JPS626761A - Casting method for fiber reinforced cylinder block stock - Google Patents

Casting method for fiber reinforced cylinder block stock

Info

Publication number
JPS626761A
JPS626761A JP14699485A JP14699485A JPS626761A JP S626761 A JPS626761 A JP S626761A JP 14699485 A JP14699485 A JP 14699485A JP 14699485 A JP14699485 A JP 14699485A JP S626761 A JPS626761 A JP S626761A
Authority
JP
Japan
Prior art keywords
molten metal
cavity
molded body
core
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14699485A
Other languages
Japanese (ja)
Inventor
Ryoichi Kanzawa
神沢 良一
Yasuki Taruno
樽野 泰規
Takeshi Sakuma
剛 佐久間
Masahiro Inoue
正博 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP14699485A priority Critical patent/JPS626761A/en
Publication of JPS626761A publication Critical patent/JPS626761A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a product having high quality by pouring a molten metal into cavities for forming cylinder block stocks from the lower part thereof while holding a cylindrical fiber molding between each core for forming a cylinder bore and each cavity by maintaining a space therebetween. CONSTITUTION:Each core 41 for forming the cylinder bore is loosely fitted into each fiber molding F and the projecting part 41a of the core 41 is fitted into a recess 23 on the peak surface of the 1st molding part 18. Each projection 62 of a sand core 59 is loosely inserted into each cavity C. Molds are clamped after a cope 9 and side molds 101, 102, etc. are fitted to each other. The molten metal is supplied into a pouring basin part 14 of a drag 11 and is poured into the cavities C by using a plunger 16. Gases are vented from vent holes 32, 33. The plunger 16 is accelerated after venting to thoroughly solidify the molten metal under the pressure. The structure of the aluminum alloy is compacted in the above-mentioned manner and the product having the excellent quality is obtd.

Description

【発明の詳細な説明】 A9発明の目的 (1)産業上の利用分野 本発明は、シリンダボア回りを繊維成形体により強化し
た繊維強化シリンダブロック素材の鋳造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION A9 Object of the Invention (1) Field of Industrial Application The present invention relates to a method for casting a fiber-reinforced cylinder block material in which the circumference of a cylinder bore is reinforced with a fiber molded body.

(2)従来の技術 従来、この種シリンダブロック素材を鋳造する場合、軸
線を水平に配設したシリンダボア成形用中子の外周面に
円筒状繊維成形体を装着し、次いでその繊維成形体を囲
繞するシリンダブロック素材成形用キャビティに、前記
繊維成形体の一方の開口端側から大気圧を上回る所定の
圧力下で溶湯を注入し、その後溶湯を前記圧力を上回る
高圧下で完全凝固させる手法が採用されている。
(2) Conventional technology Conventionally, when casting this type of cylinder block material, a cylindrical fiber molded body is attached to the outer peripheral surface of a cylinder bore molding core whose axis is arranged horizontally, and then the fiber molded body is surrounded. A method is adopted in which molten metal is injected into the cylinder block material molding cavity from one open end side of the fiber molded body under a predetermined pressure that exceeds atmospheric pressure, and then the molten metal is completely solidified under high pressure that exceeds the above pressure. has been done.

(3)発明が解決しようとする問題点 しかしながら前記手法によると、溶湯の流れが繊維成形
体の一方の開口端側から他方の開口端に向かう軸方向の
流れとなるため、繊維成形体における他方の開口端側の
部位に空気等のガスが閉込められ易く、その結果巣が発
生するという問題がある。また繊維強化の向上を狙って
繊維成形体のかさ密度を高くした場合には溶湯の充填性
が悪くなり、不良品を発生し易いという問題もある。
(3) Problems to be Solved by the Invention However, according to the above method, the flow of the molten metal is an axial flow from one open end side of the fiber molded body to the other open end side. There is a problem in that gas such as air is likely to be trapped in the area on the open end side, resulting in the formation of cavities. Furthermore, when the bulk density of the fiber molded body is increased with the aim of improving fiber reinforcement, there is also the problem that the filling properties of the molten metal become poor, making it easy to produce defective products.

本発明は前記問題を解決し得る前記鋳造方法を提供する
ことを目的とする。
An object of the present invention is to provide the casting method that can solve the above problems.

B0発明の構成 (1)問題点を解決するための手段 本発明は、シリンダボア回りを繊維成形体により強化し
たシリンダブロック素材を鋳造するに当り、軸線を上下
方向に向けて配設したシリンダボア成形用中子の外周面
に円筒状繊維成形体を遊嵌する工程と;前記繊維成形体
を囲繞するシリンダブロック素材成形用キャビティ上部
のガス抜き孔の開度を絞り、大気圧を上回る所定の圧力
下で該キャビティ下部より該キャビティに溶湯を、湯面
が略水平状態で上昇するように注入する工程と;前記ガ
ス抜き孔を閉じて前記溶湯を前記圧力を上回る高圧下で
完全凝固させる工程と;を用いることを特徴とする。
B0 Structure of the Invention (1) Means for Solving the Problems The present invention is directed to a cylinder bore molding machine whose axis is directed in the vertical direction when casting a cylinder block material reinforced with a fiber molded body around the cylinder bore. Loosely fitting a cylindrical fiber molded body onto the outer peripheral surface of the core; narrowing the opening of the gas vent hole in the upper part of the cavity for molding the cylinder block material that surrounds the fiber molded body, and under a predetermined pressure exceeding atmospheric pressure; a step of injecting the molten metal into the cavity from the lower part of the cavity so that the molten metal level rises in a substantially horizontal state; a step of closing the gas vent hole and completely solidifying the molten metal under a high pressure exceeding the pressure; It is characterized by using

(2)作 用 軸線を上下方向に向けた中子の外周面に円筒状繊維成形
体を遊嵌し、キャビティにそれの下部から溶湯を注入す
る押上げ法を適用して湯面を略水平状態で上昇させ、同
時にガス抜き孔の開度を絞って前記溶湯の注入圧を大気
圧を上回る所定の圧力に保持するので、キャビティ内へ
の溶湯の注入と同時に繊維成形体への溶湯の充填が繊維
成形体にその下部から上部に向って内側および外側より
開始される。また繊維成形体内の空気等のガスは溶湯に
より押し出されて上方へ抜けるのでガス抜き性も良好で
ある。その上、湯面の略水平状態での上昇により溶湯へ
のガスの巻込みを防止し得る。
(2) A cylindrical fiber molded body is loosely fitted onto the outer peripheral surface of the core with its axis of action facing up and down, and the molten metal is poured into the cavity from the bottom using a push-up method to make the molten metal level approximately horizontal. At the same time, the opening of the gas vent hole is narrowed to maintain the injection pressure of the molten metal at a predetermined pressure above atmospheric pressure, so that the molten metal is injected into the cavity and simultaneously filled into the fiber molded body. is applied to the fiber molded body starting from the inside and outside from the bottom to the top. Further, since gas such as air inside the fiber molded body is pushed out by the molten metal and escapes upward, degassing performance is also good. In addition, gas entrainment into the molten metal can be prevented by raising the molten metal level in a substantially horizontal state.

さらに溶湯を、前記圧力を上回る高圧下で完全凝固させ
るので、溶湯の圧力上昇過程で溶湯が繊維成形体に完全
に充填され、またマトリックスの金属組織が緻密化して
その強度が向上する。
Furthermore, since the molten metal is completely solidified under a high pressure exceeding the above-mentioned pressure, the molten metal is completely filled into the fiber molded body during the process of increasing the pressure of the molten metal, and the metal structure of the matrix is densified to improve its strength.

(3)実施例 第1〜第3図は本発明により得られた素材からなる繊維
強化アルミニウム合金製サイアミーズ型シリンダブロッ
クSを示し、そのシリンダブロックSは、直列に並ぶ複
数、図示例は4個のシリンダバレル11〜14相互を結
合してなるサイアミーズシリンダバレル1と、そのサイ
アミーズシリンダバレル1を囲繞する外壁部2と、外壁
部2の下縁に連設されたクランクケース3とより構成さ
れる。各シリンダバレル11〜14におけるシリンダボ
ア4の周囲に円筒状の繊維成形体Fが埋設され、この繊
維成形体Fによりシリンダボア4回りが繊維強化される
(3) Embodiment Figures 1 to 3 show a Siamese-type cylinder block S made of a fiber-reinforced aluminum alloy made of a material obtained according to the present invention, in which a plurality of cylinder blocks S are arranged in series, four in the illustrated example. It is composed of a Siamese cylinder barrel 1 formed by connecting cylinder barrels 11 to 14 with each other, an outer wall 2 surrounding the Siamese cylinder barrel 1, and a crankcase 3 connected to the lower edge of the outer wall 2. . A cylindrical fiber molded body F is embedded around the cylinder bore 4 in each cylinder barrel 11 to 14, and the area around the cylinder bore 4 is reinforced with fibers by this fiber molded body F.

サイアミーズシリンダバレル1と外壁部2間に、サイア
ミーズシリンダバレル1の全周が臨む水ジャケット6が
形成される。その水ジャケット6におけるシリンダヘッ
ド側の開口部において、サイアミーズシリンダバレルl
と外壁部2間は複数の補強デツキ部8により連結され、
相隣る補強デツキ部8間はシリンダヘッド側への連通ロ
アとして機能する。これによりシリンダブロックSはク
ローズドデツキ型に構成される。
A water jacket 6 facing the entire circumference of the Siamese cylinder barrel 1 is formed between the Siamese cylinder barrel 1 and the outer wall portion 2. At the opening on the cylinder head side of the water jacket 6, the Siamese cylinder barrel l
and the outer wall part 2 are connected by a plurality of reinforcing deck parts 8,
The space between adjacent reinforcing deck portions 8 functions as a communicating lower portion to the cylinder head side. As a result, the cylinder block S is configured into a closed deck type.

第5〜第8図は、第4図に示すシリンダブロック素材S
mを鋳造すべ(本発明の実施に用いられる鋳造装置を示
し、その装置は金型Mを備え、その金型Mは昇降自在な
上型9と、その上型9の下方に配設され、第5.第6図
において左右二つ割の第1および第2側型10..10
□と、両側型10、.10□を摺動自在に載置する下型
11とより構成される。
Figures 5 to 8 show the cylinder block material S shown in Figure 4.
m (shows a casting device used in the implementation of the present invention, the device is equipped with a mold M, the mold M is arranged below the upper mold 9 and the upper mold 9, which can be raised and lowered, 5. In Fig. 6, the first and second side molds 10..10 are divided into left and right halves.
□, both sides type 10, . It is composed of a lower die 11 on which a 10□ is slidably placed.

上型9の下面に、両側型10..10□と協働してサイ
アミーズシリンダバレル1および外壁部2を成形するた
めの第1キヤビテイCIを画成する型締め用凹部12が
形成され、その凹部12と嵌合する型締め用凸部13が
両側型10..102の上面に突設される。
On the lower surface of the upper mold 9, both sides mold 10. .. A mold clamping recess 12 that defines a first cavity CI for molding the Siamese cylinder barrel 1 and outer wall 2 is formed in cooperation with the mold clamping convex 13 that fits into the recess 12. is double-sided type 10. .. 102 in a protruding manner.

