JPS6271853A - Oxygen concentration detector - Google Patents

Oxygen concentration detector

Info

Publication number
JPS6271853A
JPS6271853A JP60213577A JP21357785A JPS6271853A JP S6271853 A JPS6271853 A JP S6271853A JP 60213577 A JP60213577 A JP 60213577A JP 21357785 A JP21357785 A JP 21357785A JP S6271853 A JPS6271853 A JP S6271853A
Authority
JP
Japan
Prior art keywords
current
voltage
oxygen
electrodes
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60213577A
Other languages
Japanese (ja)
Inventor
Tomohiko Kawanabe
川鍋 智彦
Masahiko Asakura
正彦 朝倉
Katsuhiko Kimura
勝彦 木村
Minoru Muroya
室屋 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP60213577A priority Critical patent/JPS6271853A/en
Priority to US06/909,535 priority patent/US4665874A/en
Publication of JPS6271853A publication Critical patent/JPS6271853A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent securely a blackening phonomenenon from occurring by stopping supplying a pump current to an oxygen pump element when the value of a supply current to the oxygen pump element exceeds a limit value. CONSTITUTION:A signal from a terminal Ic of an air-fuel ratio control circuit 32 enters the charging/discharging part of an integration circuit 28 through a D/A converter 26 and a follower circuit 27 and is raised in voltage according to a time constant and inputted to the uninverted input part of an amplifier 12. The inverted input of the amplifier 12, on the other hand, is at a low level, so the amplifier 12 generates a high-level output to turn on a transistor TR 13, and a pump current flows between electrodes 5 and 6 of the pump element 1, so that a voltage VS is developed between electrodes 7 and 8 of a battery element. When the output voltage of the amplifier 21 reaches the specific value, the noninverting amplifier 25 amplifies the VS and supplies it to the inverted input terminal of the amplifier 12. Then, the state is inverted and the TR 13 is turned off to stop a pump current, so that the VS stops. Thus, said operation is repeated at a high speed to control the voltage VS to a constant level.

Description

【発明の詳細な説明】 炎亙且j 本発明はエンジン排気ガス等の気体中の酸素濃度を検出
する酸素′Q度検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oxygen Q degree detection device for detecting the oxygen concentration in gas such as engine exhaust gas.

1旦葱j 内燃エンジンの排気ガス浄化、燃費改善等を目的として
、排気ガス中の酸素濃度を検出し、この検出結果に応じ
てエンジンへの供給混合気の空燃比を目標空燃比にフィ
ードバック制御する空燃比制御装置がある。
For the purpose of purifying the exhaust gas of internal combustion engines and improving fuel efficiency, the oxygen concentration in the exhaust gas is detected, and the air-fuel ratio of the mixture supplied to the engine is feedback-controlled to the target air-fuel ratio according to the detection results. There is an air-fuel ratio control device that does this.

このような空燃比制御装置に用いられる酸素濃度検出装
置として被測定気体中の酸素f1度に比例した出力を発
生するものがある(特開昭58−153155号)。か
かる酸素WJ度検出装置においては、一対の平板状のM
Mイオン伝導性固体電解質部材を有するM素濃度検出器
が設けられている。
As an oxygen concentration detection device used in such an air-fuel ratio control device, there is one that generates an output proportional to the oxygen f1 degree in the gas to be measured (Japanese Patent Laid-Open No. 153155/1983). In such an oxygen WJ degree detection device, a pair of flat M
An M elementary concentration detector having an M ion-conducting solid electrolyte member is provided.

その固体電解質部材は被測定気体中に配置されるように
なされ、固体電解質部材の各表裏面には電極が各々形成
されかつ固体電解質部材が所定の間隙部を介し−C対向
するように平すに配置されている。固体電解質部材の一
方が酸素ポンプ素子として、他方が酸素温度比測定用電
池素子として作用するまうになっている。被測定気体中
において間隙部側電極が負極になるように酸素ポンプ素
子の°電極間に電流を供給すると、酸素ポンプ素子の負
極面側にて間隙部内気体中の酸素ガスがイオン化して酸
素ポンプ素子内を正極面側に移動し正極面から酸素ガス
として放出される。このとぎ、間隙部中の!ll素ガス
の減少により間隙部内の気体と電池素子外側の気体との
間に!2県濃度差が生ずるので電池素子の電極間に電圧
が発生する。この電圧を一定値にするように酸素ポンプ
素子に供給するポンプ電流値を変化させると、定温にお
いてそのポンプ電流値が被測定気体中の酸素濃度にほぼ
比例することになり、酸素潤度検出値として出力される
The solid electrolyte member is arranged in the gas to be measured, and electrodes are formed on each front and back surface of the solid electrolyte member, and the solid electrolyte member is flattened so as to face -C through a predetermined gap. It is located in One of the solid electrolyte members acts as an oxygen pump element, and the other acts as a battery element for oxygen temperature ratio measurement. When a current is supplied between the electrodes of the oxygen pump element so that the gap side electrode becomes the negative electrode in the gas to be measured, the oxygen gas in the gap gas is ionized on the negative electrode side of the oxygen pump element, and the oxygen pump It moves within the device toward the positive electrode surface and is released from the positive electrode surface as oxygen gas. This moment is in the gap! ll between the gas in the gap and the gas outside the battery element due to the decrease in elementary gas! Since there is a difference in concentration between the two prefectures, a voltage is generated between the electrodes of the battery element. If the pump current value supplied to the oxygen pump element is changed to maintain this voltage at a constant value, the pump current value will be approximately proportional to the oxygen concentration in the gas being measured at a constant temperature, and the detected oxygen humidity value will be is output as

