JPS6268024A - Parallel connecting method for power system of induction generators - Google Patents

Parallel connecting method for power system of induction generators

Info

Publication number
JPS6268024A
JPS6268024A JP60205587A JP20558785A JPS6268024A JP S6268024 A JPS6268024 A JP S6268024A JP 60205587 A JP60205587 A JP 60205587A JP 20558785 A JP20558785 A JP 20558785A JP S6268024 A JPS6268024 A JP S6268024A
Authority
JP
Japan
Prior art keywords
generator
power system
voltage
parallel
induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60205587A
Other languages
Japanese (ja)
Inventor
大西 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60205587A priority Critical patent/JPS6268024A/en
Publication of JPS6268024A publication Critical patent/JPS6268024A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

本発明は誘導発電機を主機とする発電設備における当該
発電機の電力系統などに対する並列接続方法に関する。
The present invention relates to a method for parallel connection of a generator to a power system in a power generation facility mainly using an induction generator.

【従来技術とその問題点】[Prior art and its problems]

誘導発電機を電力系統に並列接続する場合にはその際に
生ずる突入電流を抑制して、異常な電圧降下の如き悪影
響を電力系統に与えることを極力防止することが肝要で
ある。 一般に誘導発電機は運転に際し必ずしもその位相を電力
系統の位相に一致させる必要がなく、また乱調を招く虞
れもな(、取扱いが極めて容品である上に回転子は巻線
形、かご形の何れでも差支えないなどの利点を有してい
るから、水力発電設備あるいはエンジン発電設備などの
分野において余剰エネルギーの回収に有効な小規模電源
開発あるいは予備電源、非常電源などの設置を目的とし
て誘導発電機を主機とする発電設備が注目されている。 しかしその一方において、通常誘導発電機単独では発電
することができず必ず別の同期機あるいは電力系統と並
列に運転して励磁電力の供給を受けねばならないという
条件があるから、ここに電力系統などに対する誘導発電
機の並列接続操作の問題が生じる。 本来発電機相互の間あるいは発電機と電力系統との間の
如き並列に運転すべき2個の電源間においては、それぞ
れの電圧及び周波数が等しい場合に両者の電圧が同一位
相を占める点における並列接続操作、所謂同期並列操作
が行われるならば両電源間に突入電流を生じることはな
い、したがって2個の電源の並列運転に際して最も有効
な突入電流の抑制手段は両者の同期並列接続を行うこと
であるが、少なくともそれに近い状態において両者の並
列接続を行うためには、それに先だって両者が並列接続
操作に好都合な電圧値と周波数とを有していることが必
要である。 しかるに従来一般の誘導発電機を主機とする発電設備に
おいては第4図に示す如く、原動機1により駆動される
誘導発電機2が回転nト発電機4と滑り検出装置6とを
介して積出される滑り周波数隻あるいは殆ど零になる時
点において主遮断器5を閉路してはじめて電源母線9を
介して電力系統に接続される仕組になっているから、前
記の如く電力系統に対する並列接続操作に先だって予め
並列接続に好都合な電圧を発生させることは不可能で、
したがって前記の如き電力系統に対する同期並列接続操
作もあり得す、その結果並列接続に際して大なる突入電
流の発生、したがってこれに原因する電力系統などにお
ける電圧降下を避けることはできないことになる。しか
してその際に生ずる突入電流の値は第3図に示す如く、
例えば電力系統の電圧tあと誘導発電機2の誘起電圧t
、との相互間の位相差を加味したベクトル電圧差Δtを
前記電力系統のインピーダンスと前記発電機2の内部イ
ンピーダンスとの和で除したものになる。 その際前記t、とぐ、との位相差は誘導発電機2と前記
電力系統との周波数の差の時間的変化に従って変動する
。更に従来の誘導発電機2においてはその誘起電圧t、
は該発電機2が電源母線9に接続された瞬間に零値より
立上がるから前記ベクトル電圧差Δ9は前記発電機2の
並列接続の瞬間には前記電力系統の電圧t、にほぼ等し
く、その際前記発電機2が原動機1により殆ど同期速度
まで昇速されていて前記電力系統との周波数差に原因す
る電流分の影響が除去されるとしてもなお突入電流の値
が著しく大になることを避は龍い。 更に誘導発電機2の鉄心の残留磁気は該発電機2を前起
電力系統に並列接続した瞬間におけるその値の大きさと
方向とによっては前記発電機2の内部インピーダンスを
減殺する相を生じさせ、各相に不平衡な直流分が重畳す
る結果前記突入電流が更に増大することもある。 何れにせよ誘導発電機の電力系統に対すゐ従来の並列接
続操作においては並列接続が行われる瞬間に大なる突入
電流を生じ電力系統の電圧降下の原因となることは避け
られず、またこれを防止するためには例えば誘導発電機
の回路に突入電流抑制用のりアクドルを挿入するなどの
煩雑な対策を講することが必要になるという欠点を免れ
得ない。
When an induction generator is connected in parallel to a power system, it is important to suppress the rush current that occurs at that time to prevent adverse effects such as abnormal voltage drop on the power system as much as possible. In general, when an induction generator is operated, its phase does not necessarily need to match the phase of the power grid, and there is no risk of causing disturbances. Since it has the advantage that either of them can be used without any problems, it is suitable for induction generation for the purpose of small-scale power generation development that is effective for recovering surplus energy in fields such as hydroelectric power generation equipment or engine power generation equipment, or for the installation of backup power sources, emergency power sources, etc. Power generation equipment that uses an induction generator as the main engine is attracting attention. However, an induction generator cannot normally generate electricity by itself, and must be operated in parallel with another synchronous machine or