JPS627203B2 - - Google Patents

Info

Publication number
JPS627203B2
JPS627203B2 JP9125476A JP9125476A JPS627203B2 JP S627203 B2 JPS627203 B2 JP S627203B2 JP 9125476 A JP9125476 A JP 9125476A JP 9125476 A JP9125476 A JP 9125476A JP S627203 B2 JPS627203 B2 JP S627203B2
Authority
JP
Japan
Prior art keywords
lithium
compound
group
bis
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9125476A
Other languages
Japanese (ja)
Other versions
JPS5219192A (en
Inventor
Ho Tsungu Ru
Yu Shengu Ro Gureesu
Uiriamu Rakushiizu Josefu
Aaru Beiyaa Dagurasu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Chemical Co
Original Assignee
Dow Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Chemical Co filed Critical Dow Chemical Co
Publication of JPS5219192A publication Critical patent/JPS5219192A/en
Publication of JPS627203B2 publication Critical patent/JPS627203B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/46Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkali metals
    • C08F4/48Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkali metals selected from lithium, rubidium, caesium or francium
    • C08F4/486Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkali metals selected from lithium, rubidium, caesium or francium at least two metal atoms in the same molecule
    • C08F4/488Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkali metals selected from lithium, rubidium, caesium or francium at least two metal atoms in the same molecule at least two lithium atoms in the same molecule
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/02Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerization Catalysts (AREA)
  • Graft Or Block Polymers (AREA)

Description

【発明の詳細な説明】 本発明は、炭化水素媒体中重合の開始に適する
改良された多官能性リチウム含有化合物を提供す
るものである。本発明の開始剤は、高度の1,4
―付加を与える1,3―ジエンの重合を促進しそ
して炭化水素媒体中重合開始剤量で可溶性である
か又は容易に可溶性にされる。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides improved multifunctional lithium-containing compounds suitable for initiation of polymerization in hydrocarbon media. The initiator of the present invention has a high degree of 1,4
- Promotes the polymerization of the 1,3-diene that gives rise to the addition and is soluble or readily made soluble in the amount of polymerization initiator in the hydrocarbon medium.

特に、本発明の開始剤は、式 (式中、R1は水素、アルキル炭化水素基、シクロ
アルキル炭化水素基、シクロアルキル炭素基、ア
ルコオキシ基又は芳香族基であり、R2は少なく
とも6炭素原子を有しそしてリチウム原子に結合
している炭素に直接結合している少なくとも一つ
の芳香族環を有する二価有機基であり、そして不
特定のアプロチツク(aprotic)有機溶媒可溶性
オリゴマー又は重合体であつてもよく、そして
R3は1乃至20炭素原子を含有するアルキル、シ
クロアルキル又は芳香族基である。)を有する多
官能性リチウム含有重合開始剤化合物から成る。
In particular, the initiator of the present invention has the formula (wherein R 1 is hydrogen, an alkyl hydrocarbon group, a cycloalkyl hydrocarbon group, a cycloalkyl carbon group, an alkoxy group or an aromatic group, and R 2 has at least 6 carbon atoms and is bonded to a lithium atom. is a divalent organic group having at least one aromatic ring directly attached to a carbon thereof, and may be an unspecified aprotic organic solvent soluble oligomer or polymer, and
R 3 is an alkyl, cycloalkyl or aromatic group containing 1 to 20 carbon atoms. ) is a polyfunctional lithium-containing polymerization initiator compound.

R1は好ましくは水素である。R1が水素以外で
あるときは、1乃至16炭素原子を含んでよくそし
て好ましくは芳香族環又は芳香族環構造に直接結
合している三級炭素原子を有する炭化水素基であ
る。
R 1 is preferably hydrogen. When R 1 is other than hydrogen, it is a hydrocarbon group which may contain 1 to 16 carbon atoms and preferably has an aromatic ring or a tertiary carbon atom directly attached to an aromatic ring structure.

好ましくはR2は6乃至12炭素原子を含有しそ
して最も有利には1,4―フエニレン、4,4―
ビフエニレン又は4,4′―オキシビスフエニレン
である。R2は炭素及び水素、及び任意に酸素、
鉄、及び/又は硫黄を含む。酸素及び硫黄が存在
するときは、ジフエニルオキシド又はジフエニル
スルフイドの構造でのみ存在する。鉄はフエロセ
ン構造で存在する。
Preferably R 2 contains 6 to 12 carbon atoms and most preferably 1,4-phenylene, 4,4-
Biphenylene or 4,4'-oxybisphenylene. R 2 is carbon and hydrogen, and optionally oxygen,
Contains iron and/or sulfur. When oxygen and sulfur are present, they are present only in diphenyl oxide or diphenyl sulfide structures. Iron exists in the ferrocene structure.

R3は有利には2乃至20炭素原子を含みそして
好ましくは3乃至10炭素原子を含む。最も好まし
いR3種はsec―ブチルである。
R 3 advantageously contains 2 to 20 carbon atoms and preferably 3 to 10 carbon atoms. The most preferred R3 species is sec-butyl.

同様に、溶液が主要部分の液体脂肪族、脂環族
又は芳香族炭化水素溶液又はその混合物及び少量
部分の式 (式中R1、R2及びR3は上記のものであり、そして
R4及びR5は各々1,3―ブタジエン又はイツプ
レン又はその混合物の化学的に結合した単位であ
り、n+mは少なくとも20である)の多官能性リ
チウム含有重合開始剤化合物より成る、リチウム
含有触媒の存在下に重合性であるビニル基含有化
合物、特にビニル炭化水素化合物の重合の開始に
特に適する溶液も本発明の範囲内である。
Similarly, liquid aliphatic, cycloaliphatic or aromatic hydrocarbon solutions or mixtures thereof in which the solution is a major part and a minor part of the formula (wherein R 1 , R 2 and R 3 are as above, and
A lithium-containing catalyst comprising a multifunctional lithium-containing polymerization initiator compound in which R 4 and R 5 are each chemically bonded units of 1,3-butadiene or ituprene or mixtures thereof, and n+m is at least 20. Also within the scope of the invention are solutions which are particularly suitable for initiating the polymerization of vinyl group-containing compounds, especially vinyl hydrocarbon compounds, which are polymerizable in the presence of .

同様に、方法の段階が式 〔R1及びR2は上記のものでありそして式 R3Li (R3は上記のものである)〕の化合物を与え、式 (すべての置換基は上記のものである)を有する
多官能性リチウム化合物を与え、そして続いて得
られる分散体を少なくとも一つのリチウム重合性
単量体と接触し相当する重合体への単量体の重合
を起させる、リチウム含有触媒の存在下に重合性
である少なくとも一つのビニル基そして特にビニ
ル炭化水素化合物を含有するビニル化合物の重合
方法も本発明の範囲内である。
Similarly, the steps of the method are [R 1 and R 2 are as above and R 3 Li (R 3 is as above)] to give a compound of formula R 3 Li (R 3 is as above); (all substituents are as above) and subsequently contacting the resulting dispersion with at least one lithium polymerizable monomer to form a corresponding polymer. Also within the scope of the invention is a process for the polymerization of vinyl compounds containing at least one vinyl group and especially a vinyl hydrocarbon compound that is polymerizable in the presence of a lithium-containing catalyst, causing the polymerization of a vinyl hydrocarbon compound.