かかる酸素濃度検出装置においては、酸素ポンプ素子に
過剰の電流を供給すると、固体電解質部材から酸素を奪
うブラックニング現象が発生する。
In such an oxygen concentration detection device, when an excessive current is supplied to the oxygen pump element, a blackening phenomenon occurs in which oxygen is taken away from the solid electrolyte member.

例えば、固体電解質部材としてZrO2(二酸化ジルコ
ニウム)が用いられた場合、酸素ポンプ素子への過剰電
流供給によりZrO2から酸素02が奪われてジルコニ
ウムZrが析出される。このブラックニング現象はM素
ポンプ素子の劣化をJ。
For example, when ZrO2 (zirconium dioxide) is used as the solid electrolyte member, oxygen 02 is taken away from ZrO2 by excessive current supply to the oxygen pump element, and zirconium Zr is deposited. This blackening phenomenon causes deterioration of the M pump element.

速に進め酸素濃度検出器としての性能を悪化させる原因
となる。
This will cause the oxygen concentration detector to deteriorate in performance.

第1図は電池素子に発生する電圧Vsをパラメータとし
て酸素濃度と酸素ポンプ素子への供給電流との関係特性
及びブラックニング現象発生領域を示しており、ブラッ
クニング現象発生領域との境界線は電圧Vsをパラメー
タとした関係特性と同様に1次関数的特性であるので電
圧Vsから酸素ポンプ素子への供給電流がブラックニン
グ現象発生領域の値に属するか否かを判別することがで
きる。よって、電圧Vsが所定電圧以上に上昇したとき
には酸素ポンプ素子への供給電流がブラックニング現象
発生領域に近い値になるとして該供給電流を減少させる
ことによりブラックニング現象の発生を防止することが
できる。
Figure 1 shows the relationship between the oxygen concentration and the current supplied to the oxygen pump element and the area where the blackening phenomenon occurs, using the voltage Vs generated in the battery element as a parameter, and the boundary line with the area where the blackening phenomenon occurs is the voltage Since it is a linear functional characteristic similar to the relational characteristic using Vs as a parameter, it can be determined from the voltage Vs whether the current supplied to the oxygen pump element belongs to the value in the blackening phenomenon occurrence region. Therefore, when the voltage Vs increases to a predetermined voltage or higher, the current supplied to the oxygen pump element becomes a value close to the area where the blackning phenomenon occurs, and by reducing the supplied current, it is possible to prevent the occurrence of the blackning phenomenon. .

かかる酸素m度検出装置を用いた空燃比制御装置におい
ては、WIA索ポンプ素子への供給電流値はブラックニ
ング現象を防止するためにブラックニング現象発生境界
値以下の値に設定されており、W1素ポンプ素子への供
給電流値とM半値とを比較することにより供給混合気の
空燃比が目標空燃比J:リリッチ及びリーンのいずれで
あるか判別される。空燃比を2次空気によって制−する
方式の場合、リッチと判別されたならば、2次空気をエ
ンジンに供給し、リーンと判別されたならば2次空気の
供給を件止することにより空燃比が目標空燃比に統御さ
れる。
In an air-fuel ratio control device using such an oxygen m degree detection device, the value of the current supplied to the WIA cable pump element is set to a value below the blackning phenomenon occurrence boundary value in order to prevent the blackning phenomenon, and the W1 By comparing the current value supplied to the elementary pump element and the half value of M, it is determined whether the air-fuel ratio of the supplied air-fuel mixture is the target air-fuel ratio J: rich or lean. In the case of a system in which the air-fuel ratio is controlled by secondary air, if the engine is determined to be rich, secondary air is supplied to the engine, and if the engine is determined to be lean, the secondary air supply is stopped. The fuel ratio is controlled to the target air-fuel ratio.

酸素ポンプ素子にポンプ電流を供給する電流供給手段と
して電池素子の電極間に発生ずる電圧を基準電圧と比較
しその比較結果に応じて酸素ポンプ素子へ供給電流を制
御する電流供給回路が用いられている。エンジン始動時
等に第2図(a>の如く基準電圧が電流供給回路に供給
されると、電流供給回路は酸素ポンプ索子へポンプ電流
の供給を開始する。しかしながら、空燃比制御系の動作
遅れによりポンプ電流は直ちに所定の制御l範囲の電流
値にはならず第2図(b)の如く過渡的に変化してオー
バシューt・が生ずるのでポンプ電流値がブラックニン
グ現象発生境界値以−ヒとなってブラックニング現象を
発生することがあるという問題点があった。
As a current supply means for supplying pump current to the oxygen pump element, a current supply circuit is used which compares the voltage generated between the electrodes of the battery element with a reference voltage and controls the current supplied to the oxygen pump element according to the comparison result. There is. When the reference voltage is supplied to the current supply circuit as shown in Fig. 2 (a) at the time of starting the engine, etc., the current supply circuit starts supplying pump current to the oxygen pump cord. However, the operation of the air-fuel ratio control system Due to the delay, the pump current does not immediately reach the current value within the predetermined control range, but changes transiently as shown in Figure 2 (b), causing an overshoot, so that the pump current value does not exceed the blackning phenomenon occurrence boundary value. - There was a problem in that the blackening phenomenon could occur due to heat.

