, for example, chlorosulfonic acid, fuming sulfuric acid, or sulfur trioxide-triethyl phosphate complex can be used. The reaction temperature is not particularly limited, but is room temperature to 100℃.
This degree is desirable in the sense that the reaction proceeds mildly and smoothly. Incidentally, in order to make the reaction more uniform, it is advantageous to carry out the reaction under stirring. The amount of sulfonating agent is not particularly limited, but for example, 10 g of polymer powder,
10 parts of chlorosulfonic acid for 50-200ml of dispersion solvent
A ratio of ml to 1100 ml is often used to allow the reaction to proceed quickly and mildly. The reaction time varies greatly depending on the reaction temperature, but if the sulfonation progresses too much, only a brittle film will be obtained when a cast film is produced later. For example, 10g of polyvinylidene fluoride powder is mixed with 100ml of chloroform.
After adding 50ml of chlorosulfonic acid and reacting for 5 hours at the reflux temperature of chloroform, the powder was cast into a film (20μ) from an acetone solution, and the film resistance was 1Ω in a 0.5N aqueous sodium chloride solution. -Has a value of about cm 2 . After a predetermined reaction time, the reaction mixture is allowed to absorb moisture, then poured into water, washed, and dried. The sulfonated powder thus obtained is dissolved in a solvent. Examples of the solvent include dimethylformamide, dimethylacetamide, acetone, dioxane, and tetrahydrofuran. When producing a flat film from these solutions, the film can be obtained by casting the solution onto a glass plate or metal plate and then evaporating the solvent. In addition, it is possible to produce a membrane in any desired shape, and if necessary, it is also possible to cast the membrane on a support and then remove the solvent to form a composite membrane as it is. The vinylidene fluoride-based polymer charged film thus obtained has low film resistance and high mechanical strength. The present invention also uses a method in which two or more sulfonated powders having different degrees of sulfonation are mixed to form a solution, and a cast film is formed from the solution. Generally, when a cast film is formed using only extremely sulfonated powder as a solution, the film resistance is extremely low and a film with good substance permeability is obtained, but the film strength tends to be very weak. . On the other hand, when a cast film is formed using a solution of powder with a low degree of sulfonation, the strength of the film is very strong;
Disadvantages include high membrane resistance and poor substance permeability. In this case, a solution is made of a mixture of powder with a high degree of sulfonation and powder with a low degree of sulfonation (the present invention also includes untreated powder), and a cast film is formed from this solution, which has a low film resistance and A charged film that also maintains film strength can be formed. The charged membrane obtained by the present invention is useful as a substance separation membrane such as an ion exchange membrane or an ultrafiltration membrane. Examples are shown below. Example 1 Polyvinylidene fluoride obtained by suspension polymerization [ηinh of dimethylformamide solution (0.4 g/dl)
=1.8] Disperse 50 g of powder in 500 ml of chloroform in a separable flask, add 100 ml of chlorosulfonic acid dropwise while stirring with a magnetic stirrer, and then raise the temperature to the reflux temperature of chloroform.
Allowed time to react. Sampling was carried out for 1 hour, 2 hours, 3.5 hours, and after completion. After each reaction mixture was allowed to absorb moisture in the air overnight, it was poured into water, washed, and dried. This sulfonated powder was made into an acetone solution with a concentration of 8 wt%, and cast on a glass plate in a desiccator to obtain a brown transparent film. The membrane resistance and ion exchange capacity of these membranes are shown in Table 1.