ここで用いられる化合物は以下のものを含む。 Compounds used here include the following:

4,4′―ジベンゾイル―1,1′―ビフエニル 4,4′―ビス(1―フエニルエテニル)―1,
1′―ビフエニル (1,1′―ビフエニル)―4,4′ジイルビス
(3―メチル―1―フエニルペンチリデン)―ビ
ス(リチウム) オキシジ―4,1―フエニレンビス(3―メチ
ル―1―フエニルペンチリデン)―ビス(リチウ
ム) 4,4″―オキシジベンゾフエノン ビス〔4―(1―フエニルエテニル)フエニ
ル〕エーテル 1,4―ビス(1―フエニルエテニル)ベンゼ
1,4―フエニレンビス(3―メチル―1―フ
エニルペンチリデン)ビス(リチウム) 4,4″―イソプロリデンジベンゾフエノン 2,2―ビス〔4―(1―フエニルエテニル)
フエニル〕プロパン (1―メチルエチリデン)ビス―〔4,1―フ
エニレン(3―メチル―1―フエニルペンチリデ
ン)〕ビス(リチウム) 本発明に従う化合物は、上記種類の化合物から
容易に調整されそして芳香族酸クロライドをベン
ゼン、ビフエニル、ジフエニルエーテル及び類似
のものの如き芳香族化合物と三塩化アルミニウム
の如きフリーデル―クラフト触媒の存在下に縮合
することによつて容易に合成され、ジケトンが少
なくとも一つの芳香族環によつて分離されている
ケトン基を有するジケトンを形成する。このジケ
トン化合物は、次にゲトン基を1,1―ビニリデ
ン基に転換するヴイテイヒ反応に処される。この
ジビニリデン化合物を次に有機リチウム化合物、
例えば二級ブチルリチウム又は三級ブチルリチウ
ムと接触する。有機リチウム化合物は二重結合に
付加し所望の化合物を与える。得られるジリチウ
ム化合物は、脂肪族、脂環族又は芳香族炭化水素
基溶媒例えばヘキサン、シクロヘキサン又はベン
ゼン中少量のブタジエン又はイソプレンと接触さ
れると可溶性になる。一般にジエンは、化合物を
可溶性にするためにジリチウム化合物モル当り20
乃至200モルの比率で用いられる。
4,4'-dibenzoyl-1,1'-biphenyl 4,4′-bis(1-phenylethenyl)-1,
1′-biphenyl (1,1'-biphenyl)-4,4'diylbis(3-methyl-1-phenylpentylidene)-bis(lithium) Oxydi-4,1-phenylenebis(3-methyl-1-phenylpentylidene)-bis(lithium) 4,4″-oxydibenzophenone Bis[4-(1-phenylethenyl)phenyl]ether 1,4-bis(1-phenylethenyl)benzene 1,4-phenylenebis(3-methyl-1-phenylpentylidene)bis(lithium) 4,4″-isoprolidene dibenzophenone 2,2-bis[4-(1-phenylethenyl)
Phenyl]propane (1-methylethylidene)bis-[4,1-phenylene(3-methyl-1-phenylpentylidene)]bis(lithium) The compounds according to the invention are easily prepared from compounds of the above type and are suitable for aromatic acids. It is easily synthesized by condensing chloride with aromatic compounds such as benzene, biphenyl, diphenyl ether, and the like in the presence of a Friedel-Crafts catalyst such as aluminum trichloride, in which the diketone has at least one aromatic Forms diketones with ketone groups separated by rings. This diketone compound is then subjected to a Wittich reaction that converts the getone group into a 1,1-vinylidene group. This divinylidene compound is then converted into an organolithium compound,
For example, contact with secondary butyllithium or tertiary butyllithium. The organolithium compound adds to the double bond to give the desired compound. The resulting dilithium compounds become soluble when contacted with small amounts of butadiene or isoprene in aliphatic, cycloaliphatic or aromatic hydrocarbon solvents such as hexane, cyclohexane or benzene. Generally dienes are used at 20% per mole of dilithium compound to make the compound soluble.
It is used in a ratio of 200 to 200 moles.

実施例 1 窒素パージした反応フラスコに、50ミリの
1,2―ジクロロエタン中に溶解された23.4gの
ビフエニルを仕込んだ。85.5gのベンゾイルクロ
ライド及び追加の100mlの1,2―ジクロロエタ
ンをフラスコに加えた。フラスコ及び内容物を次
に約10℃に冷却しそして71.5gの三塩化アルミニ
ウムを撹拌しながら混合物にゆつくり加えた。溶
液は暗赤色になつた。約4時間に亘つて反応混合
物の温度を85℃に上げそして17時間この温度に保
つた。17時間の終期に反応混合物を撹拌しながら
氷水中に注入した。反応混合物及び氷水を次に約
1の塩化メチレンで抽出した。水層を捨てそし
て残りの混合物を含む塩化メチレンを重炭酸ナト
リウム溶液で、そして次に水で洗滌した。塩化メ
チレン溶液を無水硫酸ナトリウムと一緒に30分間
撹拌し、混合物を過しそして液を乾燥するま
で蒸発した。有機層の乾燥で得られる粗生成物を
次にメタノールでそして続いてベンゼンとエタノ
ールの1対1混合物で洗滌した。この生成物をベ
ンゼンから再結晶した。
Example 1 A nitrogen purged reaction flask was charged with 23.4 grams of biphenyl dissolved in 50 milliliters of 1,2-dichloroethane. 85.5 g of benzoyl chloride and an additional 100 ml of 1,2-dichloroethane were added to the flask. The flask and contents were then cooled to about 10°C and 71.5g of aluminum trichloride was slowly added to the mixture with stirring. The solution turned dark red. The temperature of the reaction mixture was raised to 85°C over approximately 4 hours and held at this temperature for 17 hours. At the end of 17 hours, the reaction mixture was poured into ice water with stirring. The reaction mixture and ice water were then extracted with approx. 1 part of methylene chloride. The aqueous layer was discarded and the remaining mixture containing methylene chloride was washed with sodium bicarbonate solution and then with water. The methylene chloride solution was stirred with anhydrous sodium sulfate for 30 minutes, the mixture was filtered and the liquid was evaporated to dryness. The crude product obtained from drying the organic layer was then washed with methanol and subsequently with a 1:1 mixture of benzene and ethanol. This product was recrystallized from benzene.

217―218℃の融点範囲を有する17.6gの4,
4′―ジベンゾイル―1,1′―ビフエニル(化合物
)が得られた。赤外分光器を用いる生成物の分
析は、ベンゾフエノンの吸収のそれと一致するC
=Oの吸収を示した。
17.6g of 4, with a melting point range of 217-218℃
4'-dibenzoyl-1,1'-biphenyl (compound) was obtained. Analysis of the product using infrared spectroscopy revealed a C
=O absorption was shown.

化合物を以下の方法で4,4′―ビス(1―フ
エニルエテニル)―1,1′―ビフエニル(化合物
)に転化した。
The compound was converted to 4,4'-bis(1-phenylethenyl)-1,1'-biphenyl (compound) by the following method.