第7.第8図に示すように、下型11に溶解炉(図示せ
ず)よりアルミニウム合金の溶湯を受ける湯溜部14と
、その湯溜部14に連通する給湯シリンダ15と、その
給湯シリンダ15に摺合されるプランジャ16と、湯溜
部14より2本に分岐して第1キヤビテイCIの長手方
向に、且つそれと略同−長さに亘って延びる一対の湯道
17とが設けられる。また下型11は両湯道17間にお
いて上方へ突出する成形ブロック18を有し、その成形
ブロック18は両側型10..10□と協働してクラン
クケース3を成形するための第2キヤビテイC2を画成
する。そのキャビティC2の上端は前記第1キヤビテイ
C8に連通し、また両側の下端は両湯道17に複数の堰
19を介して連通ずる。これら第1.第2キャビティC
+、Czはシリンダブロック素材成形用キャビティを構
成する。
7th. As shown in FIG. 8, the lower mold 11 includes a sump 14 that receives molten aluminum alloy from a melting furnace (not shown), a hot water supply cylinder 15 communicating with the sump 14, and a hot water supply cylinder 15 connected to the sump 14. A plunger 16 to be slid together, and a pair of runners 17 that are branched into two from the tundish portion 14 and extend in the longitudinal direction of the first cavity CI and over approximately the same length as the first cavity CI are provided. The lower mold 11 also has a molding block 18 projecting upward between the two runners 17, and the molding block 18 has a molding block 18 on both sides of the mold 10. .. 10□ to define a second cavity C2 for molding the crankcase 3. The upper end of the cavity C2 communicates with the first cavity C8, and the lower ends on both sides communicate with both runners 17 via a plurality of weirs 19. These first. 2nd cavity C
+ and Cz constitute a cavity for molding the cylinder block material.

成形ブロック18は、所定の間隔で形成された背の高い
4個のかまぼこ形第1成形部1B、と、相隣る第1成形
部188間および最外側の画筆1成形部181の外側に
位置する凸字形第2成形部18□とよりなり、各第1成
形部18.はクランクピンおよびクランクアーム用回転
空間20(第2、第3図)を成形するために用いられ、
第2成形部18.はクランクジャーナルの軸受ホルダ2
1 (第2.第3図)を成形するために用いられる。
The molding block 18 is located between four tall semi-cylindrical first molding parts 1B formed at predetermined intervals and adjacent first molding parts 188 and outside of the outermost brush 1 molding part 181. It consists of a convex-shaped second molded part 18□, and each first molded part 18. is used to form the crank pin and crank arm rotation space 20 (Figs. 2 and 3),
Second molding section 18. is crank journal bearing holder 2
1 (Figures 2 and 3).

各層19は各第2成形部18□に対応して設けられてお
り、第2キヤビテイC2の容量の大きな部分に溶湯を早
期に注入するようになっている。
Each layer 19 is provided corresponding to each second molding section 18□, so that the molten metal is quickly injected into the large capacity portion of the second cavity C2.

両湯道17は、湯溜部14側より湯道光17aに向けて
断面積が段階的に減少するように、湯道17底面が湯溜
部14側より数段の上り階段状に形成されている。各段
部17bに連なる各立上がり部17cは溶湯を各層19
にスムーズに導くことができるように斜めに形成される
Both runners 17 are formed such that the bottom surface of the runners 17 is shaped like several steps ascending from the trough portion 14 side so that the cross-sectional area gradually decreases from the trough portion 14 side toward the runner light 17a. There is. Each rising portion 17c connected to each step portion 17b allows the molten metal to flow into each layer 19.
It is formed diagonally so that it can be guided smoothly.

このように湯道17の断面積を段階的に減少させると、
断面積の大きな部分では大量の溶湯を遅い速度で堰19
を通じて第2キヤビテイC2に注入し、また断面積の小
さな部分では少量の溶湯を速い速度で堰19を通じて第
2キヤビテイC2に注入することができるので、そのキ
ャビティC2内では両側下端よりその全長に亘って略水
平状態で湯面が上昇し、したがって溶湯がキャビティC
2内で乱流を起こすことがなく、空気等のガスが溶湯に
巻き込まれることを防止して巣の発生を回避することが
できる。また溶湯の注入作業が効率良く行われるので、
鋳造能率を向上させることができる。
When the cross-sectional area of the runner 17 is reduced in stages in this way,
In areas with large cross-sectional areas, a large amount of molten metal is pumped through the weir 19 at a slow speed.
In the small cross-sectional area, a small amount of molten metal can be injected into the second cavity C2 through the weir 19 at a high speed. The molten metal level rises in a nearly horizontal state, and the molten metal flows into the cavity C.
There is no turbulence within the molten metal, and gases such as air are prevented from being drawn into the molten metal, thereby avoiding the formation of cavities. In addition, since the molten metal injection work is performed efficiently,
Casting efficiency can be improved.

第5.第6図に示すように、各第1成形部18、の頂面
に繊維成形体Fの下端部が嵌合する位置決め突起22が
突設され、その位置決め突起22の中心に凹部23が形
成される。また両側に位置する2つの第1成形部18.
に、位置決め突起22の両側において第1成形部18.
を貫通する貫通孔24が形成され、それら貫通孔24に
一対の仮設置ピン25がそれぞれ摺合される。それら仮
設置ピン25は、後述する水ジヤケツト用砂中子の仮設
置のために用いられる。両板設置ピン25の下端は、成
形ブロック18の下方に配設された取付板26に固定さ
れる。その取付板26に2本の支持ロッド27が挿通さ
れ、各支持ロッド27の下部と取付板26の下面との間
にコイルばね28が縮設される。型開き時には、取付板
26は各コイルばね28の弾発力を受けて各支持ロッド
27先端のストッパ27aに当接するまで上昇し、これ
により各仮設置ピン25の先端は第1成形部181頂面
より突出している。各仮設置ピン25の先端面に砂中子
の下縁と係合する凹部25aが形成される。
Fifth. As shown in FIG. 6, a positioning protrusion 22 into which the lower end of the fiber molded body F fits is protruded from the top surface of each first molded part 18, and a recess 23 is formed in the center of the positioning protrusion 22. Ru. Also, two first molded parts 18 located on both sides.
On both sides of the positioning protrusion 22, the first molded portion 18.
A through hole 24 is formed passing through the through hole 24, and a pair of temporary installation pins 25 are slid into each of the through holes 24, respectively. These temporary installation pins 25 are used for temporary installation of a sand core for a water jacket, which will be described later. The lower ends of both plate installation pins 25 are fixed to a mounting plate 26 disposed below the forming block 18. Two support rods 27 are inserted through the mounting plate 26, and a coil spring 28 is compressed between the lower part of each support rod 27 and the lower surface of the mounting plate 26. When the mold is opened, the mounting plate 26 receives the elastic force of each coil spring 28 and rises until it comes into contact with the stopper 27a at the tip of each support rod 27, so that the tip of each temporary installation pin 25 is brought to the top of the first molding part 181. protruding from the surface. A recess 25a that engages with the lower edge of the sand core is formed on the tip end surface of each temporary installation pin 25.

また両側に位置する2つの第1成形部18.に、両貫通
孔24間の三等分位置において第1成形部18、を貫通
する貫通孔29が形成され、その貫通孔29に下端を取
付板26に固定された作動ピン30が摺合される。型開
き時には、作動ピン30の先端は凹部23内に突出し、
また型閉め時には後述するシリンダボア成形用中子によ
り押し下げられ、これにより両板設置ピン25を第1成
形部181頂面より引き込ませるようになっている。
Also, two first molded parts 18 located on both sides. A through hole 29 passing through the first molded portion 18 is formed at a trisecting position between both through holes 24, and an operating pin 30 whose lower end is fixed to the mounting plate 26 is slid into the through hole 29. . When the mold is opened, the tip of the operating pin 30 protrudes into the recess 23,
Further, when the mold is closed, it is pushed down by a cylinder bore molding core, which will be described later, so that both plate installation pins 25 are retracted from the top surface of the first molding part 181.

第1および第2側型10..10□における第1キヤビ
テイC7を画成する壁部の中央部分に砂中子を本設置す
るための中子受31が2個所宛設けられている。各中子
受31は砂中子の位置決めを行う係合孔31aと、その
開口部外周に形成されて砂中子を挟持する挟持面31b
とよりなる。
First and second side molds10. .. Core holders 31 for actually installing sand cores are provided at two locations in the center of the wall defining the first cavity C7 in 10□. Each core holder 31 has an engagement hole 31a for positioning the sand core, and a clamping surface 31b formed on the outer periphery of the opening to clamp the sand core.
It becomes more.

上型9の型締め用凹部12に、第1キヤビテイC1に連
通して溶湯をオーバフローさせるための複数の第3キヤ
ビテイC3および連通ロアを成形するための第4キヤビ
テイC4がそれぞれ形成され、また上型9に各第3キヤ
ビテイC3および第4キヤビテイC4に連通ずるガス抜
き孔32,33がそれぞれ形成される。
A plurality of third cavities C3 for communicating with the first cavity C1 to overflow the molten metal and a fourth cavity C4 for forming a communicating lower are formed in the mold clamping recess 12 of the upper mold 9, and Gas vent holes 32 and 33 are formed in the mold 9 and communicate with the third cavity C3 and the fourth cavity C4, respectively.

それらガス抜き孔32.33に閉鎖ピン34゜35がそ
れぞれ遊挿され、それら閉鎖ピン34゜35の上端部は
上型9の上方に配設される取付板36に固定される。
Closing pins 34 and 35 are loosely inserted into these gas vent holes 32 and 33, respectively, and the upper ends of these closing pins 34 and 35 are fixed to a mounting plate 36 disposed above the upper die 9.

各ガス抜き孔32.33の、両キャビティC1゜C4に
対する連通端から上方へ所定の長さに亘って延びる小径
部32a、33aは各閉鎖ピン34゜35の下端部と嵌
合して第3キヤビテイC3および第4キヤビテイC4を
閉鎖し得るようになっている。
The small diameter portions 32a, 33a of each gas vent hole 32, 33, which extend upward over a predetermined length from the communicating end with respect to both cavities C1, C4, fit into the lower end of each closing pin 34, 35, and the third Cavity C3 and fourth cavity C4 can be closed.

上型9の上面と取付板36間に油圧シリンダ39が介装
され、その油圧シリンダ39の作動により取付板36を
昇降して各閉鎖ピン34.35により各小径部32a、
33aを開閉するようになっている。40は取付板36
の案内ロッドである。
A hydraulic cylinder 39 is interposed between the upper surface of the upper mold 9 and the mounting plate 36, and the operation of the hydraulic cylinder 39 raises and lowers the mounting plate 36, and each small diameter portion 32a,
33a is opened and closed. 40 is the mounting plate 36
This is the guide rod.

上型9の型締め用凹部12天面に、各シリンダバレル1
.〜14に対応して軸線を上、下方向に向けて配設した
シリンダボア成形用円柱状中子41が突設され、各中子
41の下端面に第1成形部18I頂面の凹部23に嵌合
し得る凸部41aが設けられる。各中子41は上端より
下端に向けて先細りとなるようにテーパを付されている
Each cylinder barrel 1 is placed on the top surface of the mold clamping recess 12 of the upper mold 9.
.. - 14, cylindrical cores 41 for forming cylinder bores with their axes facing upward and downward are protrudingly provided, and the lower end surface of each core 41 is provided with a concave portion 23 on the top surface of the first molded portion 18I. A convex portion 41a that can be fitted is provided. Each core 41 is tapered from the upper end to the lower end.

第9.第10図は水ジヤケツト用砂中子59を示し、そ
の砂中子59は、シリンダブロックSの4本のシリンダ
バレル11〜14に対応して4本の円筒部60.〜60
4を備えると共にそれらの相隣るもの相互の重合する周
壁を欠如させた中子本体61と、水ジャケットをシリン
ダヘッドの水ジャケットに連通する連通ロアおよび補強
デツキ部8を形成すべく、中子本体61の上端面に突設
された複数の突起62と、中子本体61のシリンダバレ
ル配列方向両外側面、図示例は中間に位置する2本の円
筒部60□、60.の両外側面にそれぞれ突設された幅
木63とより構成される。各幅木63は中子本体61と
一体の大径部63aと、その端面に突設される小径部6
3bとより形成される。
9th. FIG. 10 shows a sand core 59 for a water jacket, and the sand core 59 has four cylindrical portions 60.corresponding to the four cylinder barrels 11-14 of the cylinder block S. ~60
In order to form a core main body 61 which is provided with 4 and lacks the surrounding walls that overlap with each other, and a communicating lower and reinforcing deck part 8 that communicates the water jacket with the water jacket of the cylinder head, A plurality of protrusions 62 protruding from the upper end surface of the main body 61, two cylindrical portions 60□, 60. It is comprised of baseboards 63 protruding from both outer surfaces of the baseboard. Each baseboard 63 has a large diameter portion 63a that is integral with the core body 61, and a small diameter portion 6 that protrudes from the end surface of the large diameter portion 63a.
3b.