【表】 尚、本実施例及び以下の実施例の膜抵抗は、
0.5N塩化ナトリウム水溶液での常温での値でコ
ールラウシユブリツヂを用いて測定したものであ
る。 実施例 2 懸濁重合により得られたポリ弗化ビニリデン
〔ジメチルホルムアミド溶液(0.4g/dl)のηinh
=1.0〕粉末300gを四塩化炭素3Kgに分散し、水
銀ランプを照射しながら60〜70℃で塩素を吹き込
み約40時間塩素化反応を行なつた。得られたポリ
マーの塩素化度(ポリマー中の塩素の重量パーセ
ント)は14%であつた。この塩素化ポリ弗化ビニ
リデン〔ジメチルホルムアミド溶液(0.4g/dlの
ηinh=0.87〕粉末20gを1セパラブルフラス
コに入れ、クロロホルム200mlに分散し、クロロ
スルホン酸100mlを滴下した。クロロホルムの還
流温度迄昇温して6時間反応させた。実施例1と
同様に後処理し、次に8%アセトン溶液として、
これよりデシケーター中でキヤストフイルムを作
成した。 うすい茶色の透明な膜が得られ、膜厚20μで膜
抵抗は6.8Ω―cm2でありイオン交換容量は2.54m・
eq/g・dry resinであつた。 比較例 また比較の為、実施例2で用いた塩素化ポリ弗
化ビニリデンをアセトンに溶解し、これよりキヤ
スト膜を作成した後、この膜をクロロホルム200
ml、クロロスルホン酸100mlの混合液中に入れ、
6時間クロロホルムを還流させた。この膜(膜厚
20μ)の膜抵抗は439Ω―cm2であつた。 実施例 3 重量比で弗化ビニリデン90、三弗化塩化エチレ
ン10の仕込比で懸濁重合で得られた共重合体粉末
20gをクロロホルム200mlに分散し、これに100ml
のクロロスルホン酸を加え、2時間クロロホルム
を還流した。 他の実施例と同様の後処理を行ない、次に全く
同様の方法で8%アセトン溶液より茶色のキヤス
ト膜を得た。この膜の厚さは30μで膜抵抗は2Ω
―cm2であつた。 実施例 4 実施例3で用いた原料粉末と同じ共重合体粉末
20gをクロロホルム200mlに分散し、これに100ml
のクロロスルホン酸を加え還流を行なつた。1時
間還流後半分の量を取り出し、更に1時間還流し
た。これらの反応物を他の実施例と同様に処理し
乾燥した。この1時間処理粉末と2時間処理粉末
とを重量比で1時間処理物/2時間処理物=30/
70(A)及び50/50(B)の混合割合で混合し、各々8wt
%のアセトン溶液とし、デシケーター中でキヤス
ト膜を作製した。 各々の膜の膜抵抗は以下の如くであつた。(膜
厚30μ) 膜 膜抵抗(Ω―cm2) A 43 B 67 A、B磁ともに膜強度もあり、特にBは強い膜
であつた。
[Table] The film resistance of this example and the following examples is as follows:
The values were measured using a Kohllaus bridge at room temperature in a 0.5N aqueous sodium chloride solution. Example 2 Polyvinylidene fluoride obtained by suspension polymerization [ηinh of dimethylformamide solution (0.4 g/dl)
= 1.0] 300 g of powder was dispersed in 3 kg of carbon tetrachloride, and chlorine was blown in at 60 to 70° C. while irradiating with a mercury lamp to carry out a chlorination reaction for about 40 hours. The degree of chlorination (weight percent of chlorine in the polymer) of the resulting polymer was 14%. 20 g of this chlorinated polyvinylidene fluoride [dimethylformamide solution (ηinh = 0.87 of 0.4 g/dl)] powder was placed in a separable flask, dispersed in 200 ml of chloroform, and 100 ml of chlorosulfonic acid was added dropwise to the reflux temperature of chloroform. The temperature was raised and the reaction was carried out for 6 hours. Post-treatment was carried out in the same manner as in Example 1, and then an 8% acetone solution was prepared.
From this, a cast film was created in a desiccator. A pale brown transparent membrane was obtained, with a membrane thickness of 20μ, membrane resistance of 6.8Ω- cm2 , and ion exchange capacity of 2.54m.
It was eq/g dry resin. Comparative Example For comparison, the chlorinated polyvinylidene fluoride used in Example 2 was dissolved in acetone, a cast film was created from this, and this film was mixed with 200% of chloroform.
ml, into a mixture of 100 ml of chlorosulfonic acid,
The chloroform was refluxed for 6 hours. This film (film thickness
20μ) membrane resistance was 439Ω-cm 2 . Example 3 Copolymer powder obtained by suspension polymerization with a weight ratio of 90% vinylidene fluoride and 10% trifluorochloroethylene
Disperse 20g in 200ml of chloroform and add 100ml to this.
of chlorosulfonic acid was added, and the chloroform was refluxed for 2 hours. The same post-treatment as in the other Examples was carried out, and then a brown cast film was obtained from an 8% acetone solution in exactly the same manner. The thickness of this film is 30μ and the film resistance is 2Ω.
-It was warm at cm2 . Example 4 Copolymer powder same as the raw material powder used in Example 3
Disperse 20g in 200ml of chloroform and add 100ml to this.
of chlorosulfonic acid was added and refluxed. After refluxing for 1 hour, the second half of the amount was taken out and refluxing was further continued for 1 hour. These reactants were processed and dried as in other examples. The weight ratio of the powder treated for 1 hour and the powder treated for 2 hours is 1 hour treated powder / 2 hour treated powder = 30 /
Mixed at a mixing ratio of 70(A) and 50/50(B), 8wt each
% acetone solution, and a cast film was prepared in a desiccator. The membrane resistance of each membrane was as follows. (Film thickness: 30μ) Film Film resistance (Ω-cm 2 ) A 43 B 67 Both A and B magnetic films had strong film strength, and B was particularly strong.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリ弗化ビニリデン、弗化ビニリデンを主成
分とし、四弗化エチレン、三弗化塩化エチレン、
三弗化エチレン、六弗化プロピレン、六弗化イソ
ブチレンから選ばれた1種または1種以上の単量
体との共重合体及びこれらのポリマーの塩素化物
のいずれかである弗化ビニリデン系ポリマー粉末
を分散媒体中で粉末状でスルホン化した後、該ス
ルホン化粉末を溶媒に溶解し、該溶液よりキヤス
ト膜を形成する事を特徴とする弗化ビニリデン系
ポリマー荷電膜の製造法。
1 Polyvinylidene fluoride, vinylidene fluoride as the main component, ethylene tetrafluoride, ethylene trifluorochloride,
A vinylidene fluoride polymer that is either a copolymer with one or more monomers selected from trifluoroethylene, hexafluoropropylene, and hexafluoroisobutylene, and a chlorinated product of these polymers. A method for producing a charged vinylidene fluoride polymer film, which comprises sulfonating a powder in a dispersion medium, dissolving the sulfonated powder in a solvent, and forming a cast film from the solution.
JP965178A 1978-01-31 1978-01-31 Preparation of charged membrane of vinylidene fluoride polymer Granted JPS54102359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP965178A JPS54102359A (en) 1978-01-31 1978-01-31 Preparation of charged membrane of vinylidene fluoride polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP965178A JPS54102359A (en) 1978-01-31 1978-01-31 Preparation of charged membrane of vinylidene fluoride polymer