0.53Nベンゼン溶液としての10.6ミリモルのn
―ブチルリチウムを、窒素パージガラス反応容器
中、50ミリのテトラヒドロフランに溶解した
4.06gのメチルトリフエニルホスホニウム臭化物
と混合し、そしてこの容器は大気温(約22℃)に
2時間保つた。30mlのテトラヒドロフラン中の
2.05gの化合物の懸濁液を反応混合物に加え
た。反応容器を約16時間室温に保つた。この時間
の終りに、テトラヒドロフランを蒸発しそして残
つた固体を1:1容積比のジエチルエーテル―水
混合物に溶かした。この水及びエーテルを分離し
そしてエーテル層を水で洗いそして続いてエーテ
ルを蒸発した。粗生成物化合物をベンゼンとエ
タノールの1対1混合物から2回再結晶しそして
n―ヘキサンで洗滌されて得た固体生成物、4,
4′―ビス(1―フエニルエテニル)―1,1′―ビ
フエニル(化合物)は、193―196℃の融点を有
した。マグネチツクスターラーを備えた窒素充填
セラムびん中化合物のベンゼン溶液を調製し
た。この溶液は0.5g(1.41モル)の化合物及
び70ミリの乾燥ベンゼンを含んだ。7.2mlの
0.482N、二級ブチルリチウムn―ヘキサン溶液
を、皮下注射器を用いてセラムびんに注入し3.47
ミリ当量のsec―ブチルリチウムを得た。混合物
を室温で2時間40分撹拌し、そして濃い青色分散
体を得た。
10.6 mmol n as 0.53N benzene solution
-Butyllithium was dissolved in 50 milliliters of tetrahydrofuran in a nitrogen-purged glass reaction vessel.
4.06 g of methyltriphenylphosphonium bromide was mixed and the container was kept at ambient temperature (approximately 22° C.) for 2 hours. in 30ml of tetrahydrofuran
2.05g of compound suspension was added to the reaction mixture. The reaction vessel was kept at room temperature for approximately 16 hours. At the end of this time, the tetrahydrofuran was evaporated and the remaining solid was dissolved in a diethyl ether-water mixture in a 1:1 volume ratio. The water and ether were separated and the ether layer was washed with water and the ether was subsequently evaporated. The crude product compound was recrystallized twice from a 1:1 mixture of benzene and ethanol and washed with n-hexane to give a solid product, 4.
4'-bis(1-phenylethenyl)-1,1'-biphenyl (compound) had a melting point of 193-196°C. A benzene solution of the compound was prepared in a nitrogen-filled serum bottle equipped with a magnetic stirrer. This solution contained 0.5 g (1.41 mol) of compound and 70 milliliters of dry benzene. 7.2ml
Inject 0.482N, secondary butyl lithium n-hexane solution into the serum bottle using a hypodermic syringe.3.47
Milliequivalents of sec-butyllithium were obtained. The mixture was stirred at room temperature for 2 hours and 40 minutes and a deep blue dispersion was obtained.

化合物の上記の処理を繰り返し、そして得ら
れる分散液の15ミリ部分を抜きとり、そしてこ
れを窒素及び0.05mlの氷酢酸を含有するセラムび
んに注入した。この分散材料は溶解しそして溶液
の色は濃青から黄色に変つた。酢酸リチウムが溶
液中に形成したが、そしてそれをそれから除去し
た。残つた液体の赤外スペクトルは、すべてのビ
ニル基がsec―ブチルリチウムと反応したことを
示す900cm-1での吸収バンドの完全な消滅を示し
た。化合物の処理によつて得られる濃青色分散
体は、化合物、(1,1′―ビフエニル)―4,
4′―ジイルビス(3―メチル―1―フエニルペン
チリデン)―ビス(リチウム)を形成させた。化
合物を用い以下の方法でブタジエンを重合し
た。窒素パージ反応フラスコに850ミリの脱ガ
ス化乾燥ベンゼン及び化合物を含有する反応混
合物を仕込んだ。約10gの1,3―ブタジエン単
量体を加えそしてこの混合物を室温で約1時間30
分の間撹拌した。この期間中、分散液は溶液とな
つた。追加の40gの1,3―ブタジエンを加えそ
して重合を約40分行ないそして反応混合物の温度
を約45―55℃に保つた。反応混合物を続いて室温
に冷却しそして4mlの蒸溜テトラヒドロフランを
撹拌しながら加えた。テトラヒドロフランが均一
に分散されたら、2.44ミリ当量の四塩化硅素のベ
ンゼン溶液を加えた。目に見えるゲルが直ちに形
成した。約20分撹拌後、1.5mlの氷酢酸を加えそ
してゲルを含有するこの混合物を室温で一夜放置
した。得られるポリブタジエンは40%の未ゲル化
重合体及び60%ゲルを含んだが、上記は重量表示
であり、開始剤化合物が二官能性であることを確
認した。理論ゲル含量は86%であつた。
The above treatment of the compound was repeated and a 15 mm portion of the resulting dispersion was withdrawn and poured into a serum bottle containing nitrogen and 0.05 ml of glacial acetic acid. The dispersed material dissolved and the color of the solution changed from deep blue to yellow. Lithium acetate formed in the solution and was then removed. The infrared spectrum of the remaining liquid showed complete disappearance of the absorption band at 900 cm -1 indicating that all vinyl groups had reacted with sec-butyllithium. The deep blue dispersion obtained by treatment of the compound, (1,1'-biphenyl)-4,
4'-diylbis(3-methyl-1-phenylpentylidene)-bis(lithium) was formed. Butadiene was polymerized using the compound in the following manner. A nitrogen purged reaction flask was charged with 850 mL of degassed dry benzene and the reaction mixture containing the compounds. Approximately 10 g of 1,3-butadiene monomer was added and the mixture was heated at room temperature for approximately 1 hour.
Stir for minutes. During this period, the dispersion became a solution. An additional 40 g of 1,3-butadiene was added and polymerization was carried out for about 40 minutes and the temperature of the reaction mixture was maintained at about 45-55°C. The reaction mixture was subsequently cooled to room temperature and 4 ml of distilled tetrahydrofuran were added with stirring. Once the tetrahydrofuran was uniformly dispersed, a solution of 2.44 milliequivalents of silicon tetrachloride in benzene was added. A visible gel formed immediately. After stirring for about 20 minutes, 1.5 ml of glacial acetic acid was added and the mixture containing gel was left overnight at room temperature. The resulting polybutadiene contained 40% ungelled polymer and 60% gel, but the above is by weight, confirming that the initiator compound was difunctional. The theoretical gel content was 86%.

比較のため、化合物の代りにsec―ブチルリ
チウムを触媒として用いたことを除いて、上記の
重合方法を繰り返した。回収ポリブタジエンは、
テトラヒドロフラン、トルエン及びベンゼンに完
全に可溶性であつた。ゲルは観察されなかつた。
For comparison, the above polymerization method was repeated except that sec-butyllithium was used as the catalyst instead of the compound. The recovered polybutadiene is
It was completely soluble in tetrahydrofuran, toluene and benzene. No gel was observed.

実施例 2 化合物、オキシジ―4,1―フエニレンビス
(3―メチル―1―フエニルペンチリデン)―ビ
ス(リチウム)を以下の方法で調製した。
Example 2 The compound oxydi-4,1-phenylenebis(3-methyl-1-phenylpentylidene)-bis(lithium) was prepared in the following manner.