第11図は、炭素繊維とアルミナ繊維との混合繊維より
成形された円筒状繊維成形体Fを示し、その寸法は上端
における外径89M@、また内径78111、下端にお
ける外径89鶴、また内径74m1高さ152鶴で、そ
のかさ密度は0.3g/Cm’である。繊維成形体Fの
内周面、したがってテーパ面の前記寸法は、シリンダボ
ア成形用中子41のそれよりも僅かに大きくなるように
設定される。
Fig. 11 shows a cylindrical fiber molded body F formed from a mixed fiber of carbon fiber and alumina fiber, and its dimensions are an outer diameter of 89M at the upper end, an inner diameter of 78111, an outer diameter of 89M at the lower end, and an inner diameter of It is 74m1 high and 152 cranes, and its bulk density is 0.3g/Cm'. The dimensions of the inner circumferential surface of the fiber molded body F, that is, the tapered surface, are set to be slightly larger than those of the cylinder bore forming core 41.

繊維成形体Fは、平均直径18μm、平均長さ0゜8寵
の炭素繊維(短繊維)と、平均直径3〜4μm、平均長
さ0.5 mmのアルミナ繊維(短繊維)とを1対3の
割合で混合し、その混合繊維にシリカゾルをバインダと
して加え、吸引付着成形法を適用して成形されたもので
ある。この場合、シリカゾルの代りにアルミナゾル単体
、またはシリカゾルとアルミナゾルの混合物を用いるこ
とが可能である。
The fiber molded body F is made of a pair of carbon fibers (short fibers) with an average diameter of 18 μm and an average length of 0°8 mm and alumina fibers (short fibers) with an average diameter of 3 to 4 μm and an average length of 0.5 mm. 3 and 3, silica sol was added as a binder to the mixed fibers, and molded by applying a suction adhesion molding method. In this case, it is possible to use alumina sol alone or a mixture of silica sol and alumina sol instead of silica sol.

前記吸引付着成形法とは、前記混合繊維とシリカゾルの
混合物を入れた槽中に、両端面を密封した通気性を有す
る円筒型を立設し、その円筒型の内部に吸引作用を施し
て前記混合物を円筒型外周面に吸着させる手法をいう。
The above-mentioned suction adhesion molding method is a method in which a cylindrical mold with air permeability with both ends sealed is erected in a tank containing the mixture of the mixed fibers and silica sol, and a suction action is applied to the inside of the cylindrical mold. A method in which a mixture is adsorbed onto the outer surface of a cylindrical shape.

前記手法により成形された繊維成形体は、離型後乾燥お
よび焼成工程を経て使用に供される。
The fiber molded body formed by the above method is used after being released from the mold and subjected to a drying and firing process.

次に前記繊維成形体Fを用いた前記鋳造装置によるシリ
ンダブロック素材Smの鋳造作業について説明する。
Next, the casting operation of the cylinder block material Sm by the casting apparatus using the fiber molded body F will be explained.

先ず第5図に示すように上型9を上昇させ、また両側型
10..10□を互いに離間するように移動させて型開
きを行う。上型9上の油圧シリンダ39を作動させて取
付板36を介し各閉鎖ピン34.35を上昇させ、それ
らの下端部を第3゜第4キャビティC3,Caに連通ず
る小径部32a、33aの上部開口近傍に位置させて各
上部開口の開度を絞る。さらに給湯シリンダ15内のプ
ランジャ16を下降させる。
First, as shown in FIG. 5, the upper die 9 is raised, and both sides of the die 10. .. Open the mold by moving the 10 squares apart from each other. The hydraulic cylinder 39 on the upper mold 9 is actuated to raise each closing pin 34.35 through the mounting plate 36, and the lower ends of the small diameter portions 32a, 33a communicating with the third and fourth cavities C3, Ca are opened. The opening degree of each upper opening is narrowed by positioning it near the upper opening. Further, the plunger 16 in the hot water supply cylinder 15 is lowered.

略300℃に予熱された各繊維成形体Fの小径側である
下部開口を各第1成形部18.の位置決め突起22に嵌
合して各繊維成形体Fを各第1成形部181の頂面に立
設する。この場合第7A図に示すように各繊維成形体F
の下部開口における内周面の一部と位置決め突起22に
おける外周面の一部との間には、溶湯を繊維成形体Fの
下部からその内側に進入させるための間隙g、が形成さ
れる。
The lower opening on the small diameter side of each fiber molded body F preheated to approximately 300°C is connected to each first molded portion 18. Each fiber molded body F is fitted into the positioning protrusion 22 to stand up on the top surface of each first molded part 181. In this case, as shown in FIG. 7A, each fiber molded body F
A gap g is formed between a part of the inner circumferential surface of the lower opening and a part of the outer circumferential surface of the positioning protrusion 22 for allowing the molten metal to enter the inside of the fiber molded body F from the lower part.

第5.第10図に示すように砂中子59における各円筒
部60.〜604を各繊維成形体Fの外側に遊嵌してそ
れらの間に空間Sを形成し、また両側の円筒部60..
604下縁を、下型11における両側の第1成形部18
Iの頂面に突出する各仮設置ビン25の凹部25aに係
合させて砂中子59の仮設置を行う。
Fifth. As shown in FIG. 10, each cylindrical portion 60 in the sand core 59. 604 are loosely fitted on the outside of each fiber molded body F to form a space S therebetween, and the cylindrical portions 60. ..
The lower edge of 604 is attached to the first molding portions 18 on both sides of the lower mold 11.
The sand core 59 is temporarily installed by engaging with the recess 25a of each temporary installation bin 25 protruding from the top surface of the sand core 59.

第6図に示すように、両側型101,102をそれらが
互いに接近する方向に所定距離移動させ、各中子受31
と各幅木63とを係合して砂中子59の本設置を行う。
As shown in FIG. 6, the two-sided molds 101 and 102 are moved a predetermined distance in the direction in which they approach each other, and
and each skirting board 63, and the sand core 59 is fully installed.

即ち、各中子受31の係合孔31aに砂中子59におけ
る各幅木63の小径部63bを嵌合して砂中子59を位
置決めし、また各大径部63aのシリンダバレル配列方
向と平行な端面を各中子受31の挟持面31bに衝合し
て砂中子59をそれら挟持面31bにより挟持するもの
である。
That is, the sand core 59 is positioned by fitting the small diameter portion 63b of each baseboard 63 in the sand core 59 into the engagement hole 31a of each core receiver 31, and also aligning the cylinder barrel arrangement direction of each large diameter portion 63a. The sand core 59 is clamped by the clamping surfaces 31b of each core holder 31 by abutting the end surfaces parallel to the clamping surfaces 31b of each core holder 31.

次いで上型9を下降させて各シリンダボア成形用中子4
1を各繊維成形体F内に遊嵌し、中子41の凸部41a
を第1成形部181頂面の凹部23に嵌合する。この凹
凸嵌合により作動ピン30が押し下げられるので各仮設
置ピン25が下降して第1成形部181頂面より引込む
。また砂中子59の各突起62が各第4キヤビテイC4
に遊挿され、さらに上型9の型締め用凹部12が両側型
101.10□の型締め用凸部13に嵌合して型締めが
行われ、各繊維成形体Fは凹部12天面と第1成形部1
81頂面間に挟持固定される。さらに中子41と繊維成
形体F間には所定の間隙g2が形成され、その間隙g2
は前記間隙g1を介して第1キヤビテイC1に連通ずる
Next, the upper die 9 is lowered to form each cylinder bore core 4.
1 is loosely fitted into each fiber molded body F, and the convex portion 41a of the core 41
is fitted into the recess 23 on the top surface of the first molded part 181. Since the actuating pin 30 is pushed down by this uneven fitting, each temporary installation pin 25 is lowered and retracted from the top surface of the first molded part 181. In addition, each protrusion 62 of the sand core 59 corresponds to each fourth cavity C4.
Furthermore, the mold clamping recesses 12 of the upper mold 9 fit into the mold clamping protrusions 13 of the both molds 101.10□ to perform mold clamping, and each fiber molded object F and the first molding section 1
It is clamped and fixed between the top surfaces of 81. Furthermore, a predetermined gap g2 is formed between the core 41 and the fiber molded body F, and the gap g2
communicates with the first cavity C1 via the gap g1.

下型11の湯溜部14に溶解炉より730〜740℃の
アルミニウム合金(JIS  ADC12)よりなる溶
湯を供給し、プランジャ16を0.08〜0.3 m 
/secの速度で上昇させて溶湯を両湯道17より堰1
9を通じて第2キヤビテイC2の両下部よりそのキャビ
ティC2および第1キヤビテイCIに注入する。両キャ
ビティC,,C,内の空気等のガスは、溶湯により押し
上げられて第3、第4キャビティCi、C4に連通ずる
ガス抜き孔32.33を経て上型9の上方へ抜ける。
A molten metal made of aluminum alloy (JIS ADC12) at 730 to 740°C is supplied from a melting furnace to the sump 14 of the lower mold 11, and the plunger 16 is heated to a height of 0.08 to 0.3 m.
/sec to raise the molten metal from both runners 17 to weir 1.
9 into the second cavity C2 and the first cavity CI from both lower parts of the second cavity C2. Gas such as air in both cavities C, , C, is pushed up by the molten metal and escapes above the upper mold 9 through gas vent holes 32, 33 communicating with the third and fourth cavities Ci, C4.

この場合両湯道17は前述のように湯道光17aに向け
て断面積が段階的に減少するように、湯道底面が湯溜部
14側より数段の上り階段状に形成されているので、プ
ランジャ16の上昇により溶湯は両湯道17より各層1
9を通じて第2キヤビテイC2に、その両下部よりその
全長に亘って略均等に注入される。
In this case, both runners 17 are formed in the shape of several steps ascending from the trough portion 14 side so that the cross-sectional area of both runners 17 gradually decreases toward the runner light 17a, as described above. As the plunger 16 rises, the molten metal flows from both runners 17 to each layer 1.
9 and is injected into the second cavity C2 from both lower portions thereof substantially uniformly over its entire length.

この押上げ法の適用により第2キヤビテイC2内および
前記空間Sおよび間隙g2を含む第1キヤビテイC8内
では湯面が略水平状態で上昇し、同時にガス抜き孔32
.33における小径部32a、33aの開度が絞られて
いることにより、第12図に示すように溶湯の注入圧が
大気圧を上回る圧力plとなり、その結果溶湯が第1キ
ヤビテイCI内へ注入されると同時に繊維成形体Fへの
溶湯の充填がその下部から上部に向って内側および外側
より開始される。また繊維成形体F内の空気等のガスは
溶湯により押し出されて上方へ抜けるのでガス抜き性が
良好となる。その上、湯面が略水平状態で上昇すること
により溶湯へのガスの巻込みが防止され、したがって巣
の発生が回避される。
By applying this push-up method, the hot water level rises in a substantially horizontal state in the second cavity C2 and the first cavity C8 including the space S and the gap g2, and at the same time
.. Since the opening degree of the small diameter portions 32a and 33a in 33 is narrowed, the injection pressure of the molten metal becomes a pressure pl exceeding atmospheric pressure as shown in FIG. 12, and as a result, the molten metal is injected into the first cavity CI. At the same time, filling of the molten metal into the fiber molded body F starts from the bottom to the top from the inside and outside. Furthermore, gas such as air within the fiber molded body F is pushed out by the molten metal and escapes upward, resulting in good degassing performance. Moreover, since the molten metal level rises in a substantially horizontal state, entrainment of gas into the molten metal is prevented, and therefore the generation of cavities is avoided.