Publications (2)

Publication Number Publication Date
JPS54102359A JPS54102359A (en) 1979-08-11
JPS627218B2 true JPS627218B2 (en) 1987-02-16

Family

ID=11726108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP965178A Granted JPS54102359A (en) 1978-01-31 1978-01-31 Preparation of charged membrane of vinylidene fluoride polymer

Country Status (1)

Country Link
JP (1) JPS54102359A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125720U (en) * 1991-04-26 1992-11-17 俊二 丸野 card presentation holder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5652811B2 (en) * 2010-02-01 2015-01-14 株式会社カネカ Method for producing sulfonated polymer solution and use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125720U (en) * 1991-04-26 1992-11-17 俊二 丸野 card presentation holder

Also Published As

Publication number Publication date
JPS54102359A (en) 1979-08-11

Similar Documents

Publication Publication Date Title
US3546142A (en) Polyelectrolyte structures
US4262041A (en) Process for preparing a composite amphoteric ion exchange membrane
US3257334A (en) Electrodialysis membrane from perhalogenated fluorocarbons
FI68067C (en) KATJONBYTARHARTS DESS FRAMSTAELLNING OCH ANVAENDNING
JP2005539117A (en) Process for making graft copolymers useful in membranes
WO1983000157A1 (en) Crosslinked fluoropolymer ion exchange resin
JPS6067535A (en) Chlorosulfonated polyaryl ether sulfon resin, derivative and ion exchange resin
JPS6411663B2 (en)
EP0330187B1 (en) Cation exchanger
JPS627218B2 (en)
WO2004018526A1 (en) Process for the manufacture of an ion exchange membrane
US10543463B2 (en) Homogeneous cation-exchange composite membrane having excellent chemical resistance and method for producing the same
US10561991B2 (en) Homogeneous anion-exchange composite membrane having excellent chemical resistance and method for producing the same
KR20170109291A (en) Sulfonated poly(etheretherketone) composite membrane, preparation method thereof and fuel cell comprising the same
JPH0680799A (en) Corrosion-resistant anion exchange film
US4107097A (en) Process for preparing polycation-polyanion electrolyte complexes having carboxylic acid and alkenyl radical substituents and films thereof
CA1180858A (en) Semipermeable membrane
WO2010069277A2 (en) Polymeric aliphatic ion-exchange materials and their applications
JPS63258930A (en) Aromatic polymer
JPH10158416A (en) Microporous charge film and its production
JPS61185507A (en) Production of anion exchange material
JPS59258B2 (en) Method for producing perfluorocarbon cation exchanger
KR102298741B1 (en) A proton exchange membrane manufactured by blending of Nafion/PVDF
JPH1135626A (en) Process for coagulation separation
JP3173099B2 (en) Method for producing cation exchange membrane