窒素パージ反応容器に106.4gの三塩化アルミ
ニウム及び200mlの塩化メチレンに溶解された
91.94gの塩化ベンゾイルの溶液を仕込んだ。反
応容器を氷浴中で冷却した。56gのジフエニルオ
キシド及び20mlの塩化メチレンの溶液を約0℃に
冷却しそして反応容器に加えた。2時間半後、氷
浴をとり除きそして容器を室温に加温しそして大
気温に約20時間保つた。20時間後、塩化メチレン
は幾分蒸発しておりそして再補充した。更に1時
間後、反応混合物を氷上に注いだ。得られる氷性
混合物を塩化メチレンで2度抽出した。水及び有
機層を分離しそして水層をとり除いた。有機層を
水酸化カリウムの10重量%水溶液で2度洗滌し
た。水層を取り除いた。残つた有機層は乾燥状態
まで蒸発させた。残つた粗生成物をベンゼンに溶
かしそして炭素(チヤーコール)で脱色した。等
容量のメタノールを脱色ベンゼン溶液に加えそし
て56.03gの4,4″―オキシジベンゾフエノン
(化合物)を白色、結晶小片状で得た。実施例
1の方法を用いた化合物をビス〔4―(1―フ
エニルエテニル)フエニル〕エーテル(化合物
)に転化した。窒素パージセラムびんに、50ml
の乾燥ベンゼンに溶かした1.62ミリモルの化合物
を仕込んだ。0.482Nsec.ブチルリチウムのヘキ
サン溶液8ミリを、注射器を用いてセムラボル
トに加えた。化合物のベンゼン中の暗赤色分散
液が得られた。別の実験でこの分散液を実施例1
の方法で酸生化し、そして赤外スペクトル分析は
900cm-1バンドの不存在を示したが、これはビニ
ル基のないことを示す。窒素パージ反応フラスコ
に、780mlの脱気乾燥ベンゼン及び1.62ミリモル
の化合物と10gの1,3―ブタジエンを含む分
散液を仕込んだ。約90分後、この分散液は溶液に
なりそして追加の60gの1,3―ブタジエンを加
えた。ブタジエンを約1時間に亘つて重合しそし
て2mlのテトラヒドロフランを撹拌しながら加え
た。テトラヒドロフランが均一に分散した時、ベ
ンゼン中の2.09ミリ当量の四塩化硅素を加えた。
約1時間後、1ミリの氷酢酸を加えた。四塩化
硅素を加えたとき、目に見えるゲルが形成した。
ポリブタジエンは56.6%ゲルを含んだ。ゲルの理
論量は約65%であると計算された。開始剤は従つ
て二官能性であつた。
106.4 g of aluminum trichloride and 200 ml of methylene chloride were dissolved in a nitrogen-purged reaction vessel.
A solution of 91.94 g of benzoyl chloride was charged. The reaction vessel was cooled in an ice bath. A solution of 56 g diphenyl oxide and 20 ml methylene chloride was cooled to about 0°C and added to the reaction vessel. After 2 1/2 hours, the ice bath was removed and the container was allowed to warm to room temperature and was kept at ambient temperature for approximately 20 hours. After 20 hours, some of the methylene chloride had evaporated and was refilled. After an additional hour, the reaction mixture was poured onto ice. The resulting icy mixture was extracted twice with methylene chloride. The aqueous and organic layers were separated and the aqueous layer was removed. The organic layer was washed twice with a 10% by weight aqueous solution of potassium hydroxide. The aqueous layer was removed. The remaining organic layer was evaporated to dryness. The remaining crude product was dissolved in benzene and decolorized with charcoal. An equal volume of methanol was added to the decolorized benzene solution and 56.03 g of 4,4''-oxydibenzophenone (compound) was obtained in the form of white, crystalline flakes. -(1-Phenylethenyl)phenyl]ether (compound).Put 50ml into a nitrogen-purged serum bottle.
1.62 mmol of the compound dissolved in dry benzene was charged. 0.482Nsec. 8 ml of a hexane solution of butyl lithium was added to the Semla bolt using a syringe. A dark red dispersion of the compound in benzene was obtained. In another experiment, this dispersion was used in Example 1.
acidification using the method, and infrared spectral analysis
The absence of the 900 cm -1 band was shown, indicating the absence of vinyl groups. A nitrogen purged reaction flask was charged with 780 ml of degassed dry benzene and a dispersion containing 1.62 mmol of compound and 10 g of 1,3-butadiene. After about 90 minutes, the dispersion went into solution and an additional 60 g of 1,3-butadiene was added. The butadiene was polymerized for about 1 hour and 2 ml of tetrahydrofuran was added with stirring. When the tetrahydrofuran was uniformly dispersed, 2.09 meq of silicon tetrachloride in benzene was added.
After about 1 hour, 1 ml of glacial acetic acid was added. A visible gel formed when silicon tetrachloride was added.
Polybutadiene contained 56.6% gel. The theoretical amount of gel was calculated to be approximately 65%. The initiator was therefore difunctional.

窒素パージフラスコに、25mlの乾燥ベンゼン中
に溶解した0.88ミリモルの化合物及びそれに加え
て撹拌しながら4.3mlのヘキサンに溶解した1.85
ミリ当量のsec―ブチルリチウムを仕込むことに
よつて、追加量のリチウムを調製した。化合物
がベンゼン中の赤色分散液として形成し始め
た。分散液は室温で3―1/2時間撹拌しそして2
mlのイソプレンを分散液に加えた。この分散液を
次に約60℃の温度に加熱しそして約10分後赤色分
散液は赤褐色溶液に変つた。この溶液を、450ml
の乾燥ベンゼン中に溶解した40gのブタジエンを
含有する窒素パージフラスコに加えた。反応混合
物を45乃至55℃の温度範囲内に保つた。ブタジエ
ンの重合は約50分で完了した。反応混合物を次に
約35℃に冷却しそして22mlのスチレンを加えた。
溶液を約2分間撹拌しそして2mlの蒸溜テトラヒ
ドロフランを加えた。溶液の温度を約35℃に約1
時間保持し、そして0.15mlの氷酢酸を加えた。反
応混合物を、形成される重合体の沈澱を生ずるメ
タノールの添加によつて希釈した。沈澱を液体か
ら分離しそして室温で一夜真空乾燥した。重合体
の一部を約180℃の温度で試験バールで圧縮成型
した。重合体は23℃で測定された3245ポンド/平
方インチ(227Kg/cm2)の破断時抗張力及び20イ
ンチ(50.8cm)/分の口部分離速度を有した。重
合体試料の破断時伸びは1000%であつた。この重
合体の分子量は、J.Applied polym.Sci.13.2359
(1969年)Runyonに記載されている方法によつて
ゲル―パーミユエーシヨンクロマトグラフイーに
よつて測定した。分子量は123000であり、83000
のブタジエン中央ブロツク及び二つの20000のス
チレン末端ブロツクを有した。
In a nitrogen-purged flask, add 0.88 mmol of the compound dissolved in 25 ml of dry benzene and in addition 1.85 mmol dissolved in 4.3 ml of hexane with stirring.
Additional amounts of lithium were prepared by charging milliequivalents of sec-butyllithium. The compound began to form as a red dispersion in benzene. The dispersion was stirred for 3-1/2 hours at room temperature and
ml of isoprene was added to the dispersion. The dispersion was then heated to a temperature of about 60°C and after about 10 minutes the red dispersion turned into a reddish-brown solution. Add this solution to 450ml
40 g of butadiene dissolved in dry benzene was added to a nitrogen purged flask containing 40 g of butadiene dissolved in dry benzene. The reaction mixture was kept within the temperature range of 45-55°C. Polymerization of butadiene was completed in about 50 minutes. The reaction mixture was then cooled to about 35°C and 22ml of styrene was added.
The solution was stirred for about 2 minutes and 2 ml of distilled tetrahydrofuran was added. Reduce the temperature of the solution to about 35°C by about 1
Hold for an hour and add 0.15ml glacial acetic acid. The reaction mixture was diluted by addition of methanol which caused precipitation of the polymer formed. The precipitate was separated from the liquid and dried under vacuum at room temperature overnight. A portion of the polymer was compression molded with a test bar at a temperature of approximately 180°C. The polymer had a tensile strength at break of 3245 pounds per square inch (227 Kg/cm 2 ) measured at 23°C and a mouth separation rate of 20 inches (50.8 cm)/minute. The elongation at break of the polymer sample was 1000%. The molecular weight of this polymer is determined by J.Applied Polym.Sci. 13 . 2359
(1969) by gel-permeation chromatography according to the method described in Runyon. Molecular weight is 123000 and 83000
It had a 20,000 butadiene center block and two 20,000 styrene end blocks.