第3.第4キャビティCz、C4に溶湯が完全に注入さ
れた時点で、上型9上の油圧シリンダ39を作動させて
取付板36を下降させ、閉鎖ビン34.35によって両
キャビティC3,C4に連通ずる小径部32a、33a
を閉鎖する。
Third. When the molten metal is completely injected into the fourth cavities Cz and C4, the hydraulic cylinder 39 on the upper mold 9 is operated to lower the mounting plate 36, which communicates with both cavities C3 and C4 through the closing bins 34.35. Small diameter portions 32a, 33a
will be closed.

その後プランジャ16を0.14〜0.18 m/se
Cの速度で上昇させて溶湯を、前記圧力p、を上回る高
圧力pz下、即ち400kg/an!の圧力下に保持し
て完全に凝固させ、マトリックスであるアルミニウム合
金の組織を緻密化してその強度の向上を図る。この溶湯
の圧力上昇過程で溶湯の圧力が5〜20kg/ciに達
すると、繊維成形体Fに対する溶湯の充填が完了する。
After that, plunger 16 is rotated at 0.14 to 0.18 m/se.
The molten metal is raised at a rate of C under a high pressure pz exceeding the pressure p, that is, 400 kg/an! The aluminum alloy is held under pressure to completely solidify it, thereby densifying the structure of the aluminum alloy matrix and improving its strength. When the pressure of the molten metal reaches 5 to 20 kg/ci in the process of increasing the pressure of the molten metal, the filling of the molten metal into the fiber molded body F is completed.

このように溶湯の充填完了圧力が低いので、充填中に繊
維成形体Fが溶湯により破壊されることはない。
Since the pressure at which the filling of the molten metal is completed is low as described above, the fiber molded body F is not destroyed by the molten metal during filling.

各繊維成形体Fは凹部12天面と第1成形部18、頂面
間に挟持固定されているので、第1キヤビテイC2内へ
の溶湯の注入時およびそのキャビティC5内の溶湯の加
圧時において各繊維成形体Fが移動することがなく、し
たがってシリンダボア4回りを確実に繊維強化すること
ができる。また砂中子59は、それの各幅木63を介し
て両側型101.10□により正確な位置に挟持されて
いるので、前記溶湯の注入時および溶湯の加圧時におい
て砂中子59が浮き上がったりすることがない。また各
幅木63の大径部63aの端面が両側型10+、10z
における中子受31の挟持面31bに衝合しているので
、砂中子59が脹らみ傾向になると、その変形力は各挟
持面31bにより支承され、これにより砂中子59の変
形が防止されて各シリンダボア4回りの肉厚が均一なサ
イアミーズシリンダバレル1が得られる。
Each fiber molded body F is clamped and fixed between the top surface of the recess 12, the first molded portion 18, and the top surface, so when pouring the molten metal into the first cavity C2 and pressurizing the molten metal in the cavity C5. In this case, each fiber molded body F does not move, so that the area around the cylinder bore 4 can be reliably reinforced with fibers. Furthermore, since the sand core 59 is held in an accurate position by the molds 101. It never floats up. In addition, the end surfaces of the large diameter portions 63a of each baseboard 63 are double-sided type 10+, 10z.
When the sand core 59 tends to swell, the deformation force is supported by each clamping surface 31b, which prevents the sand core 59 from deforming. Thus, a Siamese cylinder barrel 1 having uniform wall thickness around each cylinder bore 4 can be obtained.

溶湯が凝固を完了した後、型開きを行うと第4図に示す
シリンダブロック素材Smが得られる。
After the molten metal has completely solidified, the mold is opened to obtain the cylinder block material Sm shown in FIG. 4.

前記シリンダブロック素材Smに研削加工を施して各第
4キヤビテイC4と砂中子59の各突起62との協働に
より成形された各突出部64を除去すると各連通ロアお
よび補強デツキ部8が形成され、また砂抜きを行うこと
により水ジャケット6が得られ、さらに各シリンダボア
4の内周面に真円加工を施して前記間隙g2に充填され
たアルミニウム合金部分を除去し、さらにまたその他の
所定の加工を施すと第1〜第3図に示すシリンダブロッ
クSが得られる。
When the cylinder block material Sm is subjected to a grinding process to remove each protrusion 64 formed by the cooperation of each fourth cavity C4 and each protrusion 62 of the sand core 59, each communicating lower and reinforcing deck portion 8 is formed. The water jacket 6 is obtained by removing sand, and the inner circumferential surface of each cylinder bore 4 is machined into a perfect circle to remove the aluminum alloy portion filled in the gap g2, and other predetermined processes are performed. By performing the above processing, the cylinder block S shown in FIGS. 1 to 3 is obtained.

なお、繊維成形体Fは一種類の強化繊維より成形しても
よい。またマトリックスとしては前記アルミニウム合金
の外に鋳鉄、銅、マグネシウム合金等が用いられる。
Note that the fiber molded body F may be molded from one type of reinforcing fiber. In addition to the aluminum alloy, cast iron, copper, magnesium alloy, etc. may be used as the matrix.

C0発明の効果 本発明によれば、軸線を上下方向に向けて配設したシリ
ンダボア成形用中子に円筒状繊維成形体を遊嵌し、シリ
ンダブロック素材成形用キャビティにそれの下部から溶
湯を注入する押上げ法を適用して湯面を略水平状態で上
昇させ、同時にガス抜き孔の開度を絞って溶湯の注入圧
を大気圧を上回る所定の圧力に保持するので、キャビテ
ィ内への溶湯の注入と同時に繊維成形体への溶湯の充填
が繊維成形体の下部から上部に向って内側および外側よ
り開始され、溶湯の充填能率が向上する。
C0 Effects of the Invention According to the present invention, a cylindrical fiber molded body is loosely fitted into a cylinder bore molding core whose axis is directed in the vertical direction, and molten metal is injected into the cylinder block material molding cavity from the lower part of the core. A push-up method is applied to raise the molten metal level in a nearly horizontal state, and at the same time, the opening of the gas vent hole is narrowed to maintain the molten metal injection pressure at a predetermined pressure above atmospheric pressure. Simultaneously with the injection, filling of the molten metal into the fiber molded body starts from the inside and outside of the fiber molded body from the bottom to the top, improving the filling efficiency of the molten metal.

また繊維成形体内の空気等のガスが溶湯により押し出さ
れて上方へ抜け、繊維成形体内へのガスの閉込めが防止
される。さらに湯面の略水平状態での上昇により溶湯へ
のガスの巻込みが防止される。
Further, gas such as air inside the fiber molded body is pushed out by the molten metal and escapes upward, thereby preventing gas from being trapped in the fiber molded body. Further, the rising of the molten metal level in a substantially horizontal state prevents gas from being drawn into the molten metal.

その後溶湯を、前記圧力を上回る高圧下で完全凝固させ
るので、溶湯の圧力上昇過程で溶湯が繊維成形体に完全
に充填され、繊維成形体のかさ密度が高くても溶湯の充
填性が良好となる。またマトリックスの金属組織が緻密
化してその強度が向上する。
After that, the molten metal is completely solidified under high pressure exceeding the above pressure, so that the molten metal completely fills the fiber molded body during the process of increasing the pressure of the molten metal, and the filling property of the molten metal is good even if the bulk density of the fiber molded body is high. Become. Furthermore, the metal structure of the matrix becomes denser and its strength improves.

したがって上記手法を採用することにより、シリンダボ
ア回りを確実に繊維強化した巣の発生の無い高強度な繊
維強化シリンダブロック素材を能率良く鋳造することが
できる。
Therefore, by employing the above method, it is possible to efficiently cast a high-strength fiber-reinforced cylinder block material that is reliably fiber-reinforced around the cylinder bore and free from the occurrence of cavities.

【図面の簡単な説明】[Brief explanation of drawings]