また、酸素ポンプ素子と電池素子との間に間隙部がある
ために酸素ポンプ素子へのポンプ電流の供給開始直後に
ポンプ電流値が所定の制t11範囲の電流値まで上昇し
ても応答遅れにより電池素子の出力電圧は直ちに基準電
圧付近に達せず第2図<C)の如く徐々に上背する。よ
って、ブラックニング現象の発生防止のために電池素子
の出力電圧から酸素ポンプ素子にブラックニング現象発
生領域となるような過剰電流が流れていることを判別す
るようにした装置でもポンプ′を流供給開始直(りのブ
ラックニング現象の発生を完全に防lすることができな
かった。
In addition, since there is a gap between the oxygen pump element and the battery element, even if the pump current value rises to a current value within the predetermined control t11 range immediately after the start of pump current supply to the oxygen pump element, the response will be delayed. The output voltage of the battery element does not reach around the reference voltage immediately, but gradually rises as shown in FIG. 2 <C). Therefore, in order to prevent the occurrence of the blackning phenomenon, even if the device is designed to determine from the output voltage of the battery element whether an excessive current is flowing through the oxygen pump element, which would cause the blackning phenomenon to occur, the pump' cannot be supplied with current. It was not possible to completely prevent the blackening phenomenon from occurring immediately after starting.

ル1立11 そこで、本発明の目的はポンプ取決供給開始直後のブラ
ックニング現象を確実に防止することができる酸素濃度
検出装置を提供することである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an oxygen concentration detection device that can reliably prevent the blackening phenomenon immediately after the start of pump supply.

本発明の酸素濃度検出装置は供給ポンプ電流値がリミッ
ト蓼準値以上に達したときた流停止指令を発生するリミ
ット指令手段と、基準電圧を発生・する基準電圧発生手
段と、基準電圧によって充電されかつ電流停止指令に応
じてその充電電荷を放電する充放電回路と、電池素子の
電極間の電圧が充放電回路の出力電圧に等しくなるよう
に酸素ポンプ素子の電極間に電流を供給し電流停止指令
に応じて酸素ポンプ素子の電極間への電流供給を停止す
る電流供給回路とからなる電流供給手段が設けられてい
ることを特徴としている。
The oxygen concentration detection device of the present invention includes a limit command means that generates a flow stop command when the supply pump current value reaches a limit value or more, a reference voltage generation means that generates a reference voltage, and a charge pump that is charged by the reference voltage. and a charging/discharging circuit that discharges its charge in response to a current stop command, and a current is supplied between the electrodes of the oxygen pump element so that the voltage between the electrodes of the battery element is equal to the output voltage of the charging/discharging circuit. The present invention is characterized by being provided with a current supply means comprising a current supply circuit that stops supplying current between the electrodes of the oxygen pump element in response to a stop command.

友−五一」 以下、本発明の実施例を図面を参照しつつ説明する。Friend Goichi” Embodiments of the present invention will be described below with reference to the drawings.

第3図は本発明による酸素濃度検出装置を用いた空燃比
制御装置を示している。本装置において、互いに平行な
一対の平板状素子の酸素ポンプ素子1及び電池素子2か
らなる酸素濃度検出器は排気管(図示せず)内に配設さ
れる。酸素ポンプ素子1及び電池素子2の主体は酸素イ
オン伝導性固体電解質材からなり、その一端部間には間
隙部3が形成され、他端部はスペーサ4を介して互いに
結合されている。また酸素ポンプ素子1及び電池素子2
の一端部の表裏面に多孔質の耐熱金属からなる方形状の
電極板5ないし8が設けられ、他端部面には′Fi極板
5ないし8の引き出し15aないし8aが形成されてい
る。
FIG. 3 shows an air-fuel ratio control device using the oxygen concentration detection device according to the present invention. In this device, an oxygen concentration detector consisting of a pair of planar elements parallel to each other, an oxygen pump element 1 and a battery element 2, is disposed within an exhaust pipe (not shown). The main body of the oxygen pump element 1 and the battery element 2 is made of an oxygen ion conductive solid electrolyte material, and a gap 3 is formed between one end thereof, and the other end thereof is connected to each other via a spacer 4. Also, oxygen pump element 1 and battery element 2
Rectangular electrode plates 5 to 8 made of porous heat-resistant metal are provided on the front and back surfaces of one end, and drawers 15a to 8a of the Fi electrode plates 5 to 8 are formed on the other end.