power grid to receive the excitation power. Because of this condition, there arises the problem of parallel connection operation of induction generators to power grids, etc. Originally, two generators should be operated in parallel, such as between generators or between generators and power grids. If the power supplies are connected in parallel at the point where their voltages are in the same phase when their respective voltages and frequencies are the same, so-called synchronous parallel operation, no inrush current will occur between the two power supplies. Therefore, when operating two power supplies in parallel, the most effective means of suppressing inrush current is to connect them both in parallel. It is necessary to have a voltage value and frequency convenient for connection operation.However, in conventional power generating equipment using a general induction generator as the main engine, as shown in Fig. 4, the induction generator driven by the prime mover 1 The generator 2 is connected to the power grid via the power supply bus 9 only after the main circuit breaker 5 is closed at the moment when the slip frequency output from the generator 2 via the rotating generator 4 and the slip detection device 6 becomes almost zero. Because it is designed to be connected, it is impossible to generate a voltage suitable for parallel connection in advance in advance of the parallel connection operation to the power grid as described above.
Therefore, synchronous parallel connection operations in the power system as described above are possible, and as a result, generation of a large inrush current upon parallel connection, and therefore voltage drop in the power system caused by this cannot be avoided. However, the value of the rush current that occurs at that time is as shown in Figure 3.
For example, the voltage t of the power system and the induced voltage t of the induction generator 2
, the vector voltage difference Δt, which takes into account the phase difference between them, is divided by the sum of the impedance of the power system and the internal impedance of the generator 2. At this time, the phase difference between the t and the tung changes in accordance with the temporal change in the frequency difference between the induction generator 2 and the power system. Furthermore, in the conventional induction generator 2, the induced voltage t,
rises from zero at the moment the generator 2 is connected to the power supply bus 9, so the vector voltage difference Δ9 is almost equal to the voltage t of the power system at the moment the generators 2 are connected in parallel; In this case, even if the generator 2 is sped up to almost synchronous speed by the prime mover 1 and the influence of the current caused by the frequency difference with the power grid is eliminated, the value of the inrush current will still be significantly large. Avoiding is difficult. Furthermore, the residual magnetism of the iron core of the induction generator 2 produces a phase that reduces the internal impedance of the generator 2 depending on the magnitude and direction of its value at the moment when the generator 2 is connected in parallel to the pre-electromotive force system, As a result of unbalanced direct current components being superimposed on each phase, the rush current may further increase. In any case, in the conventional parallel connection operation of induction generators to the power system, it is unavoidable that a large inrush current is generated at the moment the parallel connection is made, causing a voltage drop in the power system. In order to prevent this, the disadvantage is that it is necessary to take complicated measures, such as inserting a rush current suppressing glue handle into the circuit of the induction generator.

