JPS62703A - Evaporator - Google Patents

Evaporator

Info

Publication number
JPS62703A
JPS62703A JP13786585A JP13786585A JPS62703A JP S62703 A JPS62703 A JP S62703A JP 13786585 A JP13786585 A JP 13786585A JP 13786585 A JP13786585 A JP 13786585A JP S62703 A JPS62703 A JP S62703A
Authority
JP
Japan
Prior art keywords
flow path
heat transfer
heat
heat exchanger
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13786585A
Other languages
Japanese (ja)
Inventor
政義 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP13786585A priority Critical patent/JPS62703A/en
Publication of JPS62703A publication Critical patent/JPS62703A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、蒸発装置に関するもので、と9わけ、高性能
を期待する流動床ボイラまたはシェルアンドチューブ式
熱交換器などの蒸発装置として利用されるものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an evaporation device, and in particular is used as an evaporation device such as a fluidized bed boiler or a shell-and-tube heat exchanger that is expected to have high performance. It is something.

従来の技術 従来の蒸発装置の−っである流動床ボイラにおける管内
沸騰用の高性能伝熱管には、管内面に旋状の溝を有する
ライフル管ならびに捩シ坂を挿入した管などがある。
2. Description of the Related Art High-performance heat transfer tubes for internal boiling in a fluidized bed boiler, which is a conventional evaporator, include rifled tubes having a spiral groove on the inner surface of the tube and tubes having a torsion slope inserted therein.

、発明が解決しようとする問題点 前述の流動床ボイラの流動層内を通過する伝熱管(層内
伝熱管)ならびに火炉天井炉壁管(天井伝熱管)は、傾
斜角が水平に近い浅い角度で構成されている。このため
に、たとえば第8図および第9図に示すように、伝熱管
21内を被蒸発液が矢印22のよう、に流れるとき、蒸
発気相が管流路断面の上部に合体集中して、スラグ気泡
23を生成し、管内壁面上が完全な気相で覆われること
による冷却限界が伝熱管21の上部壁側で発生する。伝
熱管21の設計は、この冷却限界以下の熱流束条件で行
なわれておシ、この熱流束を大きくすることは、全体の
伝熱面積の縮小化が図れるとともに、その他、構造上配
置制約条件の緩和もできる。なお第8図は加熱熱流束が
大きい場合を示し、第9図はそれが小さい場合を示して
いる。
, Problems to be Solved by the Invention The heat transfer tubes passing through the fluidized bed of the fluidized bed boiler (intrabed heat transfer tubes) and the furnace ceiling furnace wall tubes (ceiling heat transfer tubes) have shallow inclination angles close to horizontal. It is made up of. For this reason, as shown in FIGS. 8 and 9, for example, when the liquid to be evaporated flows in the heat transfer tube 21 as shown by the arrow 22, the evaporated gas phase coalesces and concentrates in the upper part of the tube flow path. , a cooling limit occurs on the upper wall side of the heat exchanger tube 21 due to the generation of slag bubbles 23 and complete covering of the inner wall surface of the tube with a gas phase. The heat transfer tubes 21 are designed under heat flux conditions that are below this cooling limit.Increasing this heat flux not only reduces the overall heat transfer area, but also eliminates other structural layout constraints. can also be alleviated. Note that FIG. 8 shows a case where the heating heat flux is large, and FIG. 9 shows a case where it is small.

前述の従来のライフル管は、旋状の溝のために伝熱面積
が増加し、高い伝熱性能を有するが、旋状溝による流れ
の旋回効果が小さく、管上部断面に合体集中するスラグ
気泡の流動に与える効果は小さい。このため、スラグ気
泡の成長ならびに増加に伴なう冷却限界の発生する熱流
束条件を大幅に変えることができないという問題点があ
る。また前述の捩シ坂を挿入した管は、管内の流れに犬
さな旋回効果を与えることによる高い伝熱性能を有する
が、流動抵抗が大幅に増加するため、循環流動特性上、
蒸発装置としての性能を悪化するという問題点がある。
The conventional rifle tube described above has high heat transfer performance due to the increased heat transfer area due to the spiral grooves, but the swirling effect of the flow due to the spiral grooves is small, and slag bubbles coalesce and concentrate in the upper cross section of the tube. The effect on flow is small. Therefore, there is a problem in that it is not possible to significantly change the heat flux conditions where the cooling limit occurs due to the growth and increase of slag bubbles. In addition, the above-mentioned pipe with the twisted slope inserted has high heat transfer performance by giving a small swirling effect to the flow inside the pipe, but since the flow resistance increases significantly, the circulation flow characteristics
There is a problem that the performance as an evaporator is deteriorated.