酸素ポンプ索子1の電極板5,6間には電流供給回路1
1△よって電流が供給される。電流供給回路11はオペ
アンプ12.NPNトランジスタ13及び抵抗14.1
5からなる。オペアンプ12の出力端は抵抗14を介し
てトランジスタ13のベースに接続されている。またト
ランジスタ13の]ミッタは抵抗15を介してアースさ
れている。
A current supply circuit 1 is connected between the electrode plates 5 and 6 of the oxygen pump cord 1.
Current is supplied by 1△. The current supply circuit 11 includes an operational amplifier 12. NPN transistor 13 and resistor 14.1
Consists of 5. The output end of the operational amplifier 12 is connected to the base of a transistor 13 via a resistor 14. Also, the transmitter of the transistor 13 is grounded via a resistor 15.

抵抗15は酸素ポンプ素子1の電極板5.6間に流れる
ポンプ電流値1pを検出するために設けられており、そ
の端子電圧がポンプ電流値IPとして空燃比制御回路3
2の1+−人力#4に供給される。
The resistor 15 is provided to detect the pump current value 1p flowing between the electrode plates 5 and 6 of the oxygen pump element 1, and its terminal voltage is used as the pump current value IP in the air-fuel ratio control circuit 3.
2 of 1 + - supplied to human power #4.

トランジスタ13のコレクタは酸素ポンプ素子1の内側
電極板6に引ぎ出し線6aを介()て接続され、外側電
極板5には電圧v8が引き出し線5aを介して供給され
るようになっている。またトランジスタ13のコレクタ
・エミッタ間にはツェナーダイオード18がそのカソー
ドをトランジスタ13のコレクタ側に向けて並列に接続
さねている。
The collector of the transistor 13 is connected to the inner electrode plate 6 of the oxygen pump element 1 via a lead wire 6a, and the voltage v8 is supplied to the outer electrode plate 5 via the lead wire 5a. There is. Further, a Zener diode 18 is connected in parallel between the collector and emitter of the transistor 13 with its cathode facing the collector side of the transistor 13.

ツェナーダイオード18はトランジスタ″!3のコレク
タ・エミッタ間にその耐圧電圧以上の電圧が0加さrる
ことを防止するために設けられている。
The Zener diode 18 is provided to prevent a voltage higher than the withstand voltage from being applied between the collector and emitter of the transistor "!3".

一方、電池素子2の内側電極板7は引き出し線7aを介
してアースされ、外側電極板8は引き出しl118 a
を介してオペアンプ21. Itj、抗22ないし24
からなる非反転増幅器25に接続されている。非反転増
幅器25の出ノシ喘はオペアンプ12の反転入力端に接
続されている。空燃比制御回路32のIc制御出力端に
はD/A変換器26が接続され、D/A変換器26は空
燃比制御回路32のIc制御出力端から出力されるVs
値指令データに応じた電圧を発生する。D/A変換器2
6の出力端はオペアンプからなる電圧ホロワ回路27を
介して充放電回路をなす積分回路28に接続されている
。積分回路28は抵抗29.30及びコンデンサ31か
らなり、その出力電圧がオペアンプ12の非反転入力端
に供給される。
On the other hand, the inner electrode plate 7 of the battery element 2 is grounded via the lead wire 7a, and the outer electrode plate 8 is grounded via the lead wire 7a.
through the operational amplifier 21. Itj, anti-22 to 24
It is connected to a non-inverting amplifier 25 consisting of. The output of the non-inverting amplifier 25 is connected to the inverting input terminal of the operational amplifier 12. A D/A converter 26 is connected to the Ic control output terminal of the air-fuel ratio control circuit 32, and the D/A converter 26 receives Vs output from the Ic control output terminal of the air-fuel ratio control circuit 32.
Generates voltage according to value command data. D/A converter 2
The output terminal of 6 is connected to an integrating circuit 28 forming a charging/discharging circuit via a voltage follower circuit 27 consisting of an operational amplifier. The integrating circuit 28 is composed of a resistor 29, 30 and a capacitor 31, and its output voltage is supplied to the non-inverting input terminal of the operational amplifier 12.

空燃比制御回路32は好ましくはマイクロコンピュータ
からなり、上記した1c出力端、Ip入力端の他にA/
F駆動端及びIo出力端を有し、A/F駆動端には2次
空気供給調整用の電磁弁39に接続されている。電磁弁
39はエンジンの気化器絞り弁下流の吸気通路り連通す
る吸気2次空気供給通路に設けられている。Io出力端
にはスイッチ回路40が接続されている。スイッチ回路
40は抵抗41.42及びトランジスタ43からなる。
The air-fuel ratio control circuit 32 is preferably composed of a microcomputer, and in addition to the above-mentioned 1c output terminal and Ip input terminal, it has an A/F output terminal.
It has an F drive end and an Io output end, and the A/F drive end is connected to a solenoid valve 39 for adjusting secondary air supply. The solenoid valve 39 is provided in a secondary intake air supply passage that communicates with the intake passage downstream of the carburetor throttle valve of the engine. A switch circuit 40 is connected to the Io output terminal. The switch circuit 40 consists of resistors 41, 42 and a transistor 43.