【発明の目的1 本発明は誘導発電機を電力系統などに並列接続する従来
の方法が有する前記の如き欠点に鑑み、並列接続操作に
先だって電力系統などとは無関係に誘導発電機に予め電
圧を誘起させることにより、並列接続時に生ずる突入電
流を抑制し得る如き電圧と周波数のもとで前記発電機を
電力系統などに並列接続する方法、所謂同期並列接続方
法を提供することを目的とする。 【発明の要点】 前記の目的を達成するために本発明では首記の並列接続
方法において、その軸端を介して速度検出手段の設けら
れた前記発電機の固定子端子に前記電力系統などに並列
に適量のコンデンサを接続し、かつ前記端子と前記電力
系統などとの間に同期検定投入操作手段を接続するとと
もに、原動機により前記発電機を定格速度あるいはほと
んど定格速度まで昇速して前記発電機単独に前記電力系
統などの電圧に等しい電圧あるいはほとんど等しい電圧
を誘起させ、前記同期検定投入操作手段により前記発電
機の誘起電圧と前記電力系統などの電圧との間の同31
Jl検定を行いかつ前記発電機の主遮断器の同期投入操
作を行う如くにすることにより、突入電流を極力抑制し
て誘導発電機の電力系統などに対する並列接続を行うも
のである。
Purpose of the Invention 1 In view of the above-mentioned drawbacks of the conventional method of connecting induction generators in parallel to an electric power system, etc., the present invention provides a method for applying voltage to the induction generator in advance, independently of the electric power system, prior to the parallel connection operation. It is an object of the present invention to provide a method of connecting the generator in parallel to a power system or the like under such a voltage and frequency that the inrush current that occurs during parallel connection can be suppressed by inducing the generator, a so-called synchronous parallel connection method. [Summary of the Invention] In order to achieve the above object, in the present invention, in the parallel connection method described above, a stator terminal of the generator provided with a speed detecting means is connected to the electric power system etc. through the shaft end. An appropriate amount of capacitors are connected in parallel, and a synchronization verification turning-on operation means is connected between the terminal and the power grid, and the generator is sped up to the rated speed or almost the rated speed by the prime mover to generate the power. A voltage equal to or almost equal to the voltage of the electric power system is induced in the generator alone, and the voltage between the induced voltage of the generator and the voltage of the electric power system is 31.
By performing the Jl test and synchronously closing the main circuit breakers of the generator, the inrush current is suppressed as much as possible, and the induction generator is connected in parallel to the power system.

【発明の実施例】[Embodiments of the invention]