実施例 3 反応フラスコを窒素でパージし、そしてそれに
58.5gの三塩化アルミニウム及び160mlのベンゼ
ンを仕込んだ。280mlのベンゼン中の40.6gのテ
レフタロイルクロライドの混合物を、摘下斗か
ら50分に亘つて反応フラスコに加えた。反応混合
物の温度を約44―47℃に約40分保持しそして約1
時間半で68℃に上昇した。反応容器及び内容物を
氷水浴で冷却しそして氷水を反応混合物と混合し
た。塩化メチレンを加えそして水性及び有機層を
分離した。有機層を水性重炭酸ナトリウムで3回
洗滌しそして水で2回洗滌した。有機層を無水硫
酸ナトリウム上で乾燥した。粒状硫酸ナトリウム
を分離しそして有機溶媒を蒸発によつて除去し
た。蒸発後残る得られた粗生成物を、約0.5%ベ
ンゼンを含有する絶対アルコールから再結晶し
た。155―160℃の融点を有する1,4―ジベンゾ
イルベンゼン30gを得た。この1,4―ジベンゾ
イルベンゼンを、次に化合物を化合物に転化
する実施例1に示した方法を用いて、1,4―ビ
ス(1―フエニルエテニル)ベンゼン(化合物
)に転化した。窒素パージフラスコに、20mlの
乾燥ベンゼン中に溶解した0.98ミリモルの化合物
を仕込んだ。続いて、6mlの0.483Nsec―ブチ
ルリチウム―ヘキサン溶液を加えた。混合物を2
時間室温で撹拌した。混合物は暗青赤色懸濁液で
あり、そして化合物、1,4―フエニレンビス
(3―メチル―1―フエニルペンチリデン)ビス
(リチウム)を含んだ。化合物を含有する溶液
の一部を氷酢酸で酸性化しそして赤外スペクトル
は900cm-1のピークを示さなかつたが、これはビ
ニル基の不存在を示した。化合物を含有する分
散液を用いてブタジエンを重合した。窒素パージ
反応フラスコに、450mlのベンゼン及び化合物
を含有する分散液を仕込んだ。10gの1,3―ブ
タジエンをフラスコに加えた。フラスコ及び内容
物を約40℃の温度に約30分間保持し、分散液は溶
液となつたがそして28gのブタジエンを加えた。
フラスコの内容物を約45―55℃に約50分間加温し
た。反応混合物及びフラスコを次に室温に冷却し
そして2mlの蒸溜テトラヒドロフランを撹拌しな
がら加えた。続いて、ベンゼン中1.12ミリ当量の
四塩化硅素を加えた。直ちにゲルが現れた。約60
分後、0.1mlの氷酢酸を加えた。反応混合物を30
分間撹拌した。翌日、生成物はメタノールの添加
による沈澱によつて回収した。この生成物は55%
のゲルを含有した。理論ゲル含量は67%であり、
従つてこの開始剤は二官能性であつた。
Example 3 A reaction flask was purged with nitrogen and
58.5 g of aluminum trichloride and 160 ml of benzene were charged. A mixture of 40.6 g terephthaloyl chloride in 280 ml benzene was added to the reaction flask over 50 minutes from the bottom. The temperature of the reaction mixture was maintained at about 44-47°C for about 40 minutes and
The temperature rose to 68℃ in half an hour. The reaction vessel and contents were cooled in an ice water bath and the ice water was mixed with the reaction mixture. Methylene chloride was added and the aqueous and organic layers were separated. The organic layer was washed three times with aqueous sodium bicarbonate and twice with water. The organic layer was dried over anhydrous sodium sulfate. The particulate sodium sulfate was separated and the organic solvent was removed by evaporation. The resulting crude product remaining after evaporation was recrystallized from absolute alcohol containing about 0.5% benzene. 30 g of 1,4-dibenzoylbenzene having a melting point of 155-160°C was obtained. This 1,4-dibenzoylbenzene was then converted to 1,4-bis(1-phenylethenyl)benzene (compound) using the method set forth in Example 1 for converting compounds to compounds. A nitrogen purged flask was charged with 0.98 mmol of compound dissolved in 20 ml of dry benzene. Subsequently, 6 ml of 0.483Nsec-butyllithium-hexane solution was added. 2 of the mixture
Stir at room temperature for an hour. The mixture was a dark blue-red suspension and contained the compound 1,4-phenylenebis(3-methyl-1-phenylpentylidene)bis(lithium). A portion of the solution containing the compound was acidified with glacial acetic acid and the infrared spectrum showed no peak at 900 cm -1 indicating the absence of vinyl groups. Butadiene was polymerized using a dispersion containing the compound. A nitrogen purged reaction flask was charged with 450 ml of the dispersion containing benzene and the compound. 10g of 1,3-butadiene was added to the flask. The flask and contents were held at a temperature of about 40°C for about 30 minutes until the dispersion went into solution and 28 g of butadiene was added.
The contents of the flask were warmed to about 45-55°C for about 50 minutes. The reaction mixture and flask were then cooled to room temperature and 2 ml of distilled tetrahydrofuran was added with stirring. Subsequently, 1.12 meq of silicon tetrachloride in benzene was added. A gel appeared immediately. about 60
After a minute, 0.1 ml of glacial acetic acid was added. reaction mixture 30
Stir for a minute. The next day, the product was recovered by precipitation with the addition of methanol. This product is 55%
It contained a gel of Theoretical gel content is 67%;
This initiator was therefore difunctional.