本発明は、上記の問題点を解決しようとするものである
。すなわち、本発明は、伝熱管体上部の冷却限界熱流束
値の向上を図ることができるとともに、その向上に伴な
う流動損失の増加を低く押えることができる高性能の蒸
発装置を提供することを目的とするものである。
The present invention attempts to solve the above problems. That is, an object of the present invention is to provide a high-performance evaporator that can improve the cooling limit heat flux value of the upper part of the heat transfer tube body and suppress the increase in flow loss accompanying the improvement. The purpose is to

問題点を解決するための手段 蒸発装置の伝熱管体の流路を上下に分割した。Means to solve problems The flow path of the heat transfer tube of the evaporator was divided into upper and lower sections.

すなわち、本発明の構成は、水平から水平に近い傾斜角
の範囲内で横向きになっていて外部の執源によって内部
の液体が沸騰する伝熱管体の内部流路が、上部流路と下
部流路とに分割されていることを特徴としている。
In other words, in the configuration of the present invention, the internal flow path of the heat transfer tube body, which is oriented horizontally within the range of an inclination angle from horizontal to nearly horizontal, and in which the internal liquid boils due to an external source, has an upper flow path and a lower flow path. It is characterized by being divided into two roads.

作用 水平または水平に近い伝熱管体を通過する外部熱源の熱
流束ば1周方向に一様でなく、とくに、流動床式の場合
は、空気の上流側に当る伝熱管体の下部壁側が高く、上
部壁側が低い。このため、伝熱管体の内部で生成する蒸
気気泡は、下部壁面側で多く、上部壁面側で少ない。し
たがって、伝熱管体の内部流路が上下に分割されていな
い場合は、重力効果によって5これらの蒸気気泡が合体
して上部に集中し、大きなスラグ気泡を生成する。
The heat flux of an external heat source passing through a horizontal or nearly horizontal heat exchanger tube is not uniform in the circumferential direction.Especially in the case of a fluidized bed type, the lower wall side of the heat exchanger tube, which is the upstream side of the air, is higher. , the upper wall side is low. For this reason, the number of steam bubbles generated inside the heat transfer tube body is large on the lower wall side and small on the upper wall side. Therefore, if the internal flow path of the heat transfer tube body is not divided into upper and lower parts, the 5 steam bubbles will coalesce and concentrate in the upper part due to the gravitational effect, producing large slag bubbles.

しかし、本発明においては、横向きになっている伝熱管
体の内部流路が、仕切り板などによって、上部流路と下
部流路とに分割されているので、伝熱管体に流入する流
量が上下流路に分配され、かつ、下部流路で発生した蒸
気気泡が上部流路に流入することが防がれて、上部流路
の蒸気気泡に合体することがなく、したがって。
However, in the present invention, the internal flow path of the heat transfer tube that is oriented sideways is divided into an upper flow path and a lower flow path by a partition plate, etc., so that the flow rate flowing into the heat transfer tube is increased. Steam bubbles distributed to the downstream channel and generated in the lower channel are prevented from flowing into the upper channel and do not coalesce with the vapor bubbles in the upper channel.

上部流路のスラグ気泡の大きさを小さくすることができ
て、伝熱管体上部の冷却限界熱流束値の向上を図ること
ができる。
The size of slag bubbles in the upper flow path can be reduced, and the cooling limit heat flux value of the upper part of the heat transfer tube body can be improved.

実施例 第1図ないし第4図は本発明の第1実施例として流動床
ボイラを示し、第5図は同じく第2実施例を示し、第6
図は同じく第3実施例を示し、第7図は同じく第4実施
例を示している。
Embodiment FIGS. 1 to 4 show a fluidized bed boiler as a first embodiment of the present invention, FIG. 5 similarly shows a second embodiment, and FIG.
The figure also shows the third embodiment, and FIG. 7 similarly shows the fourth embodiment.