次に図面に表わされた実施例にもとづいて本発明の詳細
な説明する。 第1図に例示する如く調速機3を備えた原動機1により
駆動される誘導発電機の固定子端子2aは電力系統に接
続されるii源母線9に主遮断1P15を介して接続さ
れ、前記発電機2の回転子軸端に滑り検出装置6に接続
されゐ回転計発電機4が設けられている。更に誘導発電
機2の前記端子2aには[源母線9に対して並列に開閉
器10を介して適当な量のコンデンサ11が接続され、
また前記固定子端子2aと前記母uI9との間にはそれ
ぞれに対して変圧器13を介して同期検定投入操作部1
2が接続され、当該間1.B槍定投入操作部12と滑り
検出装[6との出力がシーケンス演算部14に入力され
、その出力により前記主遮断器5が閉路される如くにさ
れている。 前記の如くに構成された誘導発電機を主機とする発電設
備において、停止時に開閉器10を閉路してコンデンサ
11を接続した後原動機1により誘導発電機2を始動す
るか、あるいは誘導発電機2の始動後適宜の回転速度に
達した時点で開閉器10を閉路してコンデンサ11を接
続するかすると、前記発電機2の残留磁気による電圧が
コンデンサ11に印加される結果進相電流が前記発電機
2に流入して一層その電圧を上昇させる。この現象の反
覆即ちコンデンサ11による誘導発電機2の自己励磁の
繰返しが一層進むと最終的には、誘導発電機2の電圧は
その飽和特性とコンデンサ11による励磁電流特性とに
よって定まる値において安定する。今コンデンサ11の
量を一定にした場合に前記発電機2の周波数f、をパラ
メータとして発電機電圧V。 とコンデンサ電流1cとの関係を表わす第2図において
示される如く、コンデンサ11の量が同一でも発電機2
の前記安定点Pは周波数f、の変化に従って安定特性曲
線り上の特定範囲を移動する。 即ち原動機1を介して前記発電機2の周波数をf ed
+f 1.f9uと変化させるとそれに応じて発電機電
圧がvId+  @r+  v@uと変化し、またコン
デンサ■ 電流もl Cd+  Icr+  lcuと変化する。 それに応じて発電機の安定点は安定特性曲線りの上を定
格安定点p、(r、、、  、、、lcr )を中にし
て下限の■ Pa (f@4+  *a、  t−a )と上限P 
u (f lul v111+1cm)との間を移動す
る。したがってコンデンサ11の量は第2図に示す安定
特性曲線りと発電機2の前記電力系統に対する位相差θ
を正確に検出して得られる相互の電圧差Δt (第3図
)の許容値とを考慮して決定すれば良い。 その際誘導発電機2を前記電力系統に対し並列接続を行
うには、前記安定点Pが安定特性曲線り上のP、の近傍
にある場合に同期検定投入操作部12を作動させて前記
発電機2の前記電力系統に対する同期状態を検出し、そ
の結果によっては原動機1の調速機3を操作して前記発
電機2の周波数f、を変化させ、前記電力系統の周波数
f−との差Δf−f、−f、と前記発電機2の前記電力
系統に対する位相差θを含めた電圧差Δ+−+、−9,
とがそれぞれ所定の許容値の範囲になる如く調整し、前
記Δtが零または最小値でかつ前記Δfが零またはほぼ
零になる時点において主遮断器5を閉路する如くにすれ
ば、突入電流が零または最小になる同期並列接続が実現
する。その際従来の並列接続方法において主遮断器5の
閉路のための基本信号を与えるものとして主役を演じて
いた滑り検出装置6が、本発明の同期並列接続方法にお
いては主信号を発する同期検定投入操作部12に対して
補助的役割を演するに過ぎなくなる。 この場合前記の如くに誘導発電機2を電力系統に並列接
続する以前にコンデンサ11により予め適度の電圧を誘
起させておくことは、前記発電機2の前記電力系統に対
する前記同期並列接続操作を可能にするばかりでなく、
残留磁気が発電機2の内部インピーダンスに及ぼす前記
の如き影響を排除し、かつ並列接続の瞬間における前記
発電機2の電圧立上がりに原因する前記ベクトル電圧差
Δtの過渡的変動を阻止するなどの効果がある。 一般的には第1図に示す如く誘導発電機を主機とする発
電設備においては誘導発電機2を電力系統などに接続す
る電源母線9に力率改善用コンデンサ8が接続されるか
ら、誘導発電機2の励磁用コンデンサ11として場合に
よっては力率改善用コンデンサ8の一部を利用する如く
にしても良い。 また励磁用コンデンサ11を誘導発電機2に接続する時
期は必ずしも前記発電機2の停止時である必要はなく、
前記発電機2が定格速度に達するまでの加速時の任意の
時期に行うことができる。
Next, the present invention will be explained in detail based on embodiments shown in the drawings. As illustrated in FIG. 1, a stator terminal 2a of an induction generator driven by a prime mover 1 equipped with a speed governor 3 is connected to a source bus 9 connected to the power system via a main interrupter 1P15. A tachometer generator 4 is provided at the end of the rotor shaft of the generator 2 and is connected to a slip detection device 6 . Furthermore, an appropriate amount of capacitors 11 are connected to the terminal 2a of the induction generator 2 via a switch 10 in parallel with the source bus 9,
Further, a synchronization verification closing operation unit 1 is connected between the stator terminal 2a and the mother uI9 via a transformer 13 respectively.
2 is connected, while 1. Outputs from the B-spear constant closing operation section 12 and the slippage detection device [6] are input to a sequence calculation section 14, and the main circuit breaker 5 is closed by the output. In a power generation equipment having an induction generator as a main engine configured as described above, when the switch 10 is stopped and the capacitor 11 is connected, the induction generator 2 is started by the prime mover 1, or the induction generator 2 is started by the prime mover 1. When the switch 10 is closed and the capacitor 11 is connected when the rotation speed reaches an appropriate speed after starting the generator 2, a voltage due to the residual magnetism of the generator 2 is applied to the capacitor 11, and as a result, a phase-advanced current is applied to the generator 2. The voltage flows into the unit 2 and further increases its voltage. As this phenomenon repeats, that is, as the self-excitation of the induction generator 2 by the capacitor 11 progresses further, the voltage of the induction generator 2 eventually stabilizes at a value determined by its saturation characteristics and the excitation current characteristics by the capacitor 11. . Now, when the amount of capacitor 11 is constant, the frequency f of the generator 2 is used as a parameter to calculate the generator voltage V. As shown in FIG. 2, which shows the relationship between