実施例 4 実施例1に示したと同じ反応条件を用い、2,
2―ジフエニルプロパン及び塩化ベンゾイルから
化合物、4,4″―イソプロピリデンジベンゾフ
エノンを調製した。用いた成分量は以下の如くと
した。即ち、2,2―ジフエニルプロパン20.8
g、塩化ベンゾイル64.6g、三塩化アルミニウム
61g、及び1,2―ジクロロエタン160ml。得ら
れたジケトン(化合物)は、粘稠な褐色高沸点
油として得られそしてガスクロマトグラム上一つ
の主ピークを示した。赤外スペクトル及び核磁気
共鳴スペクトルは、共に生成物が所望のジケトン
(化合物)であることを示した。上記ジケトン
(化合物)を、ジケトンを相当するジオレフイ
ン化合物に転化し2,2―ビス〔4―(1―フエ
ニルエテニル)フエニル〕プロパン(化合物)
を得るために、実施例1に示した条件を用いてヴ
イテイツヒ反応に処した。化合物は、暗褐色粘
稠油として得られた。赤外スペクトル及び核磁気
共鳴スペクトルは、共に化合物が得られている
ことを示した。ガスクロマトグラフの試験は、こ
の物質が90%を越える純度を有することを示し
た。窒素パージフラスコに、20mlのベンゼンに溶
解した2.15ミリモルの化合物を仕込んだ。ヘキ
サン中0.482Nsec.―ブチルリチウムの12mlを加え
た。反応剤はすべて室温とした。sec.―ブチルリ
チウム溶液の添加で、混合物の色は赤複色に変り
そして懸濁固体がゆつくり形成した。そして溶液
は化合物XI、(1―メチルエチリデン)ビス―
〔4,1―フエニレン(3―メチル―1―フエニ
ルペンチリデン)〕ビス(リチウム)を含有し
た。反応混合物を室温で3時間撹拌した後、これ
を以下のようにして重合開始剤として用いた。即
ち窒素フラツシユ反応容器に、500mlベンゼン、
化合物XIを含む分散液及び10gの1,3―ブタジ
エンを仕込んだ。ブタジエンを添加した時点であ
る約1時間半後、混合物を約45―50℃の温度に保
ちそして約70分後室温に冷却した。冷却時に、
6.5mlの蒸溜テトラヒドロフランを添加した。テ
トラヒドロフランの添加の完了及び短時間の撹拌
と同時に、ベンゼン中の2.79ミリ当量の四塩化硅
素を加えた。四塩化硅素の添加で、ゲルが直ちに
現れた。混合物を約20分放置しそして0.8mlの氷
酢酸を加えそして混合物を一夜放置した。翌日、
重合体をメタノールで沈澱することによつて回収
したが、そして得られる生成物は90%より多いゲ
ルを含有することが判つた。ゲルの存在は開始剤
の二官能性を示した。
Example 4 Using the same reaction conditions as shown in Example 1, 2,
A compound, 4,4''-isopropylidene dibenzophenone, was prepared from 2-diphenylpropane and benzoyl chloride.The amounts of the ingredients used were as follows: 2,2-diphenylpropane 20.8
g, benzoyl chloride 64.6 g, aluminum trichloride
61 g, and 160 ml of 1,2-dichloroethane. The diketone (compound) obtained was obtained as a viscous brown high boiling oil and showed one main peak on the gas chromatogram. Both infrared and nuclear magnetic resonance spectra showed the product to be the desired diketone. The above diketone (compound) is converted into a diolefin compound corresponding to the diketone, and 2,2-bis[4-(1-phenylethenyl)phenyl]propane (compound)
was subjected to a Wiiteizg reaction using the conditions given in Example 1 to obtain . The compound was obtained as a dark brown viscous oil. Both infrared and nuclear magnetic resonance spectra showed that the compound was obtained. Gas chromatographic testing showed this material to have a purity of over 90%. A nitrogen purged flask was charged with 2.15 mmol of compound dissolved in 20 ml of benzene. 12 ml of 0.482 Nsec.-butyllithium in hexane was added. All reactants were at room temperature. sec.- Upon addition of the butyl lithium solution, the color of the mixture changed to red and a suspended solid slowly formed. And the solution is compound XI, (1-methylethylidene)bis-
Contained [4,1-phenylene(3-methyl-1-phenylpentylidene)]bis(lithium). After stirring the reaction mixture at room temperature for 3 hours, it was used as a polymerization initiator as follows. That is, in a nitrogen flash reaction vessel, 500 ml of benzene,
A dispersion containing Compound XI and 10 g of 1,3-butadiene were charged. After about 1.5 hours, when the butadiene was added, the mixture was maintained at a temperature of about 45-50°C and cooled to room temperature after about 70 minutes. During cooling,
6.5 ml of distilled tetrahydrofuran was added. Upon completion of the tetrahydrofuran addition and brief stirring, 2.79 meq of silicon tetrachloride in benzene was added. Upon addition of silicon tetrachloride, a gel appeared immediately. The mixture was allowed to stand for approximately 20 minutes and 0.8ml of glacial acetic acid was added and the mixture was allowed to stand overnight. the next day,
The polymer was recovered by precipitation with methanol and the resulting product was found to contain more than 90% gel. The presence of gel indicated the bifunctionality of the initiator.

実施例 5 t―ブチルスチレン―スチレン―t―ブチルス
チレントリブロツク共重合体の調製 窒素充填1フラスコに、450mlの脱気乾燥ベ
ンゼン及び55mlの精製スチレンを加えた。混合物
中の残渣不純物を、薄い淡黄色が現れるまでsec.
―ブチルリチウムシクロヘキサン溶液(0.56N)
で滴定することによつて除去した。合計0.31ミリ
当量のsec.―ブチルリチウムを用いた。この混合
物に、2mlの精製テトラヒドロフラン及び実施例
2で調製した如き0.394ミリモルの化合物を加
えた。反応混合物は直ちに濃いオレンジ褐色に変
りそして熱が発生し始めた。60分後フラスコを再
び冷却した。すべてのスチレン単量体が反応する
ことを確めるために更に30分置いた。精製t―ブ
チルスチレン、2.9mlを次に二官能性リビングポ
リスチレンアニオンを含有する反応フラスコに加
えた。t―ブチルスチレンの重合を更に60分続
け、その後0.5ml部分の氷酢酸を加え、リビング
ジアニオンを終結させた。普通の沈澱及び乾燥技
術によつて回収された重合体は定量的であり、加
えられたすべての単量体が用いられたことを示し
た。
Example 5 Preparation of t-butylstyrene-styrene-t-butylstyrene triblock copolymer To a nitrogen-filled flask was added 450 ml of degassed dry benzene and 55 ml of purified styrene. Remove any residual impurities in the mixture until a pale yellow color appears.
-Butyllithium cyclohexane solution (0.56N)
It was removed by titration with A total of 0.31 milliequivalents of sec.-butyllithium was used. To this mixture were added 2 ml of purified tetrahydrofuran and 0.394 mmol of the compound as prepared in Example 2. The reaction mixture immediately turned deep orange-brown and began to generate heat. After 60 minutes the flask was cooled again. An additional 30 minutes was allowed to ensure all styrene monomer had reacted. 2.9 ml of purified t-butylstyrene was then added to the reaction flask containing the difunctional living polystyrene anion. Polymerization of t-butylstyrene was continued for an additional 60 minutes, after which a 0.5 ml portion of glacial acetic acid was added to terminate the living dianion. The polymer recovered by conventional precipitation and drying techniques was quantitative, indicating that all monomer added was used.