第1乃至第3図は本発明により得られた素材からなるサ
イアミーズ型シリンダブロックを示し、第1図は上方か
らみた斜視図、第2図は第9図X−X線断面図、第2A
図は第9図X−X線断面図、第3図は下方から見た斜視
図、第4図は本発明により得られたサイアミーズ型シリ
ンダブロック素材を上方から見た斜視図、第5図は鋳造
装置の型開き時の縦断正面図、第6図は鋳造装置の型閉
め時の縦断正面図、第7図は第9図X−X線断面図、第
7A図は第9図X−X線断面図、第8図は第9図X−X
線断面図、第9図は砂中子を上方から見た斜視図、第1
0図は第9図X−X線断面図、第11図は繊維成形体の
斜視図、第12図は溶湯の圧力と時間の関係を示すグラ
フである。 C+、Cz・・・シリンダブロック素材成形用キャビテ
ィを構成する第1.第2キヤビテイ、F・・・繊組成形
体、Sm・・・サイアミーズ型シリンダブロック素材、
4・・・シリンダボア、32.33・・・ガス抜き孔、
41・・・中子 特 許 出 願 人  本田技研工業株式会社第ハ図 手続補正書(、え) 昭和 61年10 月−30 1,9許庁長宮殿 1、事件の表示 昭和60年特許 願第146994号 2、発明の名称 繊維強化シリンダブロック素材の鋳造方法3、補正をす
る者 事件との関係 特許出願人 名 称  (532)本田技研工業株式会社4、代  
 理   人  〒105 電話東京434−4151 5補正の対象 補正の内容 (11明細占全文を別紙の通り訂正する。 (2)別紙図面に未配するように、図面第7図の符号r
lO,」をr 10’l Jと訂正し、また符号rlO
,Jを加入する。 以  」ニ 明    細    書(全文補正) 1、発明の名称 繊維強化シリンダブロック素材の鋳造方法2、特許請求
の範囲 シリンダボア回りを繊維成形体により強化したシリンダ
ブロック素材を鋳造するに当り、軸線を上下方向に向け
て配設したシリンダボア成形用中子−六エエ丈れの外U
!ζ酊彫玖を円筒状繊維成形体支全遊嵌関係に保って、
前記中子と前3[F]NJi ilU rM形体(の間
に、醸繊維成形体を囲繞するシリンダブロック素材成形
用キャビティ下皿絵連」工ゑ遊園ぐ形成する旦−ζじ」
餐斗、−見一云工七部のガス抜き孔の開度を絞り、該キ
ャビティ下部より該キャビティおよび前記止に?8場旦
入する工程と;前記ガス抜き孔を閉して前記溶湯を加圧
し、その加圧下で完全凝固させる工程と;を用いること
を特徴とする繊維強化シリンダブロック素材の鋳造方3
、発明の詳細な説明 A 発明の目的 (1)産業上の利用分野 本発明は、シリンダボア回りを繊維成形体により強化し
た繊維強化シリンダブロック素材の鋳造方法に関する。 (2)従来の技術 従来、この種シリンダブロック素材を鋳造する場合、軸
線を水平に配設したシリンダボア成形用中子の外周面に
円筒状繊維成形体を装着し、次いでその繊維成形体を囲
繞するシリンダブロック素材成形用キャビティに、前記
繊維成形体の一端側から溶湯を注入し、その後溶湯を加
圧してその加圧下で完全凝固させる手法が採用されてい
る。 (3)発明が解決しようとする問題点 しかしながら前記手法によると、溶湯の流れが繊維成形
体の一端から他端に向かう軸方向の流れとなろため、溶
湯がガスを巻込み易く、またシリンダプロ、り素材にお
lろ繊維成形体の他端と対応する部位にガスが閉込めら
れ易い。その結果、シリンダブロック素材に巣が発生ず
るという問題がある。 本発明は前記問題を解決し得る1i;1記鋳造方法を堤
供することをLl的とする。 B9発明の構成 +11  問題点を解決するだめの手段本発明は、シリ
ンダボア回りを繊維成形体により強化したシリンダブロ
ック素材を鋳造する−当り、軸線を上下方向に曲りで配
設したシリンダボア成形用中子と、それの外周に配設さ
れる円筒状繊維成形体とを遊1茨関係に保って、前記中
子と前記繊維成形体との間に、該繊維成形体を囲繞する
シリンダブロック素材成形用キャビティ下部に連通ずる
間隙を形成する工程と;該キャビティ上部のガス抜き化
の開度を絞り、該キャビティ下部よ・ り該キャビティ
および前記間隙に溶湯を注入する工程と; iii記ガ
ス抜き孔を閉じて前記溶湯を加圧し、その加圧下で完全
凝固させる工[星と;を用いるごとを特徴とする。 (2)作 用 ;トヤビテイにそれのF部から)8陽を注入すると同時
に、開度を絞られたガス抜き孔の開[1を通しで−1−
ヤビテイ内のガス抜きを行うので、その開口の絞り効果
によって一トヤビテイ内に背圧が定4+E L、その背
圧は湯面全体に均等に作用する。その結果、湯面はその
波立ちを用j制さη、て略水平に上界し、これにより溶
湯へのガスの巻込みが防止され、またガス抜きも効率良
く行われる。 さらに)8場を加圧し、その加圧下で完全凝固させるの
で、溶湯の圧力」−昇過程で/8湯が繊維成形体にその
内側および外側から充j眞され、また7トリノクスの金
属Mi織が緻密化してその強度が向上する。 (3)実施例 第1〜第3図は本発明により得られた素材からなる繊維
強化アルミニウム合金製サイアミーズ型シリンダブロッ
クSを示し、そのシリンダプロ・7りSは、直列に賄ふ
複数、図示例は4個のシリンダバレル11〜14相互を
結合してなるサイアミーズシリンダバレル1と、その事
す・イアミーズシリンダハレル1を聞1.尭する外壁部
2と、外壁部2の下縁に連設されたクランクゲース3と
より構成される。各シリンダバレル11〜14における
シリンダボア4の周囲に円筒状の繊維成形体1・゛が埋
設され、この繊維成形体Fによりシリンダボア4回りが
繊維強化される。 ザイアミーズシリンダハレル1と外壁部2間に、ザイア
ミーズシリンダハレル1の外周が臨む水ジャケソト6が
形成される。その水ジャケット6のシリンダヘット側端
部において、サイアミーズシリンダハレルlと外壁部2
間は複数の補強デツキ部8により部分的に連結され、相
隣る補強デツキ部8間はシリンダヘッド側への連imロ
アとして機能する。これによりシリンダブロックSはク
ローズドデツキ型に構成される。 第5〜第8図は、第4FAに示すシリンダブロック素材
S ntを鋳造すべく本発明の実施に用いられる鋳造装
置を示し、その装置は金型Mを備え、その金型Mは昇降
自在な上型9と、その上型9の下方に配設され、第5.
第6図において左右二つ割の第1および第2側型10.
.10□ならびに第7図において左右二つ割の第3およ
び第4側型103.104  と、各側型101”−I
O2を摺動自在に載置する下型11とより構成される。 上型9の下面に、各側型10.〜104の上半部と協働
してサイアミーズシリンダバレル1および外壁部2を成
形するための第1 =)−ヤビティC1を画成する型締
め用四部12が形成され、ぞの凹部12と嵌合する型締
め用凸部13が各側型10、〜104の上面に突設され
る。 第7.第8図に示すように、下型11に溶解炉(図示せ
ず)よりアルミニウム合金の溶湯を受ける湯溜部14と
、その湯溜部14に連通ずる給湯シリンダ15と、その
給湯シリンダL5に摺合されるプランジャ1Gと、湯溜
部I4より2木に分岐して第1キ中ビテイCIの、長手
方向に、はっそれと略同−長さに亘って延びる一対の場
’1fj 17とが設けられる。また丁型11は両湯道
17間において上方へ突出する成形ブロック1Bを有し
、その成形ブロック18は各側型10.〜lo4の下半
部とta働してクランクケース3を成形するための第2
キヤビテイC2を画成する。そのキャビティC2の上端
は前記第1キヤビテイCIに連通し、また両側の下端は
両湯道17に複数の堰19を介して連通ずる。これら第
1.第2キヤビテイc1゜C2はシリンダブロック素材
成形用キャビティを構成する。 成形ブロック18は、所定の間隔で形成された背の高い
4個のかまぼこ形第1成形部LL と、相隣る第1成形
部18.間および最外側の画筆1成形部ILの外側に位
置する凸字形第2成形部182とよりなり、各第1成形
部18.はクランクピンおよびクランクケース、用回転
空間20(第2、第3図)を成形するために用いられ、
第2成形部182はクランクジャーナルの軸受ホルダ2
1 (第2.第3図)を成形するために用いられる。 各層19は各第2成形部18□に対応して設けられてお
り、第2キヤビテイC2の容量の大きな部分に?8湯を
早期に注入するようになっている。 両湯道L7の断面積が湯溜部I4側より湯道光17aに
向げて段階的に減少するように、湯道17底面は湯溜部
14側より数段の」−り階段状に形成されている。各段
部17bに連なる各立上がり部17cは溶湯を各層19
にスムーズに導くことができるように斜めに形成される
。 このように湯1fi17の断面積を段階的に減少させる
と、断面積の大きな部分では大b1の溶湯を遅い速度で
堰19を通して第2キヤビテイC2に注入し、また断面
積の小さな部分では少量の溶湯を速い速度で堰19を通
じて第2キヤビテイC2に注入することができるので、
その−1−ヤビティC2内に溶湯が湯道17の全長に亘
って略均等に注入される。また溶湯の注入作業が効率良
く行われるので、鋳造能率を向上させることができる。 第5.第6図に示すように、各第1成形部181の頂面
に繊維成形体Fの下らゼ1部が161合する位置決め突
起22が突設され、その位置決め突起22の中心に四部
23が形成される。また両側に位置する2つの第1成形
部18.に、位置決め突起22の両側において第1成形
部18.を貫通する貫通孔24が形成され、それらW通
孔24に一対の仮設置ピン25がそれぞれ摺合される。 それら仮設iηピン25は、後述する水ジヤケツト用砂
中子の仮設置のために用いられる。両板設置ビン25の
下端は、成形ブロック18の下方に配設された取付板2
6に固定される。その取付板26に2木の支持ロッド2
7が挿通され、各支持ロッド27の下部と取付板26の
下面との間にコイルばね28が縮設される。型開き時に
は、取付板26は各コイルばね28の弾発力を受けて各
支持ロット27先端のストッパ27aに当接するまで上
昇し、これにより各仮設置ピン25の先端は第1成形部
18、頂面より突出している。各仮設置ピン25の先端
面に砂中子の下縁と係合する四部25aが形成される。 また両側に位置する2つの第1成形部18、に、両頁通
孔24間の三等分位置において第1成形部18、を貫通
ずる貫通孔29が形成され、そのiT通孔29に下端を
取付板26に固定された作動ピン30が摺合される。型
開き時には、作動ピン30の先端は凹部23内に突出し
、また型閉め時には後述するシリンダボア成形用中子に
より押し下げられ、これにより両板設置ビン25を第1
成形部18.頂面より引き込ませるようになっている。 第1および第2側型101.10□における第1キヤビ
テイC2を画成する壁部の中央部分に砂中子を本設置す
るための中子受31が2個所宛設けられている。各中子
受31は砂中子の位置決めを行う係合孔31aと、その
開口部外周に形成されて砂中子を挟持する挟持面31b
とよりなる。 上型9の型締め用凹部12に、第1キヤビテイC2に&
通して)容陽をオーバフローさせるための複数の第3キ
ヤビテイC3および連1ff1ロアを成形するだめの第
4キヤビテイC4がそれぞれ形成され、また上型9に各
第3キヤビテイC4および第44−ヤビテイC,lに連
通ずるガス抜き孔32,33がそれぞれ形成される。 それらガス抜き孔32.33に閉鎖ピン34゜35がそ
れぞれ遊挿され、それら閉ir1ビン34゜35の上端
部は」二型9の上方に配設される取付板36に固定され
る。 各ガス抜き孔32.33の、両−1−ヤビテイC3゜C
4に対する連通端から」一方へ所定の長さに亘って延び
る小径部32a、33aは各閉鎮ピン3・1゜35の下
端部と嵌合して第3キヤビテイC3および第4キヤビテ
イC4を閉鎖し得るよ・うになっている。 上型9の上面と取付板36間に油圧シリンダ3つが介装
され、その油圧シリンダ3つの作動により取付板36を
昇降して各閉鎖ピン34.35により各小径部32a、
33aを開閉するようになっている。40は取付板36
の案内し1ノドである。 上型9の型締め用四部12天面に、各ンリンダハレル1
1〜14に対応して軸線を1−・0、下方向に向けて配
設したシリンダボア成形用円柱状中子41が突設され、
各中子41の士窩11面に第1成形部+8.頂面の四部
23に嵌合し得る凸部41aが設りられる。各中子41
は上◇:L;より下端に向けて先細りとなるようにテー
バを付されている。 第9.第10図は水ジャケット川砂中子59を示し、そ
の砂中子59は、シリンダブロックSの4本のシリンダ
バレルl、〜14に対応して4木の円筒部60.〜60
4を備えると共にそれらの相隣るもの相互の111合す
る周壁を欠如させた中子本体61と、水ジャケットをシ
リンダヘッドの水ジャケットにin!通する連通ロアお
よび補強デツキ部8を形成ずべく、中子本体61の上端
面に突設された複数の突起62と、中子本体61のシリ
ンダバレル配列方向両外側面、図示例は中間に位置する
2本の円筒部60□、603の両性側面にそれぞれ突設
された幅木63とより構成される。各幅木63は中子本
体61と一体の大径部63aと、その端面に突設される
小径部63bとより形成される。 第11図は、炭素繊維とアルミナ繊維との混合繊維より
成形された円筒状繊維成形体Fを示し、その寸法は上端
における外径89龍、また内径78龍、下端における外
径89mm、また内径74龍高さ1520−で、そのか
さ密度は0.3g/c1である。繊維成形体Fの内周面
、したがってテーパ面の前記寸法は、シリンダボア成形
用中子41のそれよりも僅かに大きくなるように設定さ
れる。 繊維成形体Fは、平均直径18 tt m、平均長さ0
゜8−麿の炭素繊維(短繊維)と、平均直径3〜477
m、平均長さ0.5龍のアルミナ繊維(短繊維)とを1
対3の、リリ合で混合し、その混合繊維にシリカゾルを
バインダとして加え、吸引付着成形法を適用して成形さ
れたものである。この場合、シリカゾルの代りにアルミ
ナゾル噴体、またはシリカゾルとアルミナゾルの混合物
を用いることが可能である。 前記吸引41着成形法とは、irI記混合繊維とシリカ
ゾルの混合物を入れた槽中に、両n;面を富士・1した
通気性を有する円筒型を立設し、その円筒型の内部に吸
引作用を施して前記混合物を円筒型外周面に吸、?iさ
せる手法をいう。 前記手法により成形された繊維成形体は、離型後乾燥お
よび焼成工程を経て使用に供される。 次に前記繊維成形体Fを用いた前記鋳造装置によるシリ
ンダブロック素材6mの鋳造作業について説明する。 先ず第5図に示すように上型9を上昇させ、また相対向
する両側型101,102  ;IL、1()4を1い
に離間するように移動させて型開きを行う。上型9上の
油圧シリンダ39を作動させて取付板36を介し各閉鎖
ピン34.35を上昇させ、それらの下端部を第3.第
4キヤビテイC3゜C4に連通ずる小径部32a、33
aの1一部間口近傍に位置させて各上部開口の開度を絞
る。さらに給湯シリンダ15内のプランジャ16を下降
させる。 略300℃に予熱された各繊維成形体Fの小径側である
下部開口を各第1成形部18.の位置決め突起22にb
X合して各繊維成形体Fを各第1成形部18+ の頂面
に立設する。この場合第7八図に示すように各繊維成形
体Fの下部間l」における内周面の一部と位置決め突起
22における外周面の一部との間には、溶湯を繊維成形
体Fの下部からその内側に進入させるための間隙g+が
形成される。 第5.第10図に示すように砂中子59における各円筒
部601〜604を各繊維成形体Fの外側に遊嵌してそ
れらの間に空間Sを形成し、また両側の円筒部60..
604下縁を、下型11における両側の第1成形部18
.の頂面に突出する各仮設置ピン25の四部25aに係
合させて砂中子59の仮設置を行う。 第6図に示すように、両側型10..10□をそれらが
互いに接近する方向に所定距離移動させ、各中子受31
と各幅木63とを係合して砂中子59の本設置を行う。 即ら、各中子受31の係合孔31aに砂中子59におけ
る各幅木63の小径部63bを嵌合して砂中子59を位
J 決めし、また各大径部63aのシリンダバレル配列
ツノ向と平行な5::j面を各中子受31の挟持面31
bに?Ji合して砂中子59をそれら挟持面31bによ
り挟持するものである。また他の側型10z、104も
同様に1多動させる。 次いで一ヒ型9を下降させて各シリンダボア成形用中子
41を各繊維成形体F内に遊11χし、中子4Jの凸部
41aを第1成形部18 、 Ift面の凹部23に嵌
合する。この凹凸嵌合により作動ビン30が押し下げら
れるので各仮設置ピン25が下降して第1成形部18.
頂面より引込む。また砂中子59の各突起62が各第4
キヤビう−イC4に遊挿され、さらに上型9の型締め用
凹部12が各側型10、〜10.の型締め用凸部13に
嵌合して型締めが行われ、各繊維成形体Fは凹部12天
面と第1成形部18.頂面間に挟持固定される。さらに
中子41と繊維成形体1−′間には所定の間隙g2が形
成され、その間隙g2は前記間隙g1を介して第1キヤ
ビう一イC1下部に連通ずる。 下型11の湯溜部14に溶解炉より730〜740゛C
のアルミニウム合金(JIS  )\D e l 2)
よりなる/8陽を供給し、プランジャ16を0.08〜
0.3 m / secの速度で土、臀させてン容ン易
を両ン易道17より堰19を通して第2キヤビテイC2
の両下部よりその;)−ヤビう−イC2、第1キヤビテ
イC1および間隙8つに注入する。両キャヒテイC3,
C2内の空気等のガスは、)8場により押し上げられて
第3.第4キヤビテイCI 、  C4に連通ずるガス
抜き孔32.33を経て−1−型9の−1一方へ抜ける
。 この場合、前述のように両温i!Xl 7の断面積が場
道先17aに向けて段階的に残少するように、湯道底面
は湯溜部14側より数段の」ニリ階段状に形成されてい
るので、プランジャ1Gの上昇により溶湯は両温1i1
7より冬服19を通して第2キヤビテイC2に、その両
下部よりぞの全長に互って略均等に注入される。 また、第1.第2キャビティC1,Cz内に熔、易を?
L人する際、閉を貞ビン34.354こよりガス抜きT
L32.33における小径部32a、33aの開度が絞
られているので、その開口の絞り効果によって第1.第
2キャビティC,、C2内に背圧が発生し、ぞの背圧は
ル1面全体に均等に作用する。その結果、ン易面は波立
らを抑制されて略水平に上昇し、これにより溶湯へのガ
スの巻込みが防止され、またガス抜きも効率良く行われ
るので巣の発生が回避される。前記背圧に起因して、第
1゜第2+ャビテイc、、CZ内における溶出の注入圧
は、第12図に示すように大気圧を北回る圧力p1、例
えば2〜5kg/c品になる。 さらに繊維成形体Fが前記温度に予イJVされているの
で、溶湯の保温が行われ、これにより繊維成形体Fに対
する溶湯の凝着が回避されろ。 第3.第4キャビティC1,C,に78湯が完全に注入
された時点で、−に型9]二の油圧シリンダ39を作動
さ一已°C取付+S、36を下降させ、閉1jliピン
34、.35によって両キャビティC1,C44こ連通
ずる小径部32a、3.’l+を閉鎖する。 その後プランジ+l(iを0.14〜O,18m/=、
acの速度て1−、 ’jニーさせて7容楊を、[1:
1記圧力pIを上回る高圧力p2下、即ら400 k>
H/aIIの圧力下に保持して完全に6五固させ、7ト
リノクスであるアルミニつ1、合金の組織を緻密化して
その強度の向上を図る。この溶出の圧力−1’−胃過程
において溶湯の圧力5〜20kg/cIItで溶湯が熱
線成形体Fにその内側および外側から充填される。この
ように溶出の充填圧力が(l(いので、充填中に繊v1
m成形体Fがン容ン易により破壊されることはない。 各繊VIE成形体「?は凹部12天面と第1成形部18
、Y百面間に挟持固定されているので、第1キヤビテイ
C1内へのン8杉りのン主人時およびそのキャヒアイC
I内の溶湯の加圧時において各繊維成形体1?が移動す
ることがなく、したがってシリンダボア4回りを確実に
繊維強化することができる。また砂中子59は、それの
各幅木63を介して両側型10..10□により正確な
位置に挟持されているので、前記溶湯の注入時および溶
湯の加圧時において砂中子59が浮き上がったりするこ
とがない。また各幅木63の大径部63aの端面が両側
型10..102における中子受31の挟持面31bに
衝合しているので、砂中子59が脹らみ傾向になると、
その変形力は各挟持面31bにより支承され、これによ
り砂中子59の変形が防止されて各シリンダボア4回り
の肉厚が均一なサイアミーズシリンダハレルlが得られ
る。 溶湯が凝固を完了した後、型開きを行うと第4図に示す
シリンダブロック素材Smが得られる。 前記シリンダブロック素材Smに1iJF削加工を施し
て各第4キヤビテイC4と砂中子59の各突起62との
協働により成形された各突出部64を除去すると各連通
ロアおよび補強デツキ部8が形成され、また砂抜きを行
うことにより水シャケ、トロが得られ、さらに各シリン
ダボア4の内周面に真円加工を施して1111記間隙g
2に充填されたアルミニウム合金部分を除去し、さらに
またその他の所定の加工を施すと第1〜第3図に示すシ
リンダブロックSが得られる。 なお、繊維成形体Fは一種類の強化熱11[より成形し
てもよい。またマトリックスとしては前記アルミニうム
合金の外に鋳鉄、銅、マグネシウム合金等が用いられる
。 C1発明の効果 本発明によれば、シリンダブロック素材成形用、トヤビ
テイにそれの下部から溶湯を注入すると同時に開度を絞
られたガス抜き孔の開口を通してキャビティ内のガス抜
きを行うので、その開口の絞り効果によってキャビティ
内に発イ[、シた背圧が湯面全体に均等に作用し、その
結果、湯面ばその波立らを抑制されて略水平に上昇し、
ごれにより溶湯・\のガスの巻込みを防止し、またガス
抜きも効イ)良く行うことができる。 さらに繊維成形体の内側および外側よりそれに溶湯を充
填するので、繊維成形体に対する熔115の充填効率を
良好にすることができる。 その上溶湯を、加圧下で完全凝固させるので、マトリッ
クスの金属組織を緻密化してその強度を向上させること
ができる。 したがって前記手法を採用することにより、シリングボ
ア回りを確実に繊維強化した巣の発生の無い高強度な繊
維強化シリンダブ「1ツク素材を能率良く鋳造すること
ができる。 4、図面の簡単な説明 第1乃至第3図は本発明により得られた素材からなるサ
イアミーズ型シリンダブi:I 、、、りを示し、第1
図は上方から見た斜視図、第2図は第1 lAll−■
線断面図、第2A図は第2図II a −II a線断
面図、第3図は下方から見た斜視図、第4図は本発明に
より得られたサイアミーズ型シリンダブロック素材を上
方から見た斜視図、第5図は鋳造装置の型開き時の縦断
正面図、第〔j図はり、η造装置の型閉め時の縦断正面
図、第7図は第9図X−X線断面図、第7A図は第7図
■a −■l 、J線断面図、第8図は第9図X−X線
断面図、第9図は砂中子を上方から見たi・[視図、第
1θ図は第9図X−X線断面図、第11図は繊維成形体
の斜視図、第12図は+i ?’b4の圧力と時間の関
係を示すグラフである。
1 to 3 show a Siamese type cylinder block made of the material obtained according to the present invention, FIG. 1 is a perspective view seen from above, FIG.
The figures are FIG. 9, a sectional view taken along the line X-X, FIG. 3, a perspective view from below, FIG. 4, a perspective view from above of the Siamese-type cylinder block material obtained by the present invention, and FIG. FIG. 6 is a longitudinal sectional front view of the casting device when the mold is opened, FIG. 7 is a sectional view taken along the line XX of FIG. 9, and FIG. 7A is a sectional view of the casting device when the mold is closed. Line sectional view, Figure 8 is Figure 9 X-X
Line sectional view, Figure 9 is a perspective view of the sand core seen from above, Figure 1
0 is a sectional view taken along the line X-X in FIG. 9, FIG. 11 is a perspective view of the fiber molded body, and FIG. 12 is a graph showing the relationship between the pressure of the molten metal and time. C+, Cz... The first composing the cylinder block material molding cavity. 2nd cavity, F...fiber composition body, Sm...Siamese type cylinder block material,
4... Cylinder bore, 32.33... Gas vent hole,
41... Core patent applicant Honda Motor Co., Ltd. Figure C procedural amendment (,e) October 1985 - 30 1,9 Office Director's Palace 1, case indication 1985 patent application No. 146994 2, Name of the invention Casting method for fiber-reinforced cylinder block material 3, Relationship with the person making the amendment Case Name of patent applicant (532) Honda Motor Co., Ltd. 4, Representative
Director 105 Telephone Tokyo 434-4151 5 Contents of the amendment subject to amendment (The entire text of 11 specifications is corrected as shown in the attached sheet. (2) Please note that the code r in Figure 7 of the drawing is not included in the attached drawing.
lO,'' was corrected to r 10'l J, and the symbol rlO
, J. 1. Title of the invention Method for casting fiber-reinforced cylinder block material 2. Claims When casting a cylinder block material whose circumference around the cylinder bore is reinforced with a fiber molding, the axis line is Cylinder bore molding core arranged facing the direction - 6mm long outer U
! Keeping the cylindrical fiber molded body in a loose fit relationship,
Between the core and the front 3[F]NjiilUrM shape, there is a picture of the lower plate of the cavity for forming the cylinder block material surrounding the fiber molded body.
- Narrow down the opening of the gas vent hole in the seventh part of the restaurant, and enter the cavity and the stop from the bottom of the cavity? A method for casting a fiber-reinforced cylinder block material 3, characterized by using the following steps: closing the gas vent hole, pressurizing the molten metal, and completely solidifying it under the pressure.
, Detailed Description of the Invention A Object of the Invention (1) Industrial Application Field The present invention relates to a method for casting a fiber-reinforced cylinder block material in which the circumference of a cylinder bore is reinforced with a fiber molded body. (2) Conventional technology Conventionally, when casting this type of cylinder block material, a cylindrical fiber molded body is attached to the outer peripheral surface of a cylinder bore molding core whose axis is arranged horizontally, and then the fiber molded body is surrounded. A method is adopted in which the molten metal is injected from one end side of the fiber molded body into the cylinder block material molding cavity, and then the molten metal is pressurized and completely solidified under the pressure. (3) Problems to be Solved by the Invention However, according to the above-mentioned method, the molten metal flows in the axial direction from one end of the fiber molded body to the other end, so the molten metal tends to entrain gas. Gas is likely to be trapped in a portion of the fiber material that corresponds to the other end of the fiber molded article. As a result, there is a problem that cavities occur in the cylinder block material. The object of the present invention is to provide a casting method that can solve the above problems. B9 Structure of the Invention + 11 Means for Solving Problems The present invention involves casting a cylinder block material reinforced with a fiber molded material around the cylinder bore. and a cylindrical fiber molded body disposed on the outer periphery of the core and a cylindrical fiber molded body disposed on the outer periphery of the core, and a cylinder block material for forming a cylinder block material surrounding the fiber molded body is placed between the core and the fiber molded body. a step of forming a gap communicating with the lower part of the cavity; a step of narrowing down the opening for gas venting in the upper part of the cavity, and injecting molten metal into the cavity and the gap from the lower part of the cavity; and forming the gas vent hole described in iii. The molten metal is closed, pressurized, and completely solidified under the pressure. (2) Action: At the same time, inject 8-8 (from the F part of the toyabitei) into the toyabitei, open the gas vent hole [1 through -1-
Since gas is vented within the cavity, the back pressure within the cavity is constant 4+EL due to the throttling effect of the opening, and this back pressure acts equally on the entire hot water surface. As a result, the molten metal surface overcomes the ripples and rises approximately horizontally, thereby preventing gas from being entrained in the molten metal and efficiently degassing. Furthermore, since the molten metal is pressurized and completely solidified under that pressure, the molten metal is filled with the molten metal from the inside and outside during the process of increasing the pressure of the molten metal. becomes denser and its strength improves. (3) Embodiment Figures 1 to 3 show a Siamese-type cylinder block S made of a fiber-reinforced aluminum alloy made of a material obtained according to the present invention. An example is a Siamese cylinder barrel 1 formed by connecting four cylinder barrels 11 to 14 to each other, and a Siamese cylinder barrel 1. It is composed of a sloped outer wall part 2 and a crank case 3 connected to the lower edge of the outer wall part 2. A cylindrical fiber molded body 1.'' is embedded around the cylinder bore 4 in each cylinder barrel 11 to 14, and the area around the cylinder bore 4 is reinforced with fibers by this fiber molded body F. A water jacket 6 facing the outer periphery of the Ziamese cylinder hull 1 is formed between the Ziamese cylinder hull 1 and the outer wall portion 2. At the cylinder head side end of the water jacket 6, the Siamese cylinder barrel 1 and the outer wall 2
The spaces between the reinforcing deck parts 8 are partially connected by a plurality of reinforcing deck parts 8, and the adjacent reinforcing deck parts 8 function as a continuous lower part to the cylinder head side. As a result, the cylinder block S is configured into a closed deck type. 5 to 8 show a casting device used in the practice of the present invention to cast the cylinder block material S nt shown in the 4th FA, and the device is equipped with a mold M, which can be moved up and down. An upper mold 9 and a fifth mold disposed below the upper mold 9.
In FIG. 6, the first and second side molds 10 are divided into left and right halves.
.. 10□ and the third and fourth side molds 103 and 104 divided into left and right halves in FIG.
It is composed of a lower die 11 on which O2 is slidably placed. On the lower surface of the upper mold 9, each side mold 10. The four mold clamping parts 12 that define the first cavity C1 for molding the Siamese cylinder barrel 1 and the outer wall part 2 in cooperation with the upper half of ~104 are formed, and are fitted into the respective recesses 12. Matching mold clamping convex portions 13 are provided protrudingly on the upper surface of each side mold 10, to 104. 7th. As shown in FIG. 8, the lower mold 11 includes a sump 14 that receives molten aluminum alloy from a melting furnace (not shown), a hot water cylinder 15 communicating with the sump 14, and a hot water cylinder L5. The plunger 1G to be slid together and a pair of fields '1fj 17 which are branched into two branches from the water reservoir part I4 and extend over approximately the same length in the longitudinal direction of the first cylinder bit CI. provided. The mold 11 also has a molding block 1B projecting upward between the two runners 17, and the molding block 18 is connected to each side mold 10. ~The second part for forming the crankcase 3 by working with the lower half of lo4