トランジスタ43は空燃比制御回路32の1o出力端か
ら電流停止指令が供給されるとオンとなり、積分回路2
8の抵抗29の人カラ1゛ンをアースラインに短絡する
と共にトランジスタ13のベースをアースラインに短絡
する。
The transistor 43 is turned on when a current stop command is supplied from the 1o output terminal of the air-fuel ratio control circuit 32, and the integrator circuit 2
The terminal of the resistor 29 of 8 is short-circuited to the ground line, and the base of the transistor 13 is short-circuited to the ground line.

かかる構成(おいては、空燃比制御回路32のIc出力
端からVs値指令データが時点t1においてD/A変換
器26に出力dれると、D/戸、変換器26によってv
s値指令データが制m王圧VCに変換され、その制m+
電圧VCが第4図1a)に示すように電圧ホロワ回路2
7を介して積分回路28に供給される。積分回路28の
出力電圧は第を図(b)に示1ように抵抗29.30及
びコンデンサ31による積分時定数によって徐々に上昇
して時点t1から所定時間Ti後に抵抗29゜30によ
る制M電圧VCの分圧電圧に達する。この分圧電圧は積
分出力電!IVr+ としてηベアンプ12の非反転入
力端に供給される。このとき、オペアンプ12の反転入
力端の電圧レベルは積分出力電圧Vr+より小であるの
でオペアンプ12の出力レベルは高レベルとなりトラン
ジスタ13がオンとなる。トランジスタ13のオンによ
り酸素ポンプ素−71の電極板5.6間にポンプ電流が
流れる。
In this configuration, when Vs value command data is output from the Ic output terminal of the air-fuel ratio control circuit 32 to the D/A converter 26 at time t1, the D/A converter 26 outputs Vs value command data.
The s value command data is converted to the control m royal pressure VC, and the control m +
The voltage VC is connected to the voltage follower circuit 2 as shown in FIG.
7 to an integrating circuit 28. As shown in FIG. 1, the output voltage of the integrating circuit 28 gradually increases due to the integration time constant formed by the resistor 29.30 and the capacitor 31, and after a predetermined time Ti from time t1, the voltage M is controlled by the resistor 29.30. The divided voltage of VC is reached. This divided voltage is the integral output voltage! It is supplied as IVr+ to the non-inverting input terminal of the η bare amplifier 12. At this time, since the voltage level at the inverting input terminal of the operational amplifier 12 is smaller than the integrated output voltage Vr+, the output level of the operational amplifier 12 becomes high level, and the transistor 13 is turned on. When the transistor 13 is turned on, a pump current flows between the electrode plates 5 and 6 of the oxygen pump element 71.

ポンプ電流が流れると、電池素子2の電極板7゜8間に
は電圧Vsが発生し、電圧Vsは第4図(C)に示すよ
うに時点t1から徐々に上昇してほぼ所定時間T1経過
接に予め定められた電圧レベルに達する。また電圧Vs
は非反転増幅器25に供給され、非反転増幅器25は電
圧Vsを電圧増幅してオペアンプ12の反転入力端に供
給する。
When the pump current flows, a voltage Vs is generated between the electrode plates 7° and 8 of the battery element 2, and the voltage Vs gradually increases from time t1 as shown in FIG. A predetermined voltage level is reached immediately. Also, the voltage Vs
is supplied to a non-inverting amplifier 25, which amplifies the voltage Vs and supplies it to the inverting input terminal of the operational amplifier 12.

電圧Vsが上昇すると、非反転増幅器25の出力電圧V
s−も上昇する。出力電圧Vs−が積分出力電圧Vr+
を越えるとオペアンプ12の出力レベルが低レベルに反
転し、トランジスタ13がオフとなる。トランジスタ1
3のオフによりポンプ電流が減少するので電池素子2の
電極板7,8間の発生電圧Vsが低下し、非反転増幅器
25からオペアンプ12の反転入力端に供給される電圧
VS′も低下する。電圧Vs−が積分出力電圧Vr1を
下回ると再びオペアンプ12の出力レベルが高レベルと
なり、ポンプ電流を増加せしめる。この動作が高速にて
繰り返されるので電圧Vsは一定値に制御されると共に
Vslif4指令データが表わす直に応じた電圧となる
When the voltage Vs increases, the output voltage V of the non-inverting amplifier 25
s- also increases. The output voltage Vs- is the integrated output voltage Vr+
When the voltage exceeds 0, the output level of the operational amplifier 12 is inverted to a low level, and the transistor 13 is turned off. transistor 1
3 is turned off, the pump current decreases, so the voltage Vs generated between the electrode plates 7 and 8 of the battery element 2 decreases, and the voltage VS' supplied from the non-inverting amplifier 25 to the inverting input terminal of the operational amplifier 12 also decreases. When the voltage Vs- falls below the integrated output voltage Vr1, the output level of the operational amplifier 12 becomes high level again, causing the pump current to increase. Since this operation is repeated at high speed, the voltage Vs is controlled to a constant value and becomes a voltage directly corresponding to the Vslif4 command data.