実施例 6 α,ω―ジヒドロキシポリブタジエンの調製 エチレンオキシド、約2mlを、高真空止めコツ
ク及びゴム隔壁キヤツプ側腕を備えた50mlガラス
びんにシリンダーから凝縮させた。この凝縮エチ
レンオキシド液体に、4滴のγ―ブチルリチウム
(1.5N.ヘキサン中)を加え、存在する不純物と反
応させた。凝縮エチレンオキシドを含有するガラ
スびんを次に1反応フラスコの側腕に接続し
た。
Example 6 Preparation of α,ω-dihydroxypolybutadiene Approximately 2 ml of ethylene oxide was condensed from a cylinder into a 50 ml glass bottle equipped with a high vacuum stopper and a rubber septum cap side arm. To this condensed ethylene oxide liquid, 4 drops of γ-butyllithium (1.5N in hexane) were added to react with any impurities present. A vial containing condensed ethylene oxide was then connected to the side arm of one reaction flask.

反応フラスコを、次にN2脱気乾燥ベンゼン及
び約25gの精製ブタジエン単量体で充満させた。
この反応混合物中の残渣不純物を、シクロヘキサ
ン溶液中の0.42ミリ当量のsec.―ブチルリチウム
の添加によつて除去した。
The reaction flask was then filled with N 2 degassed dry benzene and about 25 g of purified butadiene monomer.
Residual impurities in the reaction mixture were removed by addition of 0.42 meq. of sec.-butyllithium in cyclohexane solution.

この精製反応混合物に、実施例2で調製した如
き0.56ミリモルの化合物を加えた。反応混合物
を55℃に加熱した。重合をこの温度で約60分間続
けた。反応期間の終期に、55℃水浴を除き、2ml
の純粋テトラヒドロフランを加えた。粘度の低下
が観察された。更に5分の連続撹拌後、縮合エチ
レンオキシドガラスびん及び重合フラスコと連結
された止めコツクを開いた。エチレンオキシドを
ガラスびん中縮合させるために用いたドライアイ
ス―塩化メチレン混合物を同様除去した。次にエ
チレンオキシドの蒸発を促進するために高温水の
ビーカーを用いた。重合フラスコ中液体の粘度が
急激に増大しそしてポリブタジエニルジアニオン
の淡黄色が消え始めた。約4分後この色は殆んど
完全に消えそして全溶液がゲル化した。撹拌を停
止した。ゲルを更に15分放置し、その後氷酢酸の
1ml部を加えた。酢酸の添加で直ちにゲル構造は
消え普通の粘度の液体となつた。ゲル溝造のこの
発生及び消失は、エチレンオキシドによる+Li-O
〜O-Li+ジアニオンを製造するためのキヤツプ反
応が実質的に完了しそして続く酸性化が所望の
α,ω―ジヒドロキシポリブタジエンを生成させ
たことを示した。
To this purified reaction mixture was added 0.56 mmol of the compound as prepared in Example 2. The reaction mixture was heated to 55°C. Polymerization continued at this temperature for approximately 60 minutes. At the end of the reaction period, remove the 55°C water bath and add 2 ml
of pure tetrahydrofuran was added. A decrease in viscosity was observed. After an additional 5 minutes of continuous stirring, the stopper connected to the condensed ethylene oxide vial and polymerization flask was opened. The dry ice-methylene chloride mixture used to condense ethylene oxide in the vial was similarly removed. A beaker of hot water was then used to accelerate the evaporation of ethylene oxide. The viscosity of the liquid in the polymerization flask increased rapidly and the light yellow color of the polybutadienyl dianion began to disappear. After about 4 minutes the color almost completely disappeared and the entire solution gelled. Stirring was stopped. The gel was allowed to stand for an additional 15 minutes, after which a 1 ml portion of glacial acetic acid was added. Upon addition of acetic acid, the gel structure immediately disappeared and the mixture became a liquid with normal viscosity. This generation and disappearance of gel grooves is caused by + Li - O due to ethylene oxide.
The cap reaction to produce the ˜O Li + dianion was shown to be substantially complete and subsequent acidification produced the desired α,ω-dihydroxypolybutadiene.

本発明に従う開始剤は、相当するジビニリデン
化合物の供給を保つことによつてその場で
(insitu)容易に調製される。ジヴニリデン化合
物は容易にそして急速に相当するリチウム混合物
に転化され、そして少量のブタジエンの如き単量
体の添加によつて可容化される。所望によつて
は、全系がエーテル又はアミンの如き極性化合物
の添加を避けることができ、そしてかくしてジエ
ン重合体の重合が用いられるとき1,2付加は最
小にされるが、しかし望ましいときには、1,2
―付加を増大させ、重合速度を増大させそして反
応混合物の粘度を低下させるために適当な極性化
合物が加えられる。
The initiators according to the invention are easily prepared in situ by keeping a supply of the corresponding divinylidene compound. Divnylidene compounds are easily and rapidly converted to the corresponding lithium mixtures and are solubilized by the addition of small amounts of monomers such as butadiene. If desired, the entire system can avoid the addition of polar compounds such as ethers or amines, and thus 1,2 addition is minimized when polymerization of diene polymers is used, but when desired, 1,2
- Suitable polar compounds are added to increase the addition, increase the polymerization rate and reduce the viscosity of the reaction mixture.

Claims (1)