A cavity C2 is defined. The upper end of the cavity C2 communicates with the first cavity CI, and the lower ends on both sides communicate with both runners 17 via a plurality of weirs 19. These first. The second cavity c1°C2 constitutes a cavity for molding the cylinder block material. The molding block 18 includes four tall semi-cylindrical first molding parts LL formed at predetermined intervals, and adjacent first molding parts 18. and a convex-shaped second molding part 182 located between and outside of the outermost brush 1 molding part IL, and each first molding part 18. is used to form the crank pin and crankcase, and the rotating space 20 (Figs. 2 and 3).
The second molded part 182 is the bearing holder 2 of the crank journal.
1 (Figures 2 and 3). Each layer 19 is provided corresponding to each second molded part 18□, and is provided in a large capacity part of the second cavity C2. 8 Hot water is injected early. The bottom surface of the runner 17 is formed in the shape of several steps from the sump portion 14 side so that the cross-sectional area of both runners L7 gradually decreases from the sump portion I4 side toward the runner light 17a. has been done. Each rising portion 17c connected to each step portion 17b allows the molten metal to flow into each layer 19.
It is formed diagonally so that it can be guided smoothly. When the cross-sectional area of the hot water 1fi17 is reduced in stages in this way, in the part with a large cross-sectional area, a large amount of molten metal is injected into the second cavity C2 through the weir 19 at a slow speed, and in the part with a small cross-sectional area, a small amount of molten metal is injected into the second cavity C2. Since the molten metal can be injected into the second cavity C2 through the weir 19 at a high speed,
The molten metal is injected into the -1-yabity C2 substantially uniformly over the entire length of the runner 17. Further, since the molten metal injection work is performed efficiently, casting efficiency can be improved. Fifth. As shown in FIG. 6, a positioning protrusion 22 is protrudingly provided on the top surface of each first molded part 181, with which the lower part of the fiber molded body F is fitted. It is formed. Also, two first molded parts 18 located on both sides. On both sides of the positioning protrusion 22, the first molded portion 18. A through hole 24 is formed passing through the W through hole 24, and a pair of temporary installation pins 25 are slid into each of the W through holes 24, respectively. These temporary iη pins 25 are used for temporary installation of a sand core for a water jacket, which will be described later. The lower end of both plate installation bins 25 is attached to a mounting plate 2 disposed below the molded block 18.
It is fixed at 6. 2 wooden support rods 2 on its mounting plate 26
7 is inserted, and a coil spring 28 is compressed between the lower part of each support rod 27 and the lower surface of the mounting plate 26. When the mold is opened, the mounting plate 26 receives the elastic force of each coil spring 28 and rises until it comes into contact with the stopper 27a at the tip of each support rod 27, so that the tip of each temporary installation pin 25 is connected to the first molded part 18, It protrudes from the top. Four portions 25a that engage with the lower edge of the sand core are formed on the tip end surface of each temporary installation pin 25. In addition, a through hole 29 is formed in the two first molded parts 18 located on both sides to pass through the first molded part 18 at a trisecting position between both page through holes 24, and the iT through hole 29 has a lower end. The operating pin 30, which is fixed to the mounting plate 26, is slid together. When the mold is opened, the tip of the operating pin 30 protrudes into the recess 23, and when the mold is closed, it is pushed down by a cylinder bore molding core, which will be described later.
Molding part 18. It is designed to be pulled in from the top. Core holders 31 for actually installing sand cores are provided at two locations in the center of the wall defining the first cavity C2 in the first and second side molds 101.10□. Each core holder 31 has an engagement hole 31a for positioning the sand core, and a clamping surface 31b formed on the outer periphery of the opening to clamp the sand core.
It becomes more. In the mold clamping recess 12 of the upper mold 9, in the first cavity C2 &
A plurality of third cavities C3 for overflowing the yongyang (throughout) and a fourth cavity C4 for molding the continuous 1ff1 lower are formed, respectively, and each of the third cavities C4 and the 44th cavity C4 are formed in the upper mold 9. , l are formed, respectively. Closing pins 34 and 35 are loosely inserted into these gas vent holes 32 and 33, respectively, and the upper ends of these closing IR1 bins 34 and 35 are fixed to a mounting plate 36 disposed above the second mold 9. Each gas vent hole 32.33, both -1-yabity C3°C
Small-diameter portions 32a and 33a extending from the communicating end for 4 to one side over a predetermined length are fitted with the lower end of each closing pin 3.1°35 to close the third cavity C3 and the fourth cavity C4. It is possible to do it. Three hydraulic cylinders are interposed between the upper surface of the upper die 9 and the mounting plate 36, and the operation of the three hydraulic cylinders raises and lowers the mounting plate 36, and each small diameter portion 32a,
33a is opened and closed. 40 is the mounting plate 36
The guide is 1 node. On the top of the four mold clamping parts 12 of the upper mold 9, each
Corresponding to numbers 1 to 14, cylindrical cores 41 for forming cylinder bores are provided with their axes facing downward at 1-.0,
The first molded portion +8. Convex portions 41a that can fit into the four portions 23 on the top surface are provided. Each core 41
Upper ◇: L; It is tapered so as to taper toward the lower end. 9th. FIG. 10 shows a water jacket river sand core 59, which has four wooden cylindrical sections 60.corresponding to the four cylinder barrels l, 14 of the cylinder block S. ~60
4 and the core body 61 is missing the surrounding walls that match the adjacent ones 111, and the water jacket is in the water jacket of the cylinder head! In order to form a communicating lower and reinforcing deck part 8, a plurality of protrusions 62 protrude from the upper end surface of the core body 61, and a plurality of protrusions 62 are provided on both outer surfaces of the core body 61 in the cylinder barrel arrangement direction, in the illustrated example, at the middle. It is composed of baseboards 63 protruding from both sides of the two cylindrical parts 60□ and 603 located therein. Each baseboard 63 is formed of a large diameter part 63a that is integral with the core body 61 and a small diameter part 63b that projects from the end surface thereof. Fig. 11 shows a cylindrical fiber molded body F formed from a mixed fiber of carbon fiber and alumina fiber, and its dimensions are an outer diameter of 89 mm at the upper end, an inner diameter of 78 mm, an outer diameter of 89 mm at the lower end, and an inner diameter of 89 mm. 74 dragon height is 1520-, and its bulk density is 0.3 g/c1. The dimensions of the inner circumferential surface of the fiber molded body F, that is, the tapered surface, are set to be slightly larger than those of the cylinder bore forming core 41. The fiber molded body F has an average diameter of 18 tt m and an average length of 0.
゜8-maro carbon fiber (short fiber) and average diameter 3-477
m, and alumina fibers (short fibers) with an average length of 0.5 mm.
The fibers of Pair 3 were mixed by merging, silica sol was added as a binder to the mixed fibers, and molded by applying a suction adhesion molding method. In this case, it is possible to use an alumina sol propellant or a mixture of silica sol and alumina sol instead of silica sol. The above-mentioned suction 41-layer molding method is a method in which a cylindrical mold with air permeability with both sides of N; The mixture is sucked onto the outer circumferential surface of the cylindrical shape by applying a suction action. This refers to the method of making i. The fiber molded body formed by the above method is used after being released from the mold and subjected to a drying and firing process. Next, the casting operation of the cylinder block material 6m by the casting apparatus using the fiber molded body F will be explained. First, as shown in FIG. 5, the upper mold 9 is raised, and the opposing molds 101, 102; The hydraulic cylinder 39 on the upper mold 9 is actuated to raise each closing pin 34.35 through the mounting plate 36, so that their lower ends are connected to the third. Small diameter portions 32a, 33 communicating with the fourth cavity C3°C4
The opening of each upper opening is narrowed by placing it near the frontage of part a. Further, the plunger 16 in the hot water supply cylinder 15 is lowered. The lower opening on the small diameter side of each fiber molded body F preheated to approximately 300°C is connected to each first molded portion 18. b on the positioning protrusion 22 of
Each fiber molded body F is placed upright on the top surface of each first molded portion 18+ by aligning the fibers F with each other. In this case, as shown in FIG. A gap g+ is formed for entering the inside from the lower part. Fifth. As shown in FIG. 10, the cylindrical portions 601 to 604 of the sand core 59 are loosely fitted to the outside of each fiber molded body F to form a space S therebetween, and the cylindrical portions 60 . ..
The lower edge of 604 is attached to the first molding portions 18 on both sides of the lower mold 11.
.. The sand core 59 is temporarily installed by engaging with the four parts 25a of each temporary installation pin 25 protruding from the top surface of the sand core 59. As shown in FIG. 6, both sides type 10. .. 10□ by a predetermined distance in the direction in which they approach each other, and
and each skirting board 63, and the sand core 59 is fully installed. That is, the sand core 59 is positioned by fitting the small diameter portion 63b of each skirting board 63 in the sand core 59 into the engagement hole 31a of each core holder 31, and also aligning the cylinder of each large diameter portion 63a. The 5::j plane parallel to the barrel arrangement horn direction is the clamping surface 31 of each core receiver 31.
To b? The sand cores 59 are held together by the holding surfaces 31b. Similarly, the other side molds 10z and 104 are made to have one hyperactivity. Next, the mold 9 is lowered to loosely place each cylinder bore molding core 41 into each fiber molded body F, and the convex part 41a of the core 4J is fitted into the first molded part 18 and the recess 23 on the If surface. do. As the actuation bin 30 is pushed down by this uneven fitting, each temporary installation pin 25 descends and the first molded part 18.
Pull in from the top. In addition, each protrusion 62 of the sand core 59
The mold clamping recess 12 of the upper mold 9 is loosely inserted into the cavity C4, and each side mold 10, to 10. Mold clamping is performed by fitting into the mold clamping convex portion 13 of the mold clamping convex portion 13, and each fiber molded body F is fitted between the top surface of the recess portion 12 and the first molded portion 18. It is clamped and fixed between the top surfaces. Furthermore, a predetermined gap g2 is formed between the core 41 and the fiber molded body 1-', and the gap g2 communicates with the lower part of the first cavity C1 via the gap g1. Heat the melting furnace to 730 to 740°C in the sump 14 of the lower mold 11.
Aluminum alloy (JIS)\D e l 2)
Supply a /8 positive and plunger 16 from 0.08 to
The soil was moved at a speed of 0.3 m/sec, and the soil was moved from the road 17 through the weir 19 to the second cavity C2.
Inject from both lower parts of the ;)-Yabi-i C2, first cavity C1, and eight gaps. Both cabs C3,
The gas such as air in C2 is pushed up by the )8 field and is pushed up by the 3rd field. It exits to one side of the -1 mold 9 through the gas vent holes 32 and 33 communicating with the fourth cavity CI and C4. In this case, as mentioned above, Ryoon i! The bottom surface of the runner is formed in the shape of several steps from the sump portion 14 side so that the cross-sectional area of Therefore, the temperature of the molten metal is 1i1
7, it is injected into the second cavity C2 through the winter clothes 19 almost equally over the entire length of both lower portions of the second cavity C2. Also, 1st. Is there melting in the second cavity C1, Cz?
When carrying L people, close the bottle and release the gas from the 34.354 bottle.
Since the opening degree of the small diameter portions 32a and 33a at L32.33 is narrowed, the first. Back pressure is generated within the second cavities C, C2, and each back pressure acts equally on the entire surface of the cavity. As a result, the undulating surface is suppressed and rises substantially horizontally, thereby preventing gas from being entrained in the molten metal, and degassing efficiently, thereby avoiding the formation of cavities. Due to the back pressure, the elution injection pressure in the first, second, and second cavities c, CZ becomes a pressure p1 north of atmospheric pressure, for example, 2 to 5 kg/c, as shown in Fig. 12. . Furthermore, since the fibrous molded body F is preheated to the above temperature, the molten metal is kept warm, thereby preventing the molten metal from adhering to the fibrous molded body F. Third. When 78 hot water is completely injected into the fourth cavity C1, C, the second hydraulic cylinder 39 of the mold 9 is activated, the mounting +S, 36 is lowered, and the pin 34, . 35, the small diameter portion 32a communicates with both cavities C1, C44. 'Close l+. Then plunge +l (i 0.14~O, 18m/=,
ac speed 1-, 'j knee 7 yang, [1:
1. Under high pressure p2 exceeding pressure pI, i.e. 400 k>
It is held under H/aII pressure to completely harden the aluminum alloy, which is 7 trinox, to densify the structure of the aluminum alloy and improve its strength. During this elution pressure-1'-gastric process, the hot wire molded body F is filled with the molten metal from the inside and outside at a pressure of 5 to 20 kg/cIIt. In this way, the filling pressure for elution is (l), so during filling the fiber v1
The molded body F will not be easily destroyed. Each fiber VIE molded body “?” indicates the concave portion 12 top surface and the first molded portion 18
Since it is clamped and fixed between , Y and 100 sides, when the 8th cedar ring is inserted into the first cavity C1 and its cahiai C
When pressurizing the molten metal in I, each fiber molded body 1? does not move, and therefore the area around the four cylinder bores can be reliably reinforced with fibers. Also, the sand core 59 is inserted into both side molds 10 through each baseboard 63 of the sand core 59 . .. Since the sand core 59 is held in an accurate position by the sand core 59, the sand core 59 does not float up during the injection of the molten metal and the pressurization of the molten metal. Further, the end surfaces of the large diameter portions 63a of each baseboard 63 are both side type 10. .. Since it abuts against the clamping surface 31b of the core support 31 at 102, when the sand core 59 tends to swell,
The deforming force is supported by each clamping surface 31b, thereby preventing deformation of the sand core 59, and obtaining a Siamese cylinder barrel l having a uniform wall thickness around each cylinder bore 4. After the molten metal has completely solidified, the mold is opened to obtain the cylinder block material Sm shown in FIG. 4. When the cylinder block material Sm is subjected to 1iJF machining to remove each protrusion 64 formed by the cooperation of each fourth cavity C4 and each protrusion 62 of the sand core 59, each communicating lower and reinforcing deck part 8 are removed. The inner circumferential surface of each cylinder bore 4 is machined into a perfect circle to obtain a gap g of 1111.
By removing the aluminum alloy portion filled in 2 and performing other predetermined processing, the cylinder block S shown in FIGS. 1 to 3 is obtained. Note that the fiber molded body F may be molded using one type of reinforcing heat 11. In addition to the aluminum alloy, cast iron, copper, magnesium alloy, etc. can be used as the matrix. C1 Effects of the Invention According to the present invention, molten metal is injected from the lower part of the toyabity for cylinder block material molding, and at the same time gas is vented from the cavity through the opening of the gas vent hole whose opening is narrowed. The back pressure generated in the cavity due to the squeezing effect acts uniformly on the entire hot water surface, and as a result, the ripples of the hot water surface are suppressed and the water rises almost horizontally.
The dirt prevents the entrainment of molten metal and gas, and also allows for efficient degassing. Furthermore, since the molten metal is filled from the inside and outside of the fiber molded body, the filling efficiency of the melt 115 into the fiber molded body can be improved. Moreover, since the molten metal is completely solidified under pressure, the metal structure of the matrix can be densified and its strength can be improved. Therefore, by adopting the above-mentioned method, it is possible to efficiently cast a high-strength fiber-reinforced cylinder cylinder material with no cavities, which is reliably fiber-reinforced around the cylinder bore. 4. Brief explanation of drawings No. 1 3 to 3 show Siamese-type cylinder tabs i:I made of the material obtained according to the present invention.
The figure is a perspective view seen from above, and Figure 2 is the 1st lAll-■
2A is a sectional view taken along line II a - II a in FIG. 2, FIG. 3 is a perspective view taken from below, and FIG. Fig. 5 is a longitudinal sectional front view of the casting device when the mold is opened, Fig. 7 is a longitudinal sectional front view of the casting device when the mold is closed, and Fig. 7 is a sectional view taken along the line X-X in Fig. 9. , Fig. 7A is a sectional view taken along line J in Fig. 7, Fig. 8 is a sectional view taken along line XX in Fig. , FIG. 1θ is a sectional view taken along the line X-X in FIG. 9, FIG. 11 is a perspective view of the fiber molded product, and FIG. 12 is a +i? It is a graph showing the relationship between pressure and time of 'b4.