The stable point P moves within a specific range on the stability characteristic curve as the frequency f changes. That is, the frequency of the generator 2 is f ed via the prime mover 1.
+f 1. When the voltage is changed to f9u, the generator voltage changes accordingly to vId+@r+v@u, and the capacitor current also changes to lCd+Icr+lcu. Accordingly, the stable point of the generator is the lower limit ■ Pa (f@4+ *a, t-a) with the rated stable point p, (r, , , , , lcr ) above the stability characteristic curve. and upper limit P
u (flul v111+1cm). Therefore, the amount of the capacitor 11 is determined according to the stability characteristic curve shown in FIG. 2 and the phase difference θ between the generator 2 and the power system.
The voltage difference Δt (FIG. 3) can be determined in consideration of the tolerance value of the mutual voltage difference Δt (FIG. 3) obtained by accurately detecting the voltage difference Δt. At this time, in order to connect the induction generator 2 in parallel to the electric power system, when the stable point P is near P on the stability characteristic curve, the synchronization verification closing operation section 12 is activated to generate the power. The synchronization state of the generator 2 with the power system is detected, and depending on the result, the speed governor 3 of the prime mover 1 is operated to change the frequency f of the generator 2, and the difference from the frequency f- of the power system is detected. Δf-f, -f, and the voltage difference Δ+-+, -9, including the phase difference θ between the generator 2 and the power system;
If the main circuit breaker 5 is closed when the Δt is zero or the minimum value and the Δf is zero or almost zero, the inrush current can be reduced. A zero or minimum synchronous parallel connection is realized. At this time, the slip detection device 6, which played a leading role in providing the basic signal for closing the main circuit breaker 5 in the conventional parallel connection method, is replaced by the synchronous verification device 6, which emits the main signal, in the synchronous parallel connection method of the present invention. It merely plays an auxiliary role to the operating section 12. In this case, as described above, inducing an appropriate voltage in advance with the capacitor 11 before connecting the induction generator 2 in parallel to the power system enables the synchronous parallel connection operation of the generator 2 to the power system. Not only to
Effects such as eliminating the above-mentioned influence of residual magnetism on the internal impedance of the generator 2 and preventing transient fluctuations in the vector voltage difference Δt caused by the voltage rise of the generator 2 at the moment of parallel connection. There is. Generally, as shown in Fig. 1, in power generation equipment that uses an induction generator as its main engine, a power factor correction capacitor 8 is connected to a power supply bus 9 that connects the induction generator 2 to the power system, etc. Depending on the case, a part of the power factor correction capacitor 8 may be used as the excitation capacitor 11 of the machine 2. Furthermore, the timing to connect the excitation capacitor 11 to the induction generator 2 does not necessarily have to be when the generator 2 is stopped;
This can be carried out at any time during acceleration until the generator 2 reaches the rated speed.