第1図において、lは水平または水平に近い傾斜角で横
向きに設けられた伝熱管体で、内部に仕切り板2が挿入
されて、伝熱管体ユの内部流路が上部流路3と下部流路
4とに分割されている。そして、伝熱管体1の一端は一
方の垂直管5を介して下部へラダ6に連通しておシ、他
端は他方の垂直管7を介してドラム8に連通している。
In Fig. 1, l is a heat exchanger tube installed horizontally or at a near-horizontal inclination angle, and a partition plate 2 is inserted inside, so that the internal flow path of the heat exchanger tube is divided into an upper flow path 3 and a lower flow path. It is divided into a flow path 4. One end of the heat transfer tube body 1 communicates with the ladder 6 via one vertical tube 5 to the lower part, and the other end communicates with the drum 8 via the other vertical tube 7.

またっけ空気の吹込みを示した矢印、lOは流動層、1
1は燃焼ガスを示した矢印である。なお仕切シ板2は伝
熱管体1にのみ挿入□されており、入口出口部の非加熱
部(図示せず)もしくは垂直管5と7には挿入されてい
ない。
An arrow indicating the blowing of air, lO is a fluidized bed, 1
1 is an arrow indicating combustion gas. Note that the partition plate 2 is inserted only into the heat transfer tube body 1, and is not inserted into the non-heating part (not shown) at the inlet/outlet part or the vertical pipes 5 and 7.

第、1図に示すように構成された蒸発装置としての流動
床ボイラにおいては、伝熱管体1が流動層1oによって
加熱され、内部の液体が蒸気となることについては、従
来の流動床ボイラと同様であるが、伝熱管体1は仕切シ
板2によって上部流路3と下部流路4とに分割されてい
るため、第3図および第4図に示すように、下部流路4
で発生する蒸気気泡は仕切り板2によって上部流路3に
流入することが防がれ、上部流路3では、上部流路3で
発生する蒸気気泡のみとなる。したがって、下部流路4
にスラグ気泡12が形成されても、この気泡12が上部
流路3に流入することがなく、上部流路3のスラグ気泡
13は、第8図および第9図で説明したスラグ気泡23
よりも、著しく小さなものとなる。
In the fluidized bed boiler as an evaporator configured as shown in FIG. Similarly, since the heat transfer tube body 1 is divided into an upper passage 3 and a lower passage 4 by a partition plate 2, as shown in FIGS.
The steam bubbles generated in the upper flow path 3 are prevented from flowing into the upper flow path 3 by the partition plate 2, and only the steam bubbles generated in the upper flow path 3 are present in the upper flow path 3. Therefore, the lower flow path 4
Even if slag bubbles 12 are formed in the slag bubbles 12, these bubbles 12 do not flow into the upper channel 3, and the slag bubbles 13 in the upper channel 3 are replaced by the slag bubbles 23 explained in FIGS. 8 and 9.
It will be significantly smaller than that.

また一方の垂直管5から伝熱管体1に流入する流量は、
上部流路3と下部流路4に分配されるので、仕切シ板2
の設置位置の違いによる上下流路断面積の比と、伝熱管
体1の土壁側の熱流束Q2と下壁側の熱流束Q、とで異
なること(第4図ではQ+ > Q2 )を考慮して、
上部流路3に分配する流体の流速U2と下部流路4に分
配する流体の流速U1の比(第3図ではU+ < U2
 ) t−選択して設計することができる。
Moreover, the flow rate flowing into the heat transfer tube body 1 from one vertical tube 5 is as follows:
Since it is distributed into the upper flow path 3 and the lower flow path 4, the partition plate 2
The ratio of the cross-sectional area of the upstream and downstream passages due to the difference in the installation position of the heat exchanger tube 1 differs between the heat flux Q2 on the earth wall side and the heat flux Q on the lower wall side (Q+ > Q2 in Fig. 4). In consideration of,
The ratio of the flow rate U2 of the fluid distributed to the upper flow path 3 and the flow rate U1 of the fluid distributed to the lower flow path 4 (in FIG. 3, U+ < U2
) t-can be selected and designed.

第5図に示した実施例は、仕切シ板2が曲げ板である点
で第2図の場合と異なり、また第6図に示し友実施例は
、支持板14:全追加している点で第2図の場合と異な
るだけで、その他は同様である。
The embodiment shown in Fig. 5 differs from the case in Fig. 2 in that the partition plate 2 is a bent plate, and the companion embodiment shown in Fig. 6 has the support plate 14: all added. The only difference from the case shown in FIG. 2 is that the other points are the same.