Claims (1)

【特許請求の範囲】[Claims] シリンダボア回りを繊維成形体により強化したシリンダ
ブロック素材を鋳造するに当り、軸線を上下方向に向け
て配設したシリンダボア成形用中子の外周面に円筒状繊
維成形体を遊嵌する工程と;前記繊維成形体を囲繞する
シリンダブロック素材成形用キャビティ上部のガス抜き
孔の開度を絞り、大気圧を上回る所定の圧力下で該キャ
ビティ下部より該キャビティに溶湯を、湯面が略水平状
態で上昇するように注入する工程と;前記ガス抜き孔を
閉じて前記溶湯を前記圧力を上回る高圧下で完全凝固さ
せる工程と;を用いることを特徴とする繊維強化シリン
ダブロック素材の鋳造方法。
When casting a cylinder block material reinforced with a fiber molded body around the cylinder bore, a step of loosely fitting a cylindrical fiber molded body onto the outer peripheral surface of a cylinder bore molding core arranged with its axis directed in the vertical direction; The opening of the gas vent hole at the top of the cavity for molding the cylinder block material that surrounds the fiber molded body is narrowed, and the molten metal is poured into the cavity from the bottom of the cavity under a predetermined pressure exceeding atmospheric pressure, with the molten metal level rising in a substantially horizontal state. A method for casting a fiber-reinforced cylinder block material, the method comprising: injecting the material so that the gas vent hole is closed and completely solidifying the molten metal under a high pressure exceeding the pressure.
JP14699485A 1985-07-04 1985-07-04 Casting method for fiber reinforced cylinder block stock Pending JPS626761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14699485A JPS626761A (en) 1985-07-04 1985-07-04 Casting method for fiber reinforced cylinder block stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14699485A JPS626761A (en) 1985-07-04 1985-07-04 Casting method for fiber reinforced cylinder block stock