【発明の効果】【Effect of the invention】

本発明は以上に説明した如く、誘導発電機を主機とする
発電設備における電力系統などに対する当該発電機の並
列接続方法において、その軸端を介して速度検出手段の
設けられた前記発電機の固定子端子に前記電力系統など
に並列に適量のコンデンサを接続し、かつ前記端子と前
記電力系統などとの間に同期検定投入操作手段を接続す
るとともに、原動機により前記発電機を定格速度あるい
はほとんど定格速度まで昇速して前記発電機単独に前記
電力系統などの電圧に等し2い電圧あるいはほとんど等
しい電圧を誘起させ、前記同期検定投入操作手段により
前記発電機の誘起電圧と前記電力系統などの電圧との間
の同期検定を行い、かつ前記発電機の主遮断器の同期投
入操作を行う如くにすることにより、誘導発電機を電力
系統などに並列接続する場合の突入電流を零あるいは最
小に抑制して前記電力系統などにおける電圧降下をほと
んどなくすることができ、並列に接続される電力系統な
どの電源安定に対する障害を解消することができるから
、経済的に有利な小規模電源開発や非常電源設備の設置
の推進に著しく寄与する効果がある。
As explained above, the present invention provides a method for connecting a generator in parallel to a power system in a power generation facility mainly using an induction generator, in which the generator is fixed with a speed detecting means provided through its shaft end. An appropriate amount of capacitor is connected to the child terminal in parallel with the power system, etc., and a synchronization verification turning operation means is connected between the terminal and the power system, etc., and the generator is operated by the prime mover at or near the rated speed. The speed is increased to a high speed, and a voltage equal to or almost equal to the voltage of the electric power system is induced in the generator alone, and the synchronization test input operation means causes the induced voltage of the generator and the voltage of the electric power system to be induced in the generator alone. By performing a synchronization test with the voltage and synchronizing the main circuit breaker of the generator, the inrush current can be reduced to zero or to a minimum when the induction generator is connected in parallel to the power system, etc. It is possible to suppress the voltage drop in the electric power system, etc., and eliminate obstacles to the stability of power sources such as those connected in parallel, making it possible to economically advantageous small-scale power supply development and emergency This has the effect of significantly contributing to the promotion of the installation of power supply equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の並列接続方法により電力系統に接続さ
れる誘導発電機を主機とする発電設備の概略結線図を、
第2図は前記発電機の電圧安定特性曲線を、第3図は前
記発電機と電力系統とのベクトル電圧差を、第4図は従
来の並列接続方法により電力系統に接続される誘導発電
機を主機とする発電設備の概略結線図を表わす。 1:原動機、2:誘導発電機、2a+固定子端子、4−
回転計発電機、5:主遮断器、6I滑り検出装置、11
:励磁用コンデンサ、121同期検定投入操作部、14
+シ一ケンス演算部。 第3図 手続補正書(自発) 事件の表示  −昭ζQ−ZO否♂δ7住所     
川崎市川崎区田辺新田1番1号名 称 (5231富士
電機株式会、社住  所  川崎市川崎区田辺新田1番
1号5゜ 6゜ 7゜ 8、− 補正の内容 1.特許請求の範囲を次の通り補正する。 「1)B′g導発導板電機機とする発電設備における当
該発電機の電力系統などに対する順列H甚に上−リヌ薫
=前記−発電機の固偵り端−子に兼列−仁、適量のコン
デンサを接続し、かつ前起発電碓上−前−証1力秀統−
などとの間に同期検定投入操作手段を接続するとともに
、原動機により前記発電機を定格速度あるいほとんど定
格速度まで昇速しで前記発電機単独に前記電力系統など
の電圧に等しい電圧あるいはほとんど等しい電圧を誘起
させ、前記同期検定投入操作手段により前記発電機の誘
起電圧と前記電力系統などの電圧との間の同期検定を行
い、かつ前記発電機の主遮断器の同期投入操作を行う如
くにしてなることを特徴とする誘導発電機の電力系統な
どに対する並列接続方法。」 2、明細書第2頁第10行から第12行の「誘導発電機
は運転に際し必ずしもその位相を電力系統の位相に一致
させる必要がなく、また乱調を招く慮れもなく、取扱い
が極めて容易−1を1誘導発電機の系統との運転は同期
発電機に比して】佼扱いが容易」と補正する。 3、明細書第3頁第19行、第20行の[回転発電機4
と滑り」を「回転発電機4などの速度検出装置と滑り」
と補正する。 4、明細書第6頁第11行の[その軸端を介して−1を
「その軸端などを介して」と補正する。 5、明細書第6頁第12行、第13行の「固定端子に前
記電力系統などに並列に−1を「固定端子に並列に」と
補正する。 6、明細書第9頁第9行、第10行の「発電機2の前記
」を「発電機2の発生電圧の前記1と補正する。 7、明細書第11頁第14行〜第16行の[その軸端を
介して速度検出手段の設けられた前記発電機の固定子端
子に前記電力系統などに並列に]を[前記発電機の固定
子に並列に]と補正する。