第7図に示した実施例では、伝熱管体1が2本の伝熱管
15と16を近接あるいは接合して製作した並行前方式
のものからなり、かつ、両側に伝熱性のよい連結板17
と18を設けである。すなわち、上部の伝熱管15が上
部流路3を構成し、下部の伝熱管16が下部流路4を構
成する。この第7図の実施例は、伝熱面積が増加すると
いう利点がある。
In the embodiment shown in FIG. 7, the heat exchanger tube body 1 is made of a parallel front type in which two heat exchanger tubes 15 and 16 are made close to each other or joined together, and connecting plates 17 with good heat conductivity are provided on both sides.
and 18 are provided. That is, the upper heat exchanger tube 15 constitutes the upper flow path 3, and the lower heat exchanger tube 16 constitutes the lower flow path 4. This embodiment of FIG. 7 has the advantage of increased heat transfer area.

なお上記各実施例では、蒸発装置が流動床ボイラである
場合について述べたが、水平または水平て近い傾斜角に
なっている伝熱管体の内部の液体を外部の熱源によって
沸騰させるシェルアンドチューブ式熱交換器などの蒸発
装置にも。
In each of the above embodiments, the case where the evaporator is a fluidized bed boiler is described, but a shell-and-tube type boiler is used in which the liquid inside the heat exchanger tube body, which is horizontal or has an inclination angle close to horizontal, is boiled by an external heat source. Also suitable for evaporation devices such as heat exchangers.

同様にして実施することができる。It can be implemented in a similar manner.

発明の効果 本発明の蒸発装置は、水平から水平に近い傾斜角の範囲
内で横向きになっていて外部の熱源によって内部の液体
が沸騰する伝熱管体の内部流路が、上部流路と下部流路
とに分割されているので、下部流路で発生した蒸気気泡
が上部流路に流入することが防がれて、上部流路の蒸気
気泡に合体することがなく、したがって、上部、#、路
のスラグ気泡の大きさを小さくすることができ、しかも
、伝熱管体に流入する流量が上下流路に分配されるため
、上部流路と下部流路の通路断面積の比を適当に選定し
て、それらの流速比を最適なものにして上部流路のスラ
グ気泡の大きさを−そう小さくすることができるため、
伝熱管体上部の冷却限界熱流束値の向上を図ることがで
き、かつ、流動損失の増加は水力直径の変化だけで、1
、きわめて小さい。
Effects of the Invention In the evaporation device of the present invention, the internal flow path of the heat transfer tube body, which is oriented horizontally within the range of an inclination angle from horizontal to near-horizontal, and in which the internal liquid is boiled by an external heat source, has an upper flow path and a lower flow path. Since the steam bubbles generated in the lower flow path are divided into the upper flow path and the upper flow path, steam bubbles generated in the lower flow path are prevented from flowing into the upper flow path and do not combine with the steam bubbles in the upper flow path. , the size of slag bubbles in the passage can be reduced, and the flow rate flowing into the heat transfer tube is distributed to the upstream and downstream passages, so the ratio of the passage cross-sectional area of the upper passage and the lower passage can be adjusted appropriately. By selecting and optimizing their flow velocity ratio, the size of the slag bubbles in the upper channel can be made so small.
The cooling limit heat flux value of the upper part of the heat transfer tube body can be improved, and the increase in flow loss can be reduced by 1 by changing the hydraulic diameter alone.
, extremely small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示した断面側面図、第2
図は第1図の伝熱管体を拡大して一部を断面で示した斜
視図、第3図は同じく伝熱管体の作用を示す断面側面図
、第4図は第3図の断面正面図、第5図は第2図に対応
させて示した本発明の第2実施例の斜視図、第6図は同
じく第3実施例の斜視図、第7図は同じく第4実施例の
斜視図、第8図は従来の伝熱管の作用の説明図、第9図
は同じくもう1つの作用の説明図である。 1・・・伝熱管体、2・・・仕切シ板、3・・・上部流
路、4・・・下部流路、5・・・垂直管、6・・・下部
ヘッダ、7・・・垂直管、8・・・ドラム、9・・・空
気の流れを示した矢印、10・・・流動層、11・・・
燃焼ガスの流れを示した矢印。 第 4 図
FIG. 1 is a cross-sectional side view showing the first embodiment of the present invention;
The figure is an enlarged perspective view of the heat exchanger tube shown in Figure 1 and partially shown in cross section, Figure 3 is a cross sectional side view showing the action of the heat exchanger tube, and Figure 4 is a cross sectional front view of Figure 3. , FIG. 5 is a perspective view of the second embodiment of the present invention corresponding to FIG. 2, FIG. 6 is a perspective view of the third embodiment, and FIG. 7 is a perspective view of the fourth embodiment. , FIG. 8 is an explanatory diagram of the function of a conventional heat exchanger tube, and FIG. 9 is an explanatory diagram of another function. DESCRIPTION OF SYMBOLS 1... Heat exchanger tube body, 2... Partition plate, 3... Upper channel, 4... Lower channel, 5... Vertical pipe, 6... Lower header, 7... Vertical tube, 8...Drum, 9...Arrow indicating air flow, 10...Fluidized bed, 11...
Arrows showing the flow of combustion gases. Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1、水平から水平に近い傾斜角の範囲内で横向きになっ
ていて外部の熱源によって内部の液体が沸騰する伝熱管
体の内部流路が、上部流路と下部流路とに分割されてい
ることを特徴とする、蒸発装置。
1. The internal flow path of the heat transfer tube, which is oriented horizontally within a horizontal to near-horizontal inclination angle range and in which the internal liquid boils due to an external heat source, is divided into an upper flow path and a lower flow path. An evaporation device characterized by:
JP13786585A 1985-06-26 1985-06-26 Evaporator Pending JPS62703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13786585A JPS62703A (en) 1985-06-26 1985-06-26 Evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13786585A JPS62703A (en) 1985-06-26 1985-06-26 Evaporator