積分出力電圧Vr+のオペアンプ12への供給時に酸素
ポンプ素子1の電極板5,6間を流れるポンプ電流値1
pは抵抗15の端子電圧Vpによって検出され、その端
子電圧Vpは空燃比制御回路32のIp入力端に供給さ
れる。
The pump current value 1 flowing between the electrode plates 5 and 6 of the oxygen pump element 1 when the integral output voltage Vr+ is supplied to the operational amplifier 12
p is detected by the terminal voltage Vp of the resistor 15, and the terminal voltage Vp is supplied to the Ip input terminal of the air-fuel ratio control circuit 32.

空燃比制御回路32はエンジン回転にl01l′IJl
シて次の如く動作する。第5図に示すように先ず、空燃
比フィードバック(F/B)制御条件が充足されている
か否かが判別される(ステップ51)。
The air-fuel ratio control circuit 32 changes l01l'IJl to engine rotation.
It operates as follows. As shown in FIG. 5, first, it is determined whether air-fuel ratio feedback (F/B) control conditions are satisfied (step 51).

この判別はエンジノ回転数、吸気圧、冷fll水温等の
各種エンジンパラメータから決定される。なお、これら
のエンジンパラメータを検出するために図示しない複数
のセンサが設けられている。空燃比フィードバック制御
条件が充足されないとき、例えば、エンジン高負荷時、
低冷却水温時には高レベル信号からなる電流停止指令か
スイッチ回路40に対して発生される(ステップ52ン
。電流停止指令に応じてスイッチ回路40のトランジス
タ43がオンとなりトランジスタ13のベースをアース
レベルに等しくさせる。よって、トランジスタ13がオ
フとなり酸素ポンプ素子1の電極板5゜6間へのポンプ
電流の供給を停止させる。また電圧ホロワ回路27から
の積分回路28への入力ラインをアースレベルに等しく
させる。よって、コンデンサ31から電流が抵抗29又
tよ30を介してアースに流れてコンデン9′31に蓄
積された電荷が放電するので積分回路28の出力電圧は
徐々に低下する。
This determination is determined from various engine parameters such as engine rotational speed, intake pressure, and cold water temperature. Note that a plurality of sensors (not shown) are provided to detect these engine parameters. When the air-fuel ratio feedback control conditions are not satisfied, for example, when the engine is under high load,
When the cooling water temperature is low, a current stop command consisting of a high level signal is generated to the switch circuit 40 (step 52). In response to the current stop command, the transistor 43 of the switch circuit 40 is turned on and the base of the transistor 13 is brought to the ground level. Therefore, the transistor 13 is turned off, stopping the supply of pump current between the electrode plates 5 and 6 of the oxygen pump element 1. Also, the input line from the voltage follower circuit 27 to the integrating circuit 28 is made equal to the ground level. Therefore, current flows from the capacitor 31 to the ground via the resistor 29 or t-30, and the charge accumulated in the capacitor 9'31 is discharged, so that the output voltage of the integrating circuit 28 gradually decreases.

一方、空燃比フィードバック制御条件が充足されている
場合には電流停止指令の発生が停止される(ステップ5
3)。電流停止指令の発生停止によりトランジスタ43
がオフとなり積分回路28に電圧ホロワ回路27から電
圧が供給されるのでコンデンサ31が充電されコンデン
サ31の端子電工、すなわち積分回路28の出力型、圧
は徐々に上11する。ま1こトランジスタ43のオフに
よりトランジスタ13のベースレベルがアースレベルか
ら開放された電流供給回路11は積分回路28の出力°
耐圧に応じてポンプ電流を酸素ポンプ素子1の電極板5
,6間に供給するのでポンプ電流値IPは電流停止指令
の発生停止直後に積分回路28の出力電圧に対応する値
まで急に増°加しく杓から徐々に増加する。なお、この
ステップ53は空燃比フィードバック制御条件充足、既
に10でも実行されたならば、その後は空燃比フッ−F
バック制御条件が充足されなくなるまでは無視しても良
い。その後、このときの目標空燃比に応じたポンプ電流
値1pのリミット値TPLが設定される(ステップ54
)。リミット値fpLは例えば、空燃比制御回路32内
のROM等に予め記憶されたデータマツプから検索され
るうリミット値1pLが設定されると、ポンプ電流EI
 T 「どして端子電圧Vpが読み込まれ(ステップ5
5)、その読み込んだポンプ電流値■ρがリミッhli
lIlpLより大であるか否かが判別される(ステップ
56)。
On the other hand, if the air-fuel ratio feedback control conditions are satisfied, the generation of the current stop command is stopped (step 5
3). The transistor 43 stops generating the current stop command.
is turned off and voltage is supplied from the voltage follower circuit 27 to the integrating circuit 28, so the capacitor 31 is charged and the terminal voltage of the capacitor 31, that is, the output voltage of the integrating circuit 28, gradually rises to 11. When the transistor 43 is turned off, the base level of the transistor 13 is released from the ground level, and the current supply circuit 11 receives the output of the integrating circuit 28.
The pump current is applied to the electrode plate 5 of the oxygen pump element 1 according to the withstand pressure.
, 6, the pump current value IP suddenly increases to a value corresponding to the output voltage of the integrating circuit 28 immediately after the generation of the current stop command stops, and then gradually increases. Note that if this step 53 satisfies the air-fuel ratio feedback control condition and has already been executed at step 10, then the air-fuel ratio feedback control condition is satisfied.
It may be ignored until the back control condition is no longer satisfied. Thereafter, a limit value TPL of the pump current value 1p is set according to the target air-fuel ratio at this time (step 54
). For example, the limit value fpL is retrieved from a data map stored in advance in a ROM in the air-fuel ratio control circuit 32. When the limit value fpL is set to 1 pL, the pump current EI
T "How is the terminal voltage Vp read (Step 5?
5) The read pump current value ρ is the limit
It is determined whether or not it is greater than lIlpL (step 56).