FIG. 1 is a schematic wiring diagram of a power generation facility whose main engine is an induction generator connected to the power system by the parallel connection method of the present invention.
Figure 2 shows the voltage stability characteristic curve of the generator, Figure 3 shows the vector voltage difference between the generator and the power grid, and Figure 4 shows the induction generator connected to the power grid by the conventional parallel connection method. This shows a schematic wiring diagram of a power generation facility with a main engine. 1: Prime mover, 2: Induction generator, 2a+ stator terminal, 4-
Tachometer generator, 5: Main circuit breaker, 6I slip detection device, 11
: Excitation capacitor, 121 synchronous verification input operation part, 14
+Sequence calculation section. Figure 3 Procedural amendment (voluntary) Indication of case - ShowζQ-ZO denial♂δ7 address
1-1 Tanabeshinden, Kawasaki-ku, Kawasaki City Name (5231 Fuji Electric Co., Ltd., Address: 1-1-1 Tanabeshinden, Kawasaki-ku, Kawasaki City, 5゜6゜7゜8, - Contents of amendment 1. Patent claim The range of is corrected as follows: ``1) Permutation H of the generator in power generation equipment using a B'g-derived conductive plate electric machine, etc. to the power system etc. Connect an appropriate amount of capacitor to the terminal, and connect an appropriate amount of capacitor to the terminal.
A synchronization verification switching operation means is connected between the generator and the like, and the generator is sped up to the rated speed or almost the rated speed by the prime mover, and the voltage of the generator alone is equal to or almost equal to the voltage of the power system, etc. A voltage is induced, and the synchronization test closing operation means performs synchronization verification between the induced voltage of the generator and the voltage of the power system, etc., and performs a synchronization closing operation of the main circuit breaker of the generator. A method for connecting induction generators in parallel to a power system, etc., which is characterized by the following: 2. In the specification, page 2, lines 10 to 12, ``Induction generators do not necessarily have to match their phase with the phase of the power grid during operation, and there is no possibility of causing disturbances, making them extremely easy to handle.'' Ease-1 is corrected to ``Easy to operate with a 1-induction generator system compared to a synchronous generator''. 3. [Rotary generator 4] on page 3, lines 19 and 20 of the specification
``and slipping'' is changed to ``speed detecting device such as rotary generator 4 and slipping''
and correct it. 4. In the specification, page 6, line 11, [through the shaft end -1] is corrected to "through the shaft end, etc.". 5. Correct "-1 to the fixed terminal in parallel to the power system etc." in the 12th and 13th lines of page 6 of the specification to "in parallel to the fixed terminal." 6. "Above of generator 2" in lines 9 and 10 of page 9 of the specification is corrected to "1 of the voltage generated by generator 2." 7. Lines 14 to 16 of page 11 of the specification Correct "parallel to the electric power grid, etc. to the stator terminal of the generator provided with speed detection means via its shaft end" in the row to "parallel to the stator of the generator".