Publications (1)

Publication Number Publication Date
JPS62703A true JPS62703A (en) 1987-01-06

Family

ID=15208542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13786585A Pending JPS62703A (en) 1985-06-26 1985-06-26 Evaporator

Country Status (1)

Country Link
JP (1) JPS62703A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191805U (en) * 1986-05-23 1987-12-05
JPH0515277U (en) * 1991-08-01 1993-02-26 池田電機株式会社 Electromagnetic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191805U (en) * 1986-05-23 1987-12-05
JPH0350896Y2 (en) * 1986-05-23 1991-10-30
JPH0515277U (en) * 1991-08-01 1993-02-26 池田電機株式会社 Electromagnetic device

Similar Documents

Publication Publication Date Title
US4557249A (en) Compact high efficiency furnace
RU2123634C1 (en) Method of operation of flow-type steam generator and steam generator used for realization of this method
JP2823536B2 (en) Heat exchanger fins
JPS62703A (en) Evaporator
US5915468A (en) High-temperature generator
CN114076301B (en) Linear temperature-uniforming plate steam boiler
JPS6269003A (en) Steam generating furnce of fossil fuel combustion
JPH0711369B2 (en) Generator
US1927079A (en) Heat convector
CN113669711B (en) Arc-shaped plate steam boiler with quantity-controlled temperature-equalizing plates
JPH0268494A (en) Heat exchanger
CN113669712B (en) Steam boiler with ascending pipe and temperature equalizing plate spacing control function
CN113623629B (en) Steam boiler with complementary temperature-equalizing plates
CN111207376A (en) Design method of steam boiler with variable ascending pipes
JPS63197887A (en) Heat exchanger
JP3038625B2 (en) Water tube boiler
JP2512596Y2 (en) Heat pipe heat exchanger
CN113280666A (en) Gravity heat pipe with variable diameter of communication hole with arc wall
JPH0367968A (en) Heat exchanger for condensing refrigerant
CN116293610A (en) Full-premix condensing steam boiler
CN113280665A (en) Gravity heat pipe with variable diameter of communication hole with arc wall
CN116499142A (en) Variable-pipe-diameter high-efficiency fin type heat exchanger
JP3016825U (en) Can body structure of multi-tube once-through boiler
JPH0448105A (en) Variable pressure once-through boiler furnace vaporizing tube
JPS62793A (en) Combination heater