【特許請求の範囲】 1 式 (R1は水素、又はC1〜C16アルキル炭化水素基、
シクロアルキル炭化水素基、アルコキシ基、又は
芳香族基であり、R2は少なくとも6炭素原子を
有しそしてリチウム原子に結合している炭素に直
接結合している少なくとも一つの芳香族環を有す
る二価有機基であり、そしてR3は1〜20炭素原
子を含有するアルキル、シクロアルキル又は芳香
族基である)を有することを特徴とするリチウム
含有開始剤の存在下で重合可能なビニル基含有化
合物の重合開始剤。 2 1,4―フエニレンビス(3―メチル―1―
フエニルペンチリデン)ビス(リチウム)である
上記1項の化合物。 3 (1,1′―ビフエニル)―4,4′―ジイルビ
ス(3―メチル―1―フエニルペンチリデン)ビ
ス(リチウム)である上記1項の化合物。 4 オキシジ―4,1―フエニレンビス(3―メ
チル―1―フエニル―ペンチリデン)ビス(リチ
ウム)である上記1項の化合物。 5 (1―メチルエチリデン)ビス―〔4,1―
フエニレン(3―メチル―1―フエニルペンチリ
デン)〕ビス(リチウム)である上記1項の化合
物。 6 主要部分の液状脂肪族、脂環族又は芳香族炭
化水素溶媒又はその混合物及び少量部分の式 (R1は水素、又はC1〜C16アルキル炭化水素基、
シクロアルキル炭化水素基、アルコオキシ基、又
は芳香族基であり、R2は少なくとも6炭素原子
を有しそしてリチウム原子に結合している炭素に
直接結合している少なくとも一つの芳香族環を有
する二価有機基であり、そしてR3は1から20炭
素原子を含有するアルキル、シクロアルキル又は
芳香族基である。)を有する多官能性リチウム含
有重合開始剤化合物並びにそれらと化学的に結合
されたブタジエン又はイソプレンの少なくとも一
つを含むことを特徴とする、リチウム含有開始剤
の存在下で重合可能なビニル基含有化合物の重合
開始剤溶液。
[Claims] 1 formula (R 1 is hydrogen or a C 1 to C 16 alkyl hydrocarbon group,
is a cycloalkyl hydrocarbon group, an alkoxy group, or an aromatic group, and R 2 is a dicyclic group having at least 6 carbon atoms and having at least one aromatic ring directly bonded to the carbon bonded to the lithium atom. and R 3 is an alkyl, cycloalkyl or aromatic group containing from 1 to 20 carbon atoms) containing vinyl groups polymerizable in the presence of a lithium-containing initiator Polymerization initiator for compounds. 2 1,4-phenylenebis(3-methyl-1-
The compound according to item 1 above, which is phenylpentylidene)bis(lithium). 3. The compound according to item 1 above, which is (1,1'-biphenyl)-4,4'-diylbis(3-methyl-1-phenylpentylidene)bis(lithium). 4. The compound of item 1 above which is oxydi-4,1-phenylenebis(3-methyl-1-phenyl-pentylidene)bis(lithium). 5 (1-methylethylidene)bis-[4,1-
The compound according to item 1 above, which is phenylene(3-methyl-1-phenylpentylidene)]bis(lithium). 6 Formula of liquid aliphatic, alicyclic or aromatic hydrocarbon solvent or mixture thereof as major part and minor part (R 1 is hydrogen or a C 1 to C 16 alkyl hydrocarbon group,
is a cycloalkyl hydrocarbon group, an alkoxy group, or an aromatic group, and R 2 is a dicyclic group having at least 6 carbon atoms and having at least one aromatic ring directly bonded to the carbon bonded to the lithium atom. is a valent organic group and R 3 is an alkyl, cycloalkyl or aromatic group containing 1 to 20 carbon atoms. ) and at least one of butadiene or isoprene chemically combined therewith, containing vinyl groups polymerizable in the presence of a lithium-containing initiator. Polymerization initiator solution of compound.
JP9125476A 1975-08-01 1976-07-30 Improved polymerization initiator compounds containing multiifunctional lithium Granted JPS5219192A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US60157775A 1975-08-01 1975-08-01

Publications (2)

Publication Number Publication Date
JPS5219192A JPS5219192A (en) 1977-02-14
JPS627203B2 true JPS627203B2 (en) 1987-02-16

Family

ID=24408029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9125476A Granted JPS5219192A (en) 1975-08-01 1976-07-30 Improved polymerization initiator compounds containing multiifunctional lithium

Country Status (7)

Country Link
JP (1) JPS5219192A (en)
AU (1) AU501188B2 (en)
CA (1) CA1098913A (en)
DE (1) DE2634391A1 (en)
FR (1) FR2321507A1 (en)
GB (1) GB1499467A (en)
NL (1) NL180666C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378022U (en) * 1986-05-26 1988-05-24

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4172190A (en) * 1977-10-11 1979-10-23 The Dow Chemical Company Soluble multifunctional lithium containing initiator
DE2938658A1 (en) * 1979-09-25 1981-04-09 Basf Ag, 6700 Ludwigshafen SOLUTIONS OF BIFUNCTIONAL ORGANOLITHIUM COMPOUNDS IN NON-POLAR ORGANIC HYDROCARBONS AS SOLVENTS, METHOD FOR THE PRODUCTION OF SUCH SOLUTIONS AND THE USE THEREOF
US5171800A (en) * 1989-06-28 1992-12-15 Basf Aktiengesellschaft Anionic polymerization with bifunctional initiators
JP5396783B2 (en) * 2007-10-30 2014-01-22 Jsr株式会社 Method for producing amino group-containing conjugated diene polymer and method for producing block copolymer
ES2635133T3 (en) * 2013-07-22 2017-10-02 Trinseo Europe Gmbh Polymerization Initiators
ES2606834T3 (en) * 2013-12-20 2017-03-28 Continental Reifen Deutschland Gmbh Mixture of rubber and car tires

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3787510A (en) * 1969-02-03 1974-01-22 Phillips Petroleum Co Multifunctional polymerization initiators
BE756241A (en) * 1969-09-19 1971-03-01 Goodyear Tire & Rubber PROCESS FOR THE PREPARATION OF AN ORGANOMETAL POLYMERIZATION INITIATOR AND POLYMERIZATION PROCESSES USING IT
US3668263A (en) * 1970-01-19 1972-06-06 Lithium Corp Organolithium polymerization initiators and use thereof in polymerization processes
US3776964A (en) * 1971-03-18 1973-12-04 First National City Bank Organolithium polymerization initiators
US3734972A (en) * 1971-11-04 1973-05-22 Phillips Petroleum Co Multifunctional initiators
US3848008A (en) * 1971-11-26 1974-11-12 First National City Bank Dilithium initiators from certain conjugated dienes yielding delocaliized chain ends

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378022U (en) * 1986-05-26 1988-05-24

Also Published As

Publication number Publication date
NL7608495A (en) 1977-02-03
CA1098913A (en) 1981-04-07
NL180666B (en) 1986-11-03
JPS5219192A (en) 1977-02-14
FR2321507B1 (en) 1979-05-04
DE2634391A1 (en) 1977-02-17
FR2321507A1 (en) 1977-03-18
AU501188B2 (en) 1979-06-14
AU1643576A (en) 1978-02-02
DE2634391C2 (en) 1988-11-10
GB1499467A (en) 1978-02-01
NL180666C (en) 1987-04-01

Similar Documents

Publication Publication Date Title
US4196154A (en) Soluble multifunctional lithium containing initiator
US4172190A (en) Soluble multifunctional lithium containing initiator
US4200718A (en) Multifunctional lithium containing initiator
US4182818A (en) Polyfunctional lithium containing initiator
US4264749A (en) Organo-lithium compounds and a process for their preparation
JP3828340B2 (en) Monomolecular carboxylic acid neodymium compound and diene polymerization catalyst containing the compound
JPS6213404A (en) Coupler and its use
US4205016A (en) Multifunctional lithium containing initiator
JPH06199922A (en) Soluble anionic polymerization initiator and substance formed from the same
US4172100A (en) 1,3-Bis[1-(4-methylphenyl)ethenyl]benzene
JPS6119610A (en) Catalyst system and polymerization
US4196153A (en) Polyfunctional lithium containing initiator
US4201729A (en) Multifunctional lithium containing initiator
CN107922678B (en) Dilithium initiators
JPS627203B2 (en)
US4311818A (en) Bi- and Trifunctional organolithium initiators and applications thereof
JPS5871909A (en) Block copolymer of conjugate diene or vinyl substituted aromatic hydrocarbon and acryl ester and manufacture
JPH0338590A (en) Organoalkali metal compound and initiator for production of polymer
US6121474A (en) Amine anionic polymerization initiators and functionalized polymers derived therefrom
US4161494A (en) Bi-and trifunctional organolithium initiators
US5081251A (en) Stilbene compounds use in anionic polymerization
US4181684A (en) Diphenyl compounds that are intermediates in preparation of polymerization initiators
JPH04246408A (en) Preparation of difunctional living polymer and preparation of telechelic polymer and block copolymer
CN109863182B (en) Process for producing polydienes
JPS62215608A (en) Production of alkenylsilyl group-containing high polymer compound