Claims (1)

【特許請求の範囲】[Claims] 1)誘導発電機を主機とする発電設備における当該発電
機の電力系統などに対する並列接続方法において、その
軸端を介して速度検出手段の設けられた前記発電機の固
定子端子に前記電力系統などに並列に適量のコンデンサ
を接続し、かつ前記端子と前記電力系統などとの間に同
期検定投入操作手段を接続するとともに、原動機により
前記発電機を定格速度あるいはほとんど定格速度まで昇
速して前記発電機単独に前記電力系統などの電圧に等し
い電圧あるいはほとんど等しい電圧を誘起させ、前記同
期検定投入操作手段により前記発電機の誘起電圧と前記
電力系統などの電圧との間の同期検定を行い、かつ前記
発電機の主遮断器の同期投入操作を行う如くにしてなる
ことを特徴とする誘導発電機の電力系統などに対する並
列接続方法。
1) In a method of parallel connection of the generator to a power system, etc. in a power generation facility mainly using an induction generator, the power system, etc. is connected to the stator terminal of the generator provided with a speed detection means through its shaft end. A suitable amount of capacitor is connected in parallel with the terminal, and a synchronization verification turning operation means is connected between the terminal and the power grid, and the generator is sped up to the rated speed or almost the rated speed by the prime mover. inducing a voltage equal to or almost equal to the voltage of the electric power system etc. in the generator alone, and performing synchronization verification between the induced voltage of the generator and the voltage of the electric power system etc. by the synchronization verification input operation means; A method for parallel connection of induction generators to a power system, etc., characterized in that the main circuit breakers of the generators are synchronously closed.
JP60205587A 1985-09-18 1985-09-18 Parallel connecting method for power system of induction generators Pending JPS6268024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60205587A JPS6268024A (en) 1985-09-18 1985-09-18 Parallel connecting method for power system of induction generators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60205587A JPS6268024A (en) 1985-09-18 1985-09-18 Parallel connecting method for power system of induction generators

Publications (1)

Publication Number Publication Date
JPS6268024A true JPS6268024A (en) 1987-03-27

Family

ID=16509348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60205587A Pending JPS6268024A (en) 1985-09-18 1985-09-18 Parallel connecting method for power system of induction generators

Country Status (1)

Country Link
JP (1) JPS6268024A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481624A (en) * 1987-09-21 1989-03-27 Fuji Electric Co Ltd Method of parallel making of induction generator in system
US8360649B2 (en) 2007-05-16 2013-01-29 Ntn Corporation Wheel bearing apparatus incorporated with a wheel speed detecting apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481624A (en) * 1987-09-21 1989-03-27 Fuji Electric Co Ltd Method of parallel making of induction generator in system
US8360649B2 (en) 2007-05-16 2013-01-29 Ntn Corporation Wheel bearing apparatus incorporated with a wheel speed detecting apparatus

Similar Documents

Publication Publication Date Title
Salama et al. Transient and steady-state load performance of a stand-alone self-excited induction generator
Seyoum et al. The dynamic characteristics of an isolated self-excited induction generator driven by a wind turbine
Das Effects of momentary voltage dips on the operation of induction and synchronous motors
US7514806B2 (en) Engine start system with quadrature AC excitation
US8085004B2 (en) Generator with quadrature AC excitation
GB1580155A (en) Quadrature axis field brushless exciter
JP2007300780A (en) Power conversion controller, control method, and control program
Kastha et al. An improved starting strategy for voltage-source inverter fed three phase induction motor drives under inverter fault conditions
Wang et al. Effective turn fault mitigation by creating zero sequence current path for a triple redundant 3× 3-phase PMA SynRM
Liu et al. Sensorless direct voltage control of the stand-alone brushless doubly-fed generator
Pallantla et al. Comparison and evaluation of the different brushless excitation topologies for synchronous machines-A literature survey
CN108847796A (en) Three-level formula brushless synchronous machine reluctance type method for starting-controlling and system
JPS6268024A (en) Parallel connecting method for power system of induction generators
JPH10313598A (en) Pumped storage power generation facility
Bašić et al. Wind turbine-driven self-excited induction generator: a novel dynamic model including stray load and iron losses
Gupta et al. DC-Link voltage regulation of full-power converter for WECS in weak-grid using a variable-flux dual-stator PMSG
Crossman et al. Loss-of-field protection for generators
Suciu et al. Performance enhancement of an induction motor by secondary impedance control
JP2943563B2 (en) Starting control device for winding induction motor
Alfarhan et al. Modelling of magnetizing inductance saturation in self-excited induction generators
RU2529505C1 (en) Method and system for disconnecting of generator from electric power system
Patel et al. Improved Traditional Demagnetization Control of DFIG Under Balanced Grid Faults
Lu et al. Rotor position estimation error analysis of indirect high frequency signal injection method for sensorless starting control of aircraft starter-generator
Paul et al. Improved Modeling of BDFRG in Wind Power Generation Application
Grantham et al. The dynamic characteristics of an isolated self-excited induction generator driven by a wind turbine