Publications (1)

Publication Number Publication Date
JPS626761A true JPS626761A (en) 1987-01-13

Family

ID=15420196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14699485A Pending JPS626761A (en) 1985-07-04 1985-07-04 Casting method for fiber reinforced cylinder block stock

Country Status (1)

Country Link
JP (1) JPS626761A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5983975A (en) * 1991-03-05 1999-11-16 Ab Volvo Method of die casting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5983975A (en) * 1991-03-05 1999-11-16 Ab Volvo Method of die casting

Similar Documents

Publication Publication Date Title
JP4002200B2 (en) Papermaking parts for casting production
KR960007624B1 (en) Moulds for metal casting and sleeves containing filters for use therein used therefor
US4738298A (en) Process for casting cylinder block blanks made of light alloy
JPS626761A (en) Casting method for fiber reinforced cylinder block stock
JPS62282760A (en) Pressure casting method for siamese type cylinder block stock
JPS61293652A (en) Casting method for fiber-reinforced cylinder block stock
JPH04747B2 (en)
JPS62187562A (en) Production of fiber reinforced cylinder block
JPS626763A (en) Casting method for fiber reinforced cylinder block stock
JPS626762A (en) Casting method for fiber reinforced cylinder block stock
JPS62197266A (en) Method and mold for casting fiber reinforced metallic body
JPS626764A (en) Casting method for fiber reinforced cylinder block stock
JPH0652059B2 (en) Fiber reinforced cylinder block and method of manufacturing the same
JPS61293651A (en) Casting method for fiber-reinforced metallic member
JPS6390352A (en) Casting method for fiber reinforced cylinder block stock
JPS62265453A (en) Manufacture of fiber reinforced cylinder block
JPH04748B2 (en)
JPS626766A (en) Casting method for fiber reinforced cylinder block stock
JPH0140709B2 (en)
JPS62187561A (en) Casting method for fiber reinforced cylinder block stock
JPS6257755A (en) Casting of cylinder block stock made of light alloy
JPS62248554A (en) Production of closed-deck type cylinder block
JPS6390351A (en) Casting method for fiber reinforced cylinder block stock
JPS62270266A (en) Casting method for cylinder block material
JP3793319B2 (en) Manufacturing method of fiber molded body for fiber reinforced aluminum alloy cylinder block casting by die casting method