Ip>IpLならば、ブラックニング現象が発生する可
能性があるのでステップ52が実行されてポンプ電流の
供給が停止される。Ip≦IPLならば、読み込んだポ
ンプ電流値Tpが目標空燃比に対応する基準値1.j″
′より小であるか否かが判別される(ステップ57)。
If Ip>IpL, there is a possibility that a blackening phenomenon will occur, so step 52 is executed and the supply of pump current is stopped. If Ip≦IPL, the read pump current value Tp is the reference value 1. corresponding to the target air-fuel ratio. j″
It is determined whether or not it is smaller than ' (step 57).

Ip<Irならば、エンジンに供給された混合気の空燃
比がリッチであるとして空燃比制御回路32は電磁弁3
9を開弁駆動して2次空気をエンジンに供給せしめる(
ステップ58)。lp≧lrならば、空燃比がり一ンで
あるとして空燃比制御回路32は電磁弁39の開弁駆動
を停止し、2次空気のエンジンへの供給が停止される(
ステップ59)。またステップ52の実行時にはステッ
プ59が実行されて2次空気のエンジンへの供給が停止
される。
If Ip<Ir, the air-fuel ratio of the air-fuel mixture supplied to the engine is rich, and the air-fuel ratio control circuit 32 controls the solenoid valve 3.
9 to open the valve to supply secondary air to the engine (
Step 58). If lp≧lr, it is assumed that the air-fuel ratio is equal to one, and the air-fuel ratio control circuit 32 stops driving the solenoid valve 39 to open, and the supply of secondary air to the engine is stopped (
Step 59). Furthermore, when step 52 is executed, step 59 is executed and the supply of secondary air to the engine is stopped.

1里匁11 以上の如く、本発明の酸素濃度検出装置においては、酸
素ポンプ素子への供給電流値がリミット値以上のときに
は酸素ポンプ素子へのポンプ電流の供給を停止するので
、2次空気供給による空燃比制御結果が排気ガス中の酸
素濃度によって検出されるまでの時間遅れがあってもブ
ラック丹ング現象の発生を確実に防止することができる
。また酸素ポンプ素子へのポンプ電流供給開始直後にポ
ンプ電流が徐々に増加するので酸素ポンプ素子と電池素
子との間の間隙部によってリミッタ回路等による過剰ポ
ンプ電流の防止動作に応答近れがあってもポンプ電流が
ブラックニング現象発生領域の値になることが防止でき
るのである。
As described above, in the oxygen concentration detection device of the present invention, when the supply current value to the oxygen pump element is equal to or higher than the limit value, the supply of pump current to the oxygen pump element is stopped, so that the secondary air supply is Even if there is a time delay until the air-fuel ratio control result is detected based on the oxygen concentration in the exhaust gas, the black tan phenomenon can be reliably prevented from occurring. In addition, since the pump current gradually increases immediately after the start of pump current supply to the oxygen pump element, the gap between the oxygen pump element and the battery element causes a delay in the response to the excessive pump current prevention operation by a limiter circuit, etc. It is also possible to prevent the pump current from reaching a value in the range where the blackening phenomenon occurs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は酸素濃度−ポンプ電流特性及びブラックニング
現象発生領域を示す図、第2図は従来の酸素濃度検出装
置の動作を示ず波形図、第3図は本発明による酸素濃度
検出装置を用いた空燃比制御装置を示す回路図、第4図
は第3図の装置の動作を示す波形図、第5図は第3図の
装置中の制御4路の動作を示すフロー図である。 主要部分の符号の説明 1・・・・・・酸素ポンプ素子 2・・・・・・電池素子 3・・・・・・間隙部 4・・・・・・スペーサ 5ないし8・・・・・・電極板 11・・・・・・電流供給回路 25・・・・・・非反転増幅器
Fig. 1 is a diagram showing the oxygen concentration-pump current characteristics and the blackening phenomenon occurrence region, Fig. 2 is a waveform diagram showing the operation of a conventional oxygen concentration detection device, and Fig. 3 is a diagram showing the operation of a conventional oxygen concentration detection device. FIG. 4 is a waveform diagram showing the operation of the device shown in FIG. 3, and FIG. 5 is a flow chart showing the operation of the four control paths in the device shown in FIG. 3. Explanation of symbols of main parts 1...Oxygen pump element 2...Battery element 3...Gap portion 4...Spacer 5 to 8...・Electrode plate 11...Current supply circuit 25...Non-inverting amplifier

Claims (1)

【特許請求の範囲】[Claims] 被測定気体中に配設される一対の酸素イオン伝導性固体
電解質部材を有しその各固体電解質部材に一対の電極が
形成されかつ前記一対の固体電解質部材が所定の間隙部
を介して対向するように配置され前記一対の固体電解質
部材の一方が酸素ポンプ素子として他方が酸素濃度比測
定用電池素子として各々作用する酸素濃度検出器と、前
記酸素ポンプ素子の電極間に電流を供給する電流供給手
段とを含み、前記電流供給手段の供給電流値を酸素濃度
検出値として出力する酸素濃度検出装置であって、前記
電流供給手段は前記供給電流値がリミット基準値以上に
達したとき電流停止指令を発生するリミット指令手段と
、基準電圧を発生する基準電圧発生手段と、前記基準電
圧によって充電されかつ前記電流停止指令に応じてその
充電電荷を放電する充放電回路と、前記電池素子の電極
間の電圧が前記充放電回路の出力電圧に等しくなるよう
に前記酸素ポンプ素子の電極間に電流を供給し前記電流
停止指令に応じて前記酸素ポンプ素子の電極間への電流
供給を停止する電流供給回路とからなることを特徴とす
る酸素濃度検出装置。
A pair of oxygen ion conductive solid electrolyte members disposed in a gas to be measured, a pair of electrodes formed on each of the solid electrolyte members, and the pair of solid electrolyte members facing each other with a predetermined gap interposed therebetween. an oxygen concentration detector arranged in such a manner that one of the pair of solid electrolyte members acts as an oxygen pump element and the other acts as a battery element for measuring oxygen concentration ratio; and a current supply that supplies current between the electrodes of the oxygen pump element. and outputting the supplied current value of the current supplying means as an oxygen concentration detection value, the current supplying means issuing a current stop command when the supplied current value reaches a limit reference value or more. a limit command means for generating a reference voltage, a reference voltage generating means for generating a reference voltage, a charging/discharging circuit that is charged by the reference voltage and discharges the charged charge in response to the current stop command, and a voltage between the electrodes of the battery element. supplying a current between the electrodes of the oxygen pump element so that the voltage of the voltage becomes equal to the output voltage of the charging/discharging circuit, and stopping the current supply between the electrodes of the oxygen pump element in response to the current stop command; An oxygen concentration detection device characterized by comprising a circuit.
JP60213577A 1985-09-26 1985-09-26 Oxygen concentration detector Pending JPS6271853A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60213577A JPS6271853A (en) 1985-09-26 1985-09-26 Oxygen concentration detector
US06/909,535 US4665874A (en) 1985-09-26 1986-09-22 Device for sensing an oxygen concentration in gaseous body with a pump current supply circuit and an air/fuel ratio control system using an oxygen concentration sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60213577A JPS6271853A (en) 1985-09-26 1985-09-26 Oxygen concentration detector

Publications (1)

Publication Number Publication Date
JPS6271853A true JPS6271853A (en) 1987-04-02

Family

ID=16641506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60213577A Pending JPS6271853A (en) 1985-09-26 1985-09-26 Oxygen concentration detector

Country Status (1)

Country Link
JP (1) JPS6271853A (en)

Similar Documents

Publication Publication Date Title
JPS62218858A (en) Oxygen concentration detector
US7981265B2 (en) Gas concentration measuring apparatus designed to enhance measurement accuracy in desired range
US4698209A (en) Device for sensing an oxygen concentration in gaseous body with a source of pump current for an oxygen pump element
JPS62218859A (en) Oxygen concentration detector
US4818362A (en) Oxygen concentration sensing apparatus
JPS6271853A (en) Oxygen concentration detector
JPS61294355A (en) Oxygen concentration detector
JP2596537B2 (en) Oxygen concentration detector
JPS6276447A (en) Oxygen concentration detector
JPS6276451A (en) Oxygen concentration detector
JPS6275255A (en) Air-fuel ratio controller for internal combustion engine
JPS6276450A (en) Oxygen concentration detector
JPH0580619B2 (en)
JPS61292051A (en) Oxygen concentration detector
JPS61294359A (en) Oxygen concentration detector
JPS6276449A (en) Method for controlling oxygen concentration sensor
JPS6273154A (en) Air-fuel-ratio control apparatus of internal combustion engine
JPH0672864B2 (en) Oxygen concentration detector
JPS61294360A (en) Oxygen concentration detector
JPS6258155A (en) Apparatus for detecting concentration of oxygen
JPH0672865B2 (en) Oxygen concentration detector
JPS6258156A (en) Apparatus for controlling air/fuel of internal combustion engine
JPS61294354A (en) Oxygen concentration detector
JPS6273153A (en) Oxygen concentration detector
JPS6271849A (en) Air-fuel ratio controller for internal